1
|
Machado MAM, Castro VS, Monteiro MLG, Bernardo YADA, Figueiredo EEDS, Conte-Junior CA. Can Extraintestinal Pathogenic Escherichia coli with Heat Resistance Profile Overcome Nonthermal Technologies? Foodborne Pathog Dis 2024; 21:168-173. [PMID: 38090762 DOI: 10.1089/fpd.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Ultraviolet-C light-emitting diode (UVC-LED) and ultrasound (US) are two nonthermal technologies with the potential to destroy pathogens. However, little is known about their effectiveness in strains with a history of heat resistance. Thus, this study aimed to evaluate the phenotype and genotype of heat-resistant extraintestinal pathogenic Escherichia coli (ExPEC) with heat resistance genes after the application of US, UVC-LED, and UVC-LED+US. For this, two central composite rotatable designs were used to optimize the UVC-LED and US conditions in four ExPEC isolated from beef. From the genome of these isolates obtained in a previous study, possible genes for UVC resistance were analyzed. Results showed that US was ineffective in reducing >0.30 log colony-forming unit/mL, and that when used after UVC-LED, it showed a nonsynergic or antagonistic effect. Also, UVC-LED had the greatest effect at the maximum dose (4950 mJ/cm2 from 1.65 mW/cm2 for 50 min). However, the strains showed some recovery after that, which could be implicated in the expression of genes included in SOS system genes, some others present in the transmissible Locus of Stress Tolerance (trxBC and degP), and others (terC). Thus, ExPEC can overcome the conditions used in this study for US, UVC-LED, and UVC-LED+US, probably due to the history of resistance to other cellular damage. The result of this study will contribute to future studies that aim to find better treatment conditions for each food product.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Postgraduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
| | - Vinicius Silva Castro
- Postgraduate Program in Animal Science (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Maria Lúcia Guerra Monteiro
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| | - Yago Alves de Aguiar Bernardo
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Postgraduate Program in Animal Science (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
- Postgraduate Program in Nutrition, Food and Metabolism (PPGNAM), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
2
|
Alonso García E, Benomar N, Lavilla Lerma L, de la Fuente Ordoñez JJ, Knapp CW, Abriouel H. Changes in resistome profile of potential probiotic Lactiplantibacillus pentosus in response to edible oil adaptation. Food Microbiol 2023; 109:104148. [DOI: 10.1016/j.fm.2022.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
3
|
B. Soro A, Shokri S, Nicolau-Lapeña I, Ekhlas D, Burgess CM, Whyte P, Bolton DJ, Bourke P, Tiwari BK. Current challenges in the application of the UV-LED technology for food decontamination. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Shimamura Y, Yui T, Horiike H, Masuda S. Toxicity of combined exposure to acrylamide and Staphylococcus aureus. Toxicol Rep 2022; 9:876-882. [DOI: 10.1016/j.toxrep.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
|
5
|
Nowak J, Visnovsky SB, Pitman AR, Cruz CD, Palmer J, Fletcher GC, Flint S. Biofilm Formation by Listeria monocytogenes 15G01, a Persistent Isolate from a Seafood-Processing Plant, Is Influenced by Inactivation of Multiple Genes Belonging to Different Functional Groups. Appl Environ Microbiol 2021; 87:e02349-20. [PMID: 33741610 PMCID: PMC8117777 DOI: 10.1128/aem.02349-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that results in a high rate of mortality in sensitive and immunocompromised people. Contamination of food with L. monocytogenes is thought to occur during food processing, most often as a result of the pathogen producing a biofilm that persists in the environment and acting as the source for subsequent dispersal of cells onto food. A survey of seafood-processing plants in New Zealand identified the persistent strain 15G01, which has a high capacity to form biofilms. In this study, a transposon library of L. monocytogenes 15G01 was screened for mutants with altered biofilm formation, assessed by a crystal violet assay, to identify genes involved in biofilm formation. This screen identified 36 transposants that showed a significant change in biofilm formation compared to the wild type. The insertion sites were in 27 genes, 20 of which led to decreased biofilm formation and seven to an increase. Two insertions were in intergenic regions. Annotation of the genes suggested that they are involved in diverse cellular processes, including stress response, autolysis, transporter systems, and cell wall/membrane synthesis. Analysis of the biofilms produced by the transposants using scanning electron microscopy and fluorescence microscopy showed notable differences in the structure of the biofilms compared to the wild type. In particular, inactivation of uvrB and mltD produced coccoid-shaped cells and elongated cells in long chains, respectively, and the mgtB mutant produced a unique biofilm with a sandwich structure which was reversed to the wild-type level