1
|
Wang Z, Yan Y, Zhang H. Design and Characterization of an Optogenetic System in Pichia pastoris. ACS Synth Biol 2022; 11:297-307. [PMID: 34994189 DOI: 10.1021/acssynbio.1c00422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
Collapse
Affiliation(s)
- Zhiqian Wang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Yunjun Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| |
Collapse
|
2
|
Hirose A, Kouzuma A, Watanabe K. Towards development of electrogenetics using electrochemically active bacteria. Biotechnol Adv 2019; 37:107351. [DOI: 10.1016/j.biotechadv.2019.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
|
3
|
Ito A, Teranishi R, Kamei K, Yamaguchi M, Ono A, Masumoto S, Sonoda Y, Horie M, Kawabe Y, Kamihira M. Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. J Biosci Bioeng 2019; 128:355-364. [PMID: 30962099 DOI: 10.1016/j.jbiosc.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
To develop a remote control system of transgene expression through localized cellular heating of magnetic nanoparticles, a heat-inducible transgene expression system was introduced into mammalian cells. Cells were labeled with magnetic nanoparticles and exposed to an alternating magnetic field. The magnetically labeled cells expressed the transgene in a monolayer and multilayered cell sheets in which cells were heated around the magnetic nanoparticles without an apparent temperature increase in the culture medium. Magnetic cells were also generated by genetically engineering with a ferritin gene, and transgene expression could be induced by exposure to an alternating magnetic field. This approach may be applicable to the development of novel gene therapies in cell-based medicine.
Collapse
Affiliation(s)
- Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoji Teranishi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kamei
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Yamaguchi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiko Ono
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinya Masumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Sonoda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Mansouri M, Strittmatter T, Fussenegger M. Light-Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800952. [PMID: 30643713 PMCID: PMC6325585 DOI: 10.1002/advs.201800952] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Indexed: 05/12/2023]
Abstract
The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology-inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light-controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non-neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light-sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light-controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
- Faculty of ScienceUniversity of BaselMattenstrasse 26CH‐4058BaselSwitzerland
| |
Collapse
|
5
|
Jia H, Kai L, Heymann M, García-Soriano DA, Härtel T, Schwille P. Light-Induced Printing of Protein Structures on Membranes in Vitro. NANO LETTERS 2018; 18:7133-7140. [PMID: 30295028 DOI: 10.1021/acs.nanolett.8b03187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reconstituting functional modules of biological systems in vitro is an important yet challenging goal of bottom-up synthetic biology, in particular with respect to their precise spatiotemporal regulation. One of the most desirable external control parameters for the engineering of biological systems is visible light, owing to its specificity and ease of defined application in space and time. Here we engineered the PhyB-PIF6 system to spatiotemporally target proteins by light onto model membranes and thus sequentially guide protein pattern formation and structural assembly in vitro from the bottom up. We show that complex micrometer-sized protein patterns can be printed on time scales of seconds, and the pattern density can be precisely controlled by protein concentration, laser power, and activation time. Moreover, when printing self-assembling proteins such as the bacterial cytoskeleton protein FtsZ, the targeted assembly into filaments and large-scale structures such as artificial rings can be accomplished. Thus, light mediated sequential protein assembly in cell-free systems represents a promising approach to hierarchically building up the next level of complexity toward a minimal cell.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , D-82152 Martinsried , Germany
| | - Lei Kai
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , D-82152 Martinsried , Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , D-82152 Martinsried , Germany
| | - Daniela A García-Soriano
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , D-82152 Martinsried , Germany
- Graduate School for Quantitative Biosciences (QBM) , Ludwig-Maximillians-University , Munich , Germany
| | - Tobias Härtel
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , D-82152 Martinsried , Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry , Am Klopferspitz 18 , D-82152 Martinsried , Germany
| |
Collapse
|
6
|
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q. Programming Bacteria With Light-Sensors and Applications in Synthetic Biology. Front Microbiol 2018; 9:2692. [PMID: 30467500 PMCID: PMC6236058 DOI: 10.3389/fmicb.2018.02692] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
Collapse
Affiliation(s)
- Zedao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jizhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiao Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zilong Geng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
7
|
Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Sci Rep 2018; 8:15024. [PMID: 30301909 PMCID: PMC6177421 DOI: 10.1038/s41598-018-32929-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023] Open
Abstract
Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch ('Blue-OFF'), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.
