1
|
Yao Z, Xie T, Deng H, Xiao S, Yang T. Directed Evolution of Microbial Communities in Fermented Foods: Strategies, Mechanisms, and Challenges. Foods 2025; 14:216. [PMID: 39856881 PMCID: PMC11764801 DOI: 10.3390/foods14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Directed Evolution of Microbial Communities (DEMC) offers a promising approach to enhance the functional attributes of microbial consortia in fermented foods by mimicking natural selection processes. This review details the application of DEMC in fermented foods, focusing on optimizing community traits to improve both fermentation efficiency and the sensory quality of the final products. We outline the core techniques used in DEMC, including the strategic construction of initial microbial communities, the systematic introduction of stress factors to induce desirable traits, and the use of artificial selection to cultivate superior communities. Additionally, we explore the integration of genomic tools and dynamic community analysis to understand and guide the evolutionary trajectories of these communities. While DEMC shows substantial potential for refining fermented food products, it faces challenges such as maintaining genetic diversity and functional stability of the communities. Looking ahead, the integration of advanced omics technologies and computational modeling is anticipated to significantly enhance the predictability and control of microbial community evolution in food fermentation processes. By systematically improving the selection and management of microbial traits, DEMC serves as a crucial tool for enhancing the quality and consistency of fermented foods, directly contributing to more robust and efficient food production systems.
Collapse
Affiliation(s)
| | | | | | | | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Kelbrick M, Fenton A, Parratt S, Hall JPJ, O'Brien S. Nutrient-rich spatial refuges buffer against extinction and promote evolutionary rescue in evolving microbial populations. Proc Biol Sci 2024; 291:20242197. [PMID: 39657803 PMCID: PMC11631407 DOI: 10.1098/rspb.2024.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Microbial populations are often exposed to long-term abiotic disturbances, which can reduce population viability and cause local extinction. Eco-evolutionary theory suggests that spatial refuges can facilitate persistence and evolutionary rescue. However, one drawback of spatial refuges is reduced exposure to nutrients such as carbon and oxygen, suggesting the protective effect of refuges depends on the interplay between environmental conditions and the degree of stress. Here, we test this general idea using mathematical modelling, and experimental evolution of the model bacterium Pseudomonas fluorescens SBW25 under salinity stress. As our model predicted, we find that the ability of spatial refuges to rescue evolving populations from extinction crucially depends on nutrient availability. Populations evolving under salinity stress where nutrient-rich spatial refuges were available, harboured clones that displayed enhanced salt resistance, indicating that nutrient-rich spatial refuges can facilitate evolutionary rescue. Furthermore, while control-salinity-evolved populations adapted to spatial structure by evolving enhanced motility (likely through parallel mutations in PFLU_4551, a predicted aerotaxis response regulator), this phenotype was constrained under high salinity, because increased motility negates the benefits of a spatial refuge. Our results reveal a general interplay between spatial refuges and nutrient availability that could be leveraged to reduce extinction risk in natural populations.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Andrew Fenton
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Stephen Parratt
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - James P. J. Hall
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Siobhan O'Brien
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
4
|
Fu X, Fu Q, Zhu X, Yang X, Chen H, Li S. Microdiversity sustains the distribution of rhizosphere-associated bacterial species from the root surface to the bulk soil region in maize crop fields. FRONTIERS IN PLANT SCIENCE 2023; 14:1266218. [PMID: 37905168 PMCID: PMC10613529 DOI: 10.3389/fpls.2023.1266218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023]
Abstract
Over the years, the microbial community of maize (Zea mays) rhizosphere has been extensively studied; however, the role of microdiversity sustain rhizosphere-associated microbial species distribution from root surface to bulk soil in mature maize is still unclear. Although operational taxonomic units (OTUs) have been used to classify species, amplicon sequence variants (ASVs) have been shown to be effective in representing microdiversity within OTUs at a finer genetic scale. Therefore, the aim of this study was to examine the role of microdiversity in influencing the distribution of rhizosphere-associated microbial species across environmental gradients from root surface to bulk soil at the OTU and ASV levels. Here, the microbial community structures of bulk, loosely bound, and tightly bound soil samples from maize rhizosphere were examined at OTU and ASV levels. The results showed that OTU and ASV methods exhibited similar microbial community structures in rhizosphere. Additionally, different ecotypes with varying distributions and habitat preferences were observed within the same bacterial OTU at the ASV level, indicating a rich bacterial microdiversity. In contrast, the fungal community exhibited low microdiversity, with no significant relationship between fungal microdiversity and persistence and variability. Moreover, the ecotypes observed within the bacterial OTUs were found to be positively or negatively associated with environmental factors, such as soil organic carbon (SOC), NO3 --N, NH4 +-N contents, and pH. Overall, the results showed that the rich microdiversity could sustain the distribution of rhizosphere-associated bacterial species across environmental gradients from root surface to bulk soil. Further genetic analyses of rhizosphere-associated bacterial species could have considerable implications for potential mediation of microdiversity for sustainable crop production.