upon magnesium addition. The mltD transposant was successfully complemented with the wild-type gene, whereas the phenotypes were not or only partially restored for the remaining mutants.IMPORTANCE The major source of contamination of food with Listeria monocytogenes is thought to be due to biofilm formation and/or persistence in food-processing plants. By establishing as a biofilm, L. monocytogenes cells become harder to eradicate due to their increased resistance to environmental threats. Understanding the genes involved in biofilm formation and their influence on biofilm structure will help identify new ways to eliminate harmful biofilms in food processing environments. To date, multiple genes have been identified as being involved in biofilm formation by L. monocytogenes; however, the exact mechanism remains unclear. This study identified four genes associated with biofilm formation by a persistent strain. Extensive microscopic analysis illustrated the effect of the disruption of mgtB, clsA, uvrB, and mltD and the influence of magnesium on the biofilm structure. The results strongly suggest an involvement in biofilm formation for the four genes and provide a basis for further studies to analyze gene regulation to assess the specific role of these biofilm-associated genes.
Collapse
Affiliation(s)
- Jessika Nowak
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Sandra B Visnovsky
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Andrew R Pitman
- The Foundation for Arable Research, Christchurch, New Zealand
| | - Cristina D Cruz
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jon Palmer
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Steve Flint
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Cheng JH, Lv X, Pan Y, Sun DW. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Jiang B, Xing Y, Li G, Zhang N, Lian L, Sun G, Zhang D. iTRAQ-Based Comparative Proteomic Analysis of Acinetobacter baylyi ADP1 Under DNA Damage in Relation to Different Carbon Sources. Front Microbiol 2020; 10:2906. [PMID: 31993023 PMCID: PMC6971185 DOI: 10.3389/fmicb.2019.02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
DNA damage response allows microorganisms to repair or bypass DNA damage and maintain the genome integrity. It has attracted increasing attention but the underlying influential factors affecting DNA damage response are still unclear. In this work, isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was used to investigate the influence of carbon sources on the translational response of Acinetobacter baylyi ADP1 to DNA damage. After cultivating in a nutrient-rich medium (LB) and defined media supplemented with four different carbon sources (acetate, citrate, pyruvate, and succinate), a total of 2807 proteins were identified. Among them, 84 proteins involved in stress response were significantly altered, indicating the strong influence of carbon source on the response of A. baylyi ADP1 to DNA damage and other stresses. As the first study on the comparative global proteomic changes in A. baylyi ADP1 under DNA damage across nutritional environments, our findings revealed that DNA damage response in A. baylyi ADP1 at the translational level is significantly altered by carbon source, providing an insight into the complex protein interactions across carbon sources and offering theoretical clues for further study to elucidate their general regulatory mechanism to adapt to different nutrient environments.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China.,State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Ma Y, Lan G, Li C, Cambaza EM, Liu D, Ye X, Chen S, Ding T. Stress tolerance of Staphylococcus aureus with different antibiotic resistance profiles. Microb Pathog 2019; 133:103549. [PMID: 31112770 DOI: 10.1016/j.micpath.2019.103549] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/19/2023]
Abstract
Staphylococcus aureus (S. aureus) is a zoonotic bacterium and is among the most important pathogens causing bacterial foodborne diseases. In recent years, disease caused by antibiotic-resistant S. aureus is a serious clinical problem that poses a great threat to public health. In this study, we examined the drug-resistance phenotypes and genotypes of 9 S. aureus strains. One strain was obtained from the China Center for Type Culture Collection (CCTCC), and the remaining eight strains were isolated from food. Two common methods (the Kirby-Bauer disk diffusion and broth microdilution methods) were used to detect bacterial drug resistance. Then, we analysed the relationship between the bacterial drug resistance phenotypes and genotypes. We found that some S. aureus strains isolated from food were drug-resistant or even multi-drug resistant and that there was not a perfect match between resistance phenotypes and genotypes. The viabilities of the drug-sensitive (DS), drug-resistant (DR), and multi-drug resistant (MDR) S. aureus strains were also compared when they were exposed to conditions of acid (HCl, pH = 1.5), heat (63 °C), and osmotic pressure (30% NaCl). The results showed that the DR and MDR bacterial strains had survival rates similar to or higher than those of the DS strains under environmental stress.