Collapse
|
8
|
Bury A, Hellingwerf KJ. Design, characterization and in vivo functioning of a light-dependent histidine protein kinase in the yeast Saccharomyces cerevisiae. AMB Express 2018; 8:53. [PMID: 29611000 PMCID: PMC5880792 DOI: 10.1186/s13568-018-0582-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 01/24/2023] Open
Abstract
Helical alignment of the α-helical linker of the LOV (light-oxygen-voltage) domain of YtvA from Bacillus subtilis with the α-helical linker of the histidine-protein kinase domain of the Sln1 kinase of the phospho-relay system for osmoregulation of Saccharomyces cerevisiae has been used to construct a light-modulatable histidine protein kinase. In vitro, illumination with blue light inhibits both the ATP-dependent phosphorylation of this hybrid kinase, as well as the phosphoryl transfer to Ypd1, the phosphoryl transfer domain of the Sln1 system. The helical alignment was carried out with conservation of the complete Jα helix of YtvA, as well as of the phosphorylatable histidine residue of the Sln1 kinase, with conservation of the hepta-helical motive of coiled-coil structures, recognizable in the helices of the two separate, constituent, proteins. Introduction of the gene encoding this hybrid histidine protein kinase into cells of S. cerevisiae in which the endogenous Sln1 kinase had been deleted, allowed us to modulate gene expression in the yeast cells with (blue) light. This was first demonstrated via the light-induced alteration of the expression level of the mannosyl-transferase OCH1, via a translational-fusion approach. As expected, illumination decreased the expression level of OCH1; the steady state decrease in saturating levels of blue light was about 40%. To visualize the in vivo functionality of this light-dependent regulation system, we fused the green fluorescent protein (GFP) to another regulatory protein, HOG1, which is also responsive to the Sln1 kinase. HOG1 is phosphorylated by the MAP-kinase-kinase Pbs2, which in turn is under control of the Sln1 kinase, via the phosphoryl transfer domain Ypd1. Fluorescence microscopy was used to show that illumination of cells that contained the combination of the hybrid kinase and the HOG1::GFP fusion protein, led to a persistent increase in the level of nuclear accumulation of HOG1, in contrast to salt stress, which-as expected-showed the well-characterized transient response. The system described in this study will be valuable in future studies on the role of cytoplasmic diffusion in signal transduction in eukaryotic cells.
Collapse
|
9
|
Mahajan T, Rai K. A novel optogenetically tunable frequency modulating oscillator. PLoS One 2018; 13:e0183242. [PMID: 29389936 PMCID: PMC5794059 DOI: 10.1371/journal.pone.0183242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
Collapse
Affiliation(s)
- Tarun Mahajan
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- * E-mail:
| | - Kshitij Rai
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
10
|
Michel F, Folcher M. Optogenerapy: When bio-electronic implant enters the modern syringe era. Porto Biomed J 2017; 2:145-149. [PMID: 32258609 DOI: 10.1016/j.pbj.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Resort to medications dates back million years ago with the use of medicinal plants. In the nineteenth century, significant contributions in medicine appeared in different domains, among which the invention of a specific drug delivery device; the syringe. Nowadays, injection therapy of bio-manufactured drugs is routine practice for chronic diseases but remains constraining and painful. New emerging advanced therapies invest in genetic, electronics and cell-based therapy for addressing unmet needs for the caregivers and the patient. As digital process in health (eHealth) gains momentum, connected advanced bio-electronic devices now offer new strategies for personalized injection therapies. In this review, we take a journey along the genesis path of a new drug delivery system: the Optogenerapy, a synergy between optogenetic and gene therapy. Inside a bio-electronic implant, electronics and optogenetics are interfaced by light as a traceless inducer signal. By controlling a synthetic optogenetic pathway in the cell, therapeutics delivery can be fine-tuned with a precise spatiotemporal control. The technology holds promise of a new modern syringe era capable of producing a drug of interest at will directly inside the patient.