Collapse
Affiliation(s)
- Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Shaanxi, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozheng Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Shaanxi, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Shaanxi, China
| |
Collapse
|
5
|
O'Brien S, Culbert CT, Barraclough TG. Community composition drives siderophore dynamics in multispecies bacterial communities. BMC Ecol Evol 2023; 23:45. [PMID: 37658316 PMCID: PMC10472669 DOI: 10.1186/s12862-023-02152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Intraspecific public goods are commonly shared within microbial populations, where the benefits of public goods are largely limited to closely related conspecifics. One example is the production of iron-scavenging siderophores that deliver iron to cells via specific cell envelope receptor and transport systems. Intraspecific social exploitation of siderophore producers is common, since non-producers avoid the costs of production but retain the cell envelope machinery for siderophore uptake. However, little is known about how interactions between species (i.e., interspecific interactions) can shape intraspecific public goods exploitation. Here, we predicted that strong competition for iron between species in diverse communities will increase costs of siderophore cooperation, and hence drive intraspecific exploitation. We examined how increasing microbial community species diversity shapes intraspecific social dynamics by monitoring the growth of siderophore producers and non-producers of the plant-growth promoting bacterium Pseudomonas fluorescens, embedded within tree-hole microbial communities ranging from 2 to 15 species. RESULTS We find, contrary to our prediction, that siderophore production is favoured at higher levels of community species richness, driven by increased likelihood of encountering key species that reduce the growth of siderophore non-producing (but not producing) strains of P. fluorescens. CONCLUSIONS Our results suggest that maintaining a diverse soil microbiota could partly contribute to the maintenance of siderophore production in natural communities.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Christopher T Culbert
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
6
|
Cherabier P, Ferrière R. Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production. THE ISME JOURNAL 2022; 16:1130-1139. [PMID: 34864820 PMCID: PMC8940968 DOI: 10.1038/s41396-021-01166-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Predicting the response of ocean primary production to climate warming is a major challenge. One key control of primary production is the microbial loop driven by heterotrophic bacteria, yet how warming alters the microbial loop and its function is poorly understood. Here we develop an eco-evolutionary model to predict the physiological response and adaptation through selection of bacterial populations in the microbial loop and how this will impact ecosystem function such as primary production. We find that the ecophysiological response of primary production to warming is driven by a decrease in regenerated production which depends on nutrient availability. In nutrient-poor environments, the loss of regenerated production to warming is due to decreasing microbial loop activity. However, this ecophysiological response can be opposed or even reversed by bacterial adaptation through selection, especially in cold environments: heterotrophic bacteria with lower bacterial growth efficiency are selected, which strengthens the "link" behavior of the microbial loop, increasing both new and regenerated production. In cold and rich environments such as the Arctic Ocean, the effect of bacterial adaptation on primary production exceeds the ecophysiological response. Accounting for bacterial adaptation through selection is thus critically needed to improve models and projections of the ocean primary production in a warming world.