Collapse
Affiliation(s)
- Yanna Ma
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang, 310058, China
| | - Guang Lan
- 230 Gansu Province CDC, Donggang West Road, Lanzhou, Gansu, 730000, China
| | - Charlie Li
- Department of Environmental Toxicology, University of California, Davis, Ca, 95616, USA
| | - Edgar Manuel Cambaza
- Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, Nr. Maputo, 3453, Mozambique
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang, 310058, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang, 310058, China
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
9
|
Clauss-Lendzian E, Vaishampayan A, de Jong A, Landau U, Meyer C, Kok J, Grohmann E. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating. Microbiol Res 2017; 207:53-64. [PMID: 29458868 DOI: 10.1016/j.micres.2017.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/21/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022]
Abstract
Emerging antibiotic resistance among pathogenic bacteria, paired with their ability to form biofilms on medical and technical devices, represents a serious problem for effective and long-term decontamination in health-care environments and gives rise to an urgent need for new antimicrobial materials. Here we present the impact of AGXX®, a novel broad-spectrum antimicrobial surface coating consisting of micro-galvanic elements formed by silver and ruthenium, on the transcriptome of Enterococcus faecalis. A clinical E. faecalis isolate was subjected to metal stress by growing it for different periods in presence of the antimicrobial coating or silver-coated steel meshes. Subsequently, total RNA was isolated and next-generation RNA sequencing was performed to analyze variations in gene expression in presence of the antimicrobial materials with focus on known stress genes. Exposure to the antimicrobial coating had a large impact on the transcriptome of E. faecalis. After 24min almost 1/5 of the E. faecalis genome displayed differential expression. At each time-point the cop operon was strongly up-regulated, providing indirect evidence for the presence of free Ag+-ions. Moreover, exposure to the antimicrobial coating induced a broad general stress response in E. faecalis. Genes coding for the chaperones GroEL and GroES and the Clp proteases, ClpE and ClpB, were among the top up-regulated heat shock genes. Differential expression of thioredoxin, superoxide dismutase and glutathione synthetase genes indicates a high level of oxidative stress. We postulate a mechanism of action where the combination of Ag+-ions and reactive oxygen species generated by AGXX® results in a synergistic antimicrobial effect, superior to that of conventional silver coatings.
Collapse
Affiliation(s)
- Emanuel Clauss-Lendzian
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Baden-Württemberg, Germany
| | - Ankita Vaishampayan
- School of Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, The Netherlands
| | - Uwe Landau
- Largentec GmbH, Am Waldhaus 32, 14129 Berlin, Germany
| | - Carsten Meyer
- Largentec GmbH, Am Waldhaus 32, 14129 Berlin, Germany
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, The Netherlands
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Baden-Württemberg, Germany; School of Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany.