Collapse
Affiliation(s)
- Fanny Michel
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Switzerland
| |
Collapse
|
11
|
Fernandez-Rodriguez J, Moser F, Song M, Voigt CA. Engineering RGB color vision into Escherichia coli. Nat Chem Biol 2017; 13:706-708. [PMID: 28530708 DOI: 10.1038/nchembio.2390] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/03/2017] [Indexed: 11/09/2022]
Abstract
Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.
Collapse
Affiliation(s)
- Jesus Fernandez-Rodriguez
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Felix Moser
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Miryoung Song
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev 2016; 106:63-72. [PMID: 27129442 DOI: 10.1016/j.addr.2016.04.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
The field of drug delivery has grown tremendously in the past few decades by developing a wide range of advanced drug delivery systems. An interesting category is cell-based drug delivery, which includes encapsulation of drugs inside cells or attached to the surface and subsequent transportation through the body. Another approach involves genetic engineering of cells to secrete therapeutic molecules in a controlled way. The next-generation systems integrate expertise from synthetic biology to generate therapeutic gene networks for highly advanced sensory and output devices. These developments are very exciting for the drug delivery field and could radically change the way we administer biological medicines to chronically ill patients. This review is covering the use of living cells, either as transport system or production-unit, to deliver therapeutic molecules and bioactive proteins inside the body. It describes a wide range of approaches in cell-based drug delivery and highlights exceptional examples.
Collapse
Affiliation(s)
- Lies A L Fliervoet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
13
|
Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat Commun 2016; 7:12546. [PMID: 27562138 PMCID: PMC5007438 DOI: 10.1038/ncomms12546] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
Dynamic control of gene expression can have far-reaching implications for biotechnological applications and biological discovery. Thanks to the advantages of light, optogenetics has emerged as an ideal technology for this task. Current state-of-the-art methods for optical expression control fail to combine precision with repeatability and cannot withstand changing operating culture conditions. Here, we present a novel fully automatic experimental platform for the robust and precise long-term optogenetic regulation of protein production in liquid Escherichia coli cultures. Using a computer-controlled light-responsive two-component system, we accurately track prescribed dynamic green fluorescent protein expression profiles through the application of feedback control, and show that the system adapts to global perturbations such as nutrient and temperature changes. We demonstrate the efficacy and potential utility of our approach by placing a key metabolic enzyme under optogenetic control, thus enabling dynamic regulation of the culture growth rate with potential applications in bacterial physiology studies and biotechnology.
Collapse
Affiliation(s)
| | - Marc Rullan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Stephanie K. Aoki
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| |
Collapse
|
14
|
Jayaraman P, Devarajan K, Chua TK, Zhang H, Gunawan E, Poh CL. Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res 2016; 44:6994-7005. [PMID: 27353329 PMCID: PMC5001607 DOI: 10.1093/nar/gkw548] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 11/14/2022] Open
Abstract
Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes.
Collapse
Affiliation(s)
- Premkumar Jayaraman
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Kavya Devarajan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Tze Kwang Chua
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Hanzhong Zhang
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Erry Gunawan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chueh Loo Poh
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
15
|
Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra. Sci Rep 2016; 6:25827. [PMID: 27181496 PMCID: PMC4867436 DOI: 10.1038/srep25827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022] Open
Abstract
By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.