Collapse
Affiliation(s)
- Philippe Cherabier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, Paris, 75005, France.
| | - Régis Ferrière
- grid.462036.5Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, Paris, 75005 France ,grid.134563.60000 0001 2168 186XDepartment of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XInternational Research Laboratory for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS-PSL University, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
7
|
Blazanin M, Turner PE. Community context matters for bacteria-phage ecology and evolution. THE ISME JOURNAL 2021; 15:3119-3128. [PMID: 34127803 PMCID: PMC8528888 DOI: 10.1038/s41396-021-01012-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
Bacteria-phage symbioses are ubiquitous in nature and serve as valuable biological models. Historically, the ecology and evolution of bacteria-phage systems have been studied in either very simple or very complex communities. Although both approaches provide insight, their shortcomings limit our understanding of bacteria and phages in multispecies contexts. To address this gap, here we synthesize the emerging body of bacteria-phage experiments in medium-complexity communities, specifically those that manipulate bacterial community presence. Generally, community presence suppresses both focal bacterial (phage host) and phage densities, while sometimes altering bacteria-phage ecological interactions in diverse ways. Simultaneously, community presence can have an array of evolutionary effects. Sometimes community presence has no effect on the coevolutionary dynamics of bacteria and their associated phages, whereas other times the presence of additional bacterial species constrains bacteria-phage coevolution. At the same time, community context can alter mechanisms of adaptation and interact with the pleiotropic consequences of (co)evolution. Ultimately, these experiments show that community context can have important ecological and evolutionary effects on bacteria-phage systems, but many questions still remain unanswered and ripe for additional investigation.
Collapse
Affiliation(s)
- Michael Blazanin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Diego D, Hannisdal B, Dahle H. On how the power supply shapes microbial survival. Math Biosci 2021; 338:108615. [PMID: 33857526 DOI: 10.1016/j.mbs.2021.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Understanding how environmental factors affect microbial survival is an important open problem in microbial ecology. Patterns of microbial community structure have been characterized across a wide range of different environmental settings, but the mechanisms generating these patterns remain poorly understood. Here, we use mathematical modelling to investigate fundamental connections between chemical power supply to a system and patterns of microbial survival. We reveal a complex set of interdependences between power supply and distributions of survival probability across microbial habitats, in a case without interspecific resource competition. We also find that different properties determining power supply, such as substrate fluxes and Gibbs energies of reactions, affect microbial survival in fundamentally different ways. Moreover, we show how simple connections between power supply and growth can give rise to complex patterns of microbial survival across physicochemical gradients, such as pH gradients. Our findings show the importance of taking energy fluxes into account in order to reveal fundamental connections between microbial survival and environmental conditions, and to obtain a better understanding of microbial population dynamics in natural environments.
Collapse
Affiliation(s)
- David Diego
- Department of Earth Science, University of Bergen, Allégaten, NO-5007 Bergen, Norway; K.G. Jebsen Centre for Deep Sea Research, Allégaten, NO-5007 Bergen, Norway.