| |
Collapse
|
10
|
Casado Muñoz MDC, Benomar N, Lavilla Lerma L, Knapp CW, Gálvez A, Abriouel H. Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Aloreña table to different physico-chemical stresses. Food Microbiol 2016; 60:1-12. [DOI: 10.1016/j.fm.2016.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/22/2016] [Accepted: 06/15/2016] [Indexed: 11/16/2022]
|
11
|
Abee T, Koomen J, Metselaar K, Zwietering M, den Besten H. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annu Rev Food Sci Technol 2016; 7:439-56. [DOI: 10.1146/annurev-food-041715-033128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Abee
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - J. Koomen
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - K.I. Metselaar
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - M.H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - H.M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
12
|
Prophage-Encoded Staphylococcal Enterotoxin A: Regulation of Production in Staphylococcus aureus Strains Representing Different Sea Regions. Toxins (Basel) 2015; 7:5359-76. [PMID: 26690218 PMCID: PMC4690139 DOI: 10.3390/toxins7124889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022] Open
Abstract
The present study investigates the nature of the link between the staphylococcal enterotoxin A (SEA) gene and the lifecycle of Siphoviridae bacteriophages, including the origin of strain variation regarding SEA production after prophage induction. Five strains representing three different genetic lines of the sea region were studied under optimal and prophage-induced growth conditions and the Siphoviridae lifecycle was followed through the phage replicative form copies and transcripts of the lysogenic repressor, cro. The role of SOS response on prophage induction was addressed through recA transcription in a recA-disruption mutant. Prophage induction was found to increase the abundance of the phage replicative form, the sea gene copies and transcripts and enhance SEA production. Sequence analysis of the sea regions revealed that observed strain variances were related to strain capacity for prophage induction, rather than sequence differences in the sea region. The impact of SOS response activation on the phage lifecycle was demonstrated by the absence of phage replicative form copies in the recA-disruption mutant after prophage induction. From this study it emerges that all aspects of SEA-producing strain, the Siphoviridae phage and the food environment must be considered when evaluating SEA-related hazards.
Collapse
|
13
|
Zeaki N, Rådström P, Schelin J. Evaluation of Potential Effects of NaCl and Sorbic Acid on Staphylococcal Enterotoxin A Formation. Microorganisms 2015; 3:551-66. [PMID: 27682105 PMCID: PMC5023250 DOI: 10.3390/microorganisms3030551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
The prophage-encoded staphylococcal enterotoxin A (SEA) is recognized as the main cause of staphylococcal food poisoning (SFP), a common foodborne intoxication disease, caused by Staphylococcus aureus. Studies on the production of SEA suggest that activation of the SOS response and subsequent prophage induction affect the regulation of the sea gene and the SEA produced, increasing the risk for SFP. The present study aims to evaluate the effect of NaCl and sorbic acid, in concentrations relevant to food production, on SOS response activation, prophage induction and SEA production. The impact of stress was initially evaluated on steady state cells for a homogenous cell response. NaCl 2% was found to activate the SOS response, i.e., recA expression, and trigger prophage induction, in a similar way as the phage-inducer mitomycin C. In contrast, sorbic acid decreased the pH of the culture to a level where prophage induction was probably suppressed, even when combined with NaCl stress. The impact of previous physiological state of the bacteria was also addressed on cells pre-exposed to NaCl, and was found to potentially affect cell response upon exposure to further stress. The results obtained highlight the possible SFP-related risks arising from the use of preservatives during food processing.
Collapse
Affiliation(s)
- Nikoleta Zeaki
- Applied Microbiology, Department of Chemistry, Lund University, Lund 22100, Sweden.