Collapse
|
16
|
Tools and Principles for Microbial Gene Circuit Engineering. J Mol Biol 2016; 428:862-88. [DOI: 10.1016/j.jmb.2015.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
|
17
|
Gil A, Haigney A, Laptenok SP, Brust R, Lukacs A, Iuliano J, Jeng J, Melief E, Zhao RK, Yoon E, Clark I, Towrie M, Greetham GM, Ng A, Truglio J, French J, Meech SR, Tonge PJ. Mechanism of the AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the Y21 pKa on the Forward and Reverse Ground-State Reactions. J Am Chem Soc 2016; 138:926-935. [PMID: 26708408 PMCID: PMC4830125 DOI: 10.1021/jacs.5b11115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity. Here, we directly explore the effect of the Y21 pKa on dark state recovery by replacing Y21 with fluorotyrosine analogues that increase the acidity of Y21 by 3.5 pH units. Ultrafast transient infrared measurements confirm that the structure of AppA is unperturbed by fluorotyrosine substitution, and that there is a small (3-fold) change in the photokinetics of the forward reaction over the fluorotyrosine series. However, reduction of 3.5 pH units in the pKa of Y21 increases the rate of dark state recovery by 4000-fold with a Brønsted coefficient of ∼ 1, indicating that the Y21 proton is completely transferred in the transition state leading from light to dark adapted AppA. A large solvent isotope effect of ∼ 6-8 is also observed on the rate of dark state recovery. These data establish that the acidity of Y21 is a crucial factor for stabilizing the light activated form of the protein, and have been used to propose a model for dark state recovery that will ultimately prove useful for tuning the properties of BLUF photosensors for optogenetic applications.
Collapse
Affiliation(s)
- Agnieszka Gil
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Allison Haigney
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Sergey P. Laptenok
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Richard Brust
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Andras Lukacs
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - James Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Jessica Jeng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Eduard Melief
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Rui-Kun Zhao
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - EunBin Yoon
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Ian Clark
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK
| | - Gregory M. Greetham
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, UK
| | - Annabelle Ng
- William A. Shine Great Neck South High School, 341 Lakeville Rd, Great Neck, NY 11020, USA
| | - James Truglio
- William A. Shine Great Neck South High School, 341 Lakeville Rd, Great Neck, NY 11020, USA
| | - Jarrod French
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
- Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
18
|
Dobrin A, Saxena P, Fussenegger M. Synthetic biology: applying biological circuits beyond novel therapies. Integr Biol (Camb) 2015; 8:409-30. [DOI: 10.1039/c5ib00263j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anton Dobrin
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
19
|
Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 2015; 350:aab4077. [PMID: 26405231 PMCID: PMC4721629 DOI: 10.1126/science.aab4077] [Citation(s) in RCA: 511] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.
Collapse
Affiliation(s)
- Chia-Yung Wu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Kole T Roybal
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA
| | - Elias M Puchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - James Onuffer
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. The Cell Propulsion Lab, an NIH Nanomedicine Development Center, University of California, San Francisco, CA 94158, USA. Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
21
|
Abstract
Analysis of the mechanisms underlying cell fates requires the molecular quantification of cellular features. Classical techniques use population average readouts at single time points. However, these approaches mask cellular heterogeneity and dynamics and are limited for studying rare and heterogeneous cell populations like stem cells. Techniques for single-cell analyses, ideally allowing non-invasive quantification of molecular dynamics and cellular behaviour over time, are required for studying stem cells. Here, we review the development and application of these techniques to stem cell research.
Collapse
|
22
|
Wieland M, Müller M, Kyburz A, Heissig P, Wekenmann S, Stolz F, Ausländer S, Fussenegger M. Engineered UV-A light-responsive gene expression system for measuring sun cream efficacy in mammalian cell culture. J Biotechnol 2014; 189:150-3. [PMID: 25234574 DOI: 10.1016/j.jbiotec.2014.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/12/2014] [Accepted: 09/06/2014] [Indexed: 01/20/2023]
Abstract
Light-dependent gene regulation systems are advantageous as they allow for precise spatio-temporal control of target gene expression. In this paper, we present a novel UV-A and blue-light-inducible gene control system that is based on the light-dependent heterodimerization of the CRY2 and C1BN domains. Upon their interaction, a transcription factor is released from the cell membrane and initiates target gene expression. Capitalizing on that, sun cream UV-A protection properties were measured intracellularly.