| | - Bjarte Hannisdal
- Department of Earth Science, University of Bergen, Allégaten, NO-5007 Bergen, Norway; K.G. Jebsen Centre for Deep Sea Research, Allégaten, NO-5007 Bergen, Norway
| | - Håkon Dahle
- K.G. Jebsen Centre for Deep Sea Research, Allégaten, NO-5007 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlens gate 53A, NO-5006 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
9
|
Liu Y, Ping Y, Xiong Y, Zhou R, Xu F, Wang J, Li J. Genotype, biofilm formation ability and specific gene transcripts characteristics of endodontic Enterococcus faecalis under glucose deprivation condition. Arch Oral Biol 2020; 118:104877. [PMID: 32828986 DOI: 10.1016/j.archoralbio.2020.104877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To study the relationship between the specific gene and biofilm formation ability of seven wild type Enterococcus faecalis (E. faecalis) under glucose deprivation conditions. DESIGN Wild type E. faecalis (3RC, 5RC, 25RC, 31RC, 33RC, 37RC, 58RC) extracted from the teeth with persistent apical periodontitis were cultured under glucose deprivation conditions and then resequenced. The biofilm formation ability was compared using primary adherence assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The transcriptional level of biofilm formation-related genes (ace, gelE, efa, esp and fsrB) were detected. RESULTS Genomic resequencing showed that 3RC and 58RC (Class B) were similar, while 5RC, 25RC, 31RC, 33RC and 37RC (Class A) were similar. Based on primary adherence assay, CLSM and SEM results, biofilm formation ability of Class B strains was lower, while Class A strains were higher when compared with control group (0.25 % glucose). Furthermore, compared with control group (0.25 % glucose), the transcriptional levels of ace, efa and fsrB genes were upregulated in all strains; the transcriptional levels of gelE were downregulated in Class B strains, upregulated in Class A strains; the transcriptional levels of esp of Class B strains were downregulated, while upregulated in 25RC, 31RC and 37RC (Class A), and not observed in 5RC and 33RC. CONCLUSION The genotypes of wild type E. faecalis of different persistent periapical periodontitis teeth are different. The genotype differences and the transcription levels of related virulence genes (ace, gelE, efa, esp and fsrB) are related to the biological phenotype.
Collapse
Affiliation(s)
- Yawen Liu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Stomatological Hospital of Lianyungang, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yifan Ping
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Department of Endodontics and Operative Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuhua Xiong
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Ruyu Zhou
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Fulu Xu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Juan Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Department of Endodontics and Operative Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Jin Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Department of VIP Clinic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Derome N, Filteau M. A continuously changing selective context on microbial communities associated with fish, from egg to fork. Evol Appl 2020; 13:1298-1319. [PMID: 32684960 PMCID: PMC7359827 DOI: 10.1111/eva.13027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fast increase of fish aquaculture production to meet consumer demands is accompanied by important ecological concerns such as disease outbreaks. Meanwhile, food waste is an important concern with fish products since they are highly perishable. Recent aquaculture and fish product microbiology, and more recently, microbiota research, paved the way to a highly integrated approach to understand complex relationships between host fish, product and their associated microbial communities at health/disease and preservation/spoilage frontiers. Microbial manipulation strategies are increasingly validated as promising tools either to replace or to complement traditional veterinary and preservation methods. In this review, we consider evolutionary forces driving fish microbiota assembly, in particular the changes in the selective context along the production chain. We summarize the current knowledge concerning factors governing assembly and dynamics of fish hosts and food microbial communities. Then, we discuss the current microbial community manipulation strategies from an evolutionary standpoint to provide a perspective on the potential for risks, conflict and opportunities. Finally, we conclude that to harness evolutionary forces in the development of sustainable microbiota manipulation applications in the fish industry, an integrated knowledge of the controlling abiotic and especially biotic factors is required.
Collapse
Affiliation(s)
- Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieUniversité LavalQuébecQCCanada
| | - Marie Filteau
- Département de BiologieUniversité LavalQuébecQCCanada
- Département des Sciences des alimentsInstitut sur la nutrition et les aliments fonctionnels (INAF)Université LavalQuébecQCCanada
| |
Collapse
|
11
|
Cosetta CM, Wolfe BE. Causes and consequences of biotic interactions within microbiomes. Curr Opin Microbiol 2019; 50:35-41. [PMID: 31627129 DOI: 10.1016/j.mib.2019.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
An integrative pattern-process-mechanism approach is revealing the roles of biotic interactions in microbiome assembly. Patterns of microbiome diversity observed in metagenomic studies can be partly explained by interaction processes (e.g. competition, facilitation) and underlying molecular or genetic mechanisms (e.g. antibiotic production, nutrient cross-feeding). Exciting opportunities remain to fully understand the significance and generalizability of biotic interactions within microbiomes. Many microbial interactions have been studied by chasing easily quantifiable phenotypes including changes in growth or pigmentation, but it is likely that diverse cryptic interactions occur without obvious growth changes or macroscopic phenotypes. A narrow phylogenetic breadth of well-studied microbes limits our understanding of whether there are conserved genetic or molecular mechanisms of microbial interactions. Biotic interactions can impose strong selective pressures that could shape rates and modes of microbial evolution, but few studies have examined the evolutionary consequences of interactions within microbiomes. Continued exploration of the chemical and genetic mechanisms underlying biotic interactions may provide novel tools to manipulate and manage microbiomes.