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University, Lund 22100, Sweden.
| | - Jenny Schelin
- Applied Microbiology, Department of Chemistry, Lund University, Lund 22100, Sweden.
| |
Collapse
|
14
|
Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3805-3822. [PMID: 25856120 DOI: 10.1021/acs.jafc.5b00778] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
15
|
Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014; 38:1126-45. [PMID: 24923554 DOI: 10.1111/1574-6976.12077] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Département Génomes et Génétique, Unité Plasticité du Génome Bactérien, Paris, France; CNRS, UMR3525, Paris, France
| | | |
Collapse
|
16
|
Carraro L, Fasolato L, Montemurro F, Martino ME, Balzan S, Servili M, Novelli E, Cardazzo B. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microb Biotechnol 2014; 7:265-75. [PMID: 24628798 PMCID: PMC3992022 DOI: 10.1111/1751-7915.12119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 11/28/2022] Open
Abstract
Olive mill wastes are sources of phenolic compounds with a wide array of biological activities, including antimicrobial effects. A potential option for bioremediation to overcome ecological problems is the reutilization of these natural compounds in food production. The aim of this work was to gain a better understanding of the antimicrobial mode of action of a phenols extract from olive vegetation water (PEOVW) at molecular level by studying Escherichia coli as a model microorganism. Genome-wide transcriptional analysis was performed on E. coli K-12 exposed to PEOVW. The repression of genes for flagellar synthesis and the involvement of genes linked to biofilm formation and stress response were observed. Sub-inhibitory concentrations of PEOVW significantly decreased biofilm formation, swarming and swimming motility, thus confirming the gene expression data. This study provides interesting insights on the molecular action of PEOVW on E. coli K-12. Given these anti-biofilm properties and considering that biofilm formation is a serious problem for the food industry and human health, PEOVW has proved to be a high-value natural product.
Collapse
Affiliation(s)
- Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Filomena Montemurro
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Maurizio Servili
- Department of Economical and Food Science, University of PerugiaPerugia, 06123, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of PadovaLegnaro, 35020, Italy
| |
Collapse
|
17
|
Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, Agersø Y. Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother 2013; 69:343-8. [PMID: 24092655 PMCID: PMC3886932 DOI: 10.1093/jac/dkt370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives Large amounts of biocides are used to reduce and control bacterial growth in the healthcare sector, food production and agriculture. This work explores the effect of subinhibitory concentrations of four commonly used biocides (ethanol, hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite) on the conjugative transposition of the mobile genetic element Tn916. Methods Conjugation assays were carried out between Bacillus subtilis strains. The donor containing Tn916 was pre-exposed to subinhibitory concentrations of each biocide for a defined length of time, which was determined by an analysis of the transcriptional response of the promoter upstream of tet(M) using β-glucuronidase reporter assays. Results Ethanol significantly (P = 0.01) increased the transfer of Tn916 by 5-fold, whereas hydrogen peroxide, chlorhexidine digluconate and sodium hypochlorite did not significantly affect the transfer frequency. Conclusions These results suggest that exposure to subinhibitory concentrations of ethanol may induce the transfer of Tn916-like elements and any resistance genes they contain.
Collapse
Affiliation(s)
- M A Seier-Petersen
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Antimicrobial resistance in the food chain: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2643-69. [PMID: 23812024 PMCID: PMC3734448 DOI: 10.3390/ijerph10072643] [Citation(s) in RCA: 332] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Collapse
|
20
|
Suo Y, Huang Y, Liu Y, Shi C, Shi X. The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G. PLoS One 2012; 7:e48467. [PMID: 23119031 PMCID: PMC3485238 DOI: 10.1371/journal.pone.0048467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022] Open
Abstract
Little is known about the molecular basis of biofilm formation in Listeria monocytogenes. The superoxide dismutase (SOD) of the deletion mutant of lm.G_1771 gene, which encodes for a putative ABC transporter permease, is highly expressed in biofilm. In this study, the sod gene deletion mutant Δsod, and double deletion mutant of the sod and lm. G_1771 genes Δ1771Δsod were used to investigate the role of SOD and its relationship to the expression of the putative ABC transporter permease in biofilm formation. Our results showed that the ability to form a biofilm was significantly reduced in the Δsod mutant and the Δ1771Δsod double mutant. Both Δsod and Δ1771Δsod mutants exhibited slow growth phenotypes and produced more reactive oxygen species (ROS). The growth was inhibited in the mutants by methyl viologen (MV, internal oxygen radical generator) treatment. In addition, the expression of one oxidation resistance gene (kat), two stress regulators encoding genes (perR and sigB), and one DNA repair gene (recA) were analyzed in both the wild-type L. monocytogenes 4b G and the deletion mutants by RT-qPCR. The expression levels of the four genes were increased in the deletion mutants when biofilms were formed. Taken together, our data indicated that SOD played an important role in biofilm formation through coping with the oxidant burden in deficient antioxidant defenses.