Collapse
Affiliation(s)
- Markus Wieland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marius Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Andreas Kyburz
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Phillip Heissig
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Sebastian Wekenmann
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Franziska Stolz
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
23
|
Pastuszka MK, Okamoto CT, Hamm-Alvarez SF, MacKay JA. Flipping the Switch on Clathrin-Mediated Endocytosis using Thermally Responsive Protein Microdomains. ADVANCED FUNCTIONAL MATERIALS 2014; 24:5340-5347. [PMID: 25419208 PMCID: PMC4235962 DOI: 10.1002/adfm.201400715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A ubiquitous approach to study protein function is to knock down activity (gene deletions, siRNA, small molecule inhibitors, etc) and study the cellular effects. Using a new methodology, this manuscript describes how to rapidly and specifically switch off cellular pathways using thermally responsive protein polymers. A small increase in temperature stimulates cytosolic elastin-like polypeptides (ELPs) to assemble microdomains. We hypothesize that ELPs fused to a key effector in a target macromolecular complex will sequester the complex within these microdomains, which will bring the pathway to a halt. To test this hypothesis, we fused ELPs to clathrin-light chain (CLC), a protein associated with clathrin-mediated endocytosis. Prior to thermal stimulation, the ELP fusion is soluble and clathrin-mediated endocytosis remains 'on.' Increasing the temperature induces the assembly of ELP fusion proteins into organelle-sized microdomains that switches clathrin-mediated endocytosis 'off.' These microdomains can be thermally activated and inactivated within minutes, are reversible, do not require exogenous chemical stimulation, and are specific for components trafficked within the clathrin-mediated endocytosis pathway. This temperature-triggered cell switch system represents a new platform for the temporal manipulation of trafficking mechanisms in normal and disease cell models and has applications for manipulating other intracellular pathways.
Collapse
Affiliation(s)
- Martha K. Pastuszka
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California. 1985 Zonal Avenue, Los Angeles 90033-9121
| |
Collapse
|
24
|
Olson EJ, Tabor JJ. Optogenetic characterization methods overcome key challenges in synthetic and systems biology. Nat Chem Biol 2014; 10:502-11. [PMID: 24937068 DOI: 10.1038/nchembio.1559] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Abstract
Systems biologists aim to understand how organism-level processes, such as differentiation and multicellular development, are encoded in DNA. Conversely, synthetic biologists aim to program systems-level biological processes, such as engineered tissue growth, by writing artificial DNA sequences. To achieve their goals, these groups have adapted a hierarchical electrical engineering framework that can be applied in the forward direction to design complex biological systems or in the reverse direction to analyze evolved networks. Despite much progress, this framework has been limited by an inability to directly and dynamically characterize biological components in the varied contexts of living cells. Recently, two optogenetic methods for programming custom gene expression and protein localization signals have been developed and used to reveal fundamentally new information about biological components that respond to those signals. This basic dynamic characterization approach will be a major enabling technology in synthetic and systems biology.
Collapse
Affiliation(s)
- Evan J Olson
- Graduate Program in Applied Physics, Rice University, Houston, Texas, USA
| | - Jeffrey J Tabor
- 1] Department of Bioengineering, Rice University, Houston, Texas, USA. [2] Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| |
Collapse
|
25
|
Abstract
The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Cancer Genomics Centre Netherlands; Utrecht, the Netherlands
| |
Collapse
|
26
|
Rice MK, Ruder WC. Creating biological nanomaterials using synthetic biology. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:014401. [PMID: 27877637 PMCID: PMC5090598 DOI: 10.1088/1468-6996/15/1/014401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/03/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.
Collapse
|
27
|
|
28
|
Müller K, Engesser R, Metzger S, Schulz S, Kämpf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res 2013; 41:e77. [PMID: 23355611 PMCID: PMC3627562 DOI: 10.1093/nar/gkt002] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system’s performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms.
Collapse
Affiliation(s)
- Konrad Müller
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Folcher M, Fussenegger M. Synthetic biology advancing clinical applications. Curr Opin Chem Biol 2012; 16:345-54. [DOI: 10.1016/j.cbpa.2012.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/31/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
|
30
|
Cell adhesion complexes localize presynaptic vesicles by regulating local actin polymerization. J Neurosci 2012; 32:3955-7. [PMID: 22442062 DOI: 10.1523/jneurosci.0191-12.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|