Collapse
Affiliation(s)
- Yujuan Suo
- MOST-USDA Joint Research Center for Food Safety and Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Huang
- MOST-USDA Joint Research Center for Food Safety and Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, Pennsylvania, United States of America
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety and Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety and Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Viswanathan S, Rani C, Ho JAA. Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 2012; 94:315-9. [PMID: 22608454 DOI: 10.1016/j.talanta.2012.03.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 01/20/2023]
Abstract
Bacterial food poisoning is an ever-present threat that can be prevented with proper care and handling of food products. A disposable electrochemical immunosensor for the simultaneous measurements of common food pathogenic bacteria namely Escherichia coli O157:H7 (E. coli), campylobacter and salmonella were developed. The immunosensor was fabricated by immobilizing the mixture of anti-E. coli, anti-campylobacter and anti-salmonella antibodies with a ratio of 1:1:1 on the surface of the multiwall carbon nanotube-polyallylamine modified screen printed electrode (MWCNT-PAH/SPE). Bacteria suspension became attached to the immobilized antibodies when the immunosensor was incubated in liquid samples. The sandwich immunoassay was performed with three antibodies conjugated with specific nanocrystal (α-E. coli-CdS, α-campylobacter-PbS and α-salmonella-CuS) which has releasable metal ions for electrochemical measurements. The square wave anodic stripping voltammetry (SWASV) was employed to measure released metal ions from bound antibody nanocrystal conjugates. The calibration curves for three selected bacteria were found in the range of 1×10(3)-5×10(5) cells mL(-1) with the limit of detection (LOD) 400 cells mL(-1) for salmonella, 400 cells mL(-1) for campylobacter and 800 cells mL(-1) for E. coli. The precision and sensitivity of this method show the feasibility of multiplexed determination of bacteria in milk samples.
Collapse
|
22
|
van der Veen S, Abee T. Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS One 2011; 6:e28590. [PMID: 22163039 PMCID: PMC3230620 DOI: 10.1371/journal.pone.0028590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/11/2011] [Indexed: 12/31/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes is a Gram-positive microaerophilic facultative anaerobic rod and the causative agent of the devastating disease listeriosis. L. monocytogenes is able to form biofilms in the food processing environment. Since biofilms are generally hard to eradicate, they can function as a source for food contamination. In several occasions biofilms have been identified as a source for genetic variability, which potentially can result in adaptation of strains to food processing or clinical conditions. However, nothing is known about mutagenesis in L. monocytogenes biofilms and the possible mechanisms involved. In this study, we showed that the generation of genetic variants was specifically induced in continuous-flow biofilms of L. monocytogenes, but not in static biofilms. Using specific dyes and radical inhibitors, we showed that the formation of superoxide and hydroxyl radicals was induced in continuous-flow biofilms, which was accompanied with in an increase in DNA damage. Promoter reporter studies showed that recA, which is an important component in DNA repair and the activator of the SOS response, is activated in continuous-flow biofilms and that activation was dependent on radical-induced DNA damage. Furthermore, continuous-flow biofilm experiments using an in-frame recA deletion mutant verified that RecA is required for induced generation of genetic variants. Therefore, we can conclude that generation of genetic variants in L. monocytogenes continuous-flow biofilms results from radical-induced DNA damage and RecA-mediated mutagenic repair of the damaged DNA.
Collapse
Affiliation(s)
- Stijn van der Veen
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Tjakko Abee
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|