Collapse
Affiliation(s)
- Casey M Cosetta
- Tufts University, Department of Biology, Medford, MA 02155, United States
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, MA 02155, United States.
| |
Collapse
|
12
|
Essarioui A, LeBlanc N, Otto-Hanson L, Schlatter DC, Kistler HC, Kinkel LL. Inhibitory and nutrient use phenotypes among coexisting Fusarium and Streptomyces populations suggest local coevolutionary interactions in soil. Environ Microbiol 2019; 22:976-985. [PMID: 31424591 DOI: 10.1111/1462-2920.14782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/22/2019] [Accepted: 08/14/2019] [Indexed: 11/29/2022]
Abstract
Bacteria and fungi are key components of virtually all natural habitats, yet the significance of fungal-bacterial inhibitory interactions for the ecological and evolutionary dynamics of specific bacterial and fungal populations in natural habitats have been overlooked. More specifically, despite the broad consensus that antibiotics play a key role in providing a fitness advantage to competing microbes, the significance of antibiotic production in mediating cross-kingdom coevolutionary interactions has received relatively little attention. Here, we characterize reciprocal inhibition among Streptomyces and Fusarium populations from prairie soil, and explore antibiotic inhibition in relation to niche overlap among sympatric and allopatric populations. We found evidence for local adaptation between Fusarium and Streptomyces populations as indicated by significantly greater inhibition among sympatric than allopatric populations. Additionally, for both taxa, there was a significant positive correlation between the strength of inhibition against the other taxon and the intensity of resource competition from that taxon among sympatric but not allopatric populations. These data suggest that coevolutionary antagonistic interactions between Fusarium and Streptomyces are driven by resource competition, and support the hypothesis that antibiotics act as weapons in mediating bacterial-fungal interactions in soil.
Collapse
Affiliation(s)
- Adil Essarioui
- National Institute of Agronomic Research, Regional Center of Errachidia, Errachidia, Morocco.,Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas LeBlanc
- Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lindsey Otto-Hanson
- Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Harold Corby Kistler
- USDA-ARS Cereal Disease Laboratory, Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Linda L Kinkel
- Department of plant pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Charlebois DA, Balázsi G. Modeling cell population dynamics. In Silico Biol 2019; 13:21-39. [PMID: 30562900 PMCID: PMC6598210 DOI: 10.3233/isb-180470] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
Abstract
Quantitative modeling is quickly becoming an integral part of biology, due to the ability of mathematical models and computer simulations to generate insights and predict the behavior of living systems. Single-cell models can be incapable or misleading for inferring population dynamics, as they do not consider the interactions between cells via metabolites or physical contact, nor do they consider competition for limited resources such as nutrients or space. Here we examine methods that are commonly used to model and simulate cell populations. First, we cover simple models where analytic solutions are available, and then move on to more complex scenarios where computational methods are required. Overall, we present a summary of mathematical models used to describe cell population dynamics, which may aid future model development and highlights the importance of population modeling in biology.
Collapse
Affiliation(s)
- Daniel A. Charlebois
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, NY, USA
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, NY, USA
- Department of Biomedical Engineering, Stony Brook University, NY, USA
| |
Collapse
|
14
|
Abstract
Quantitative modeling is quickly becoming an integral part of biology, due to the ability of mathematical models and computer simulations to generate insights and predict the behavior of living systems. Single-cell models can be incapable or misleading for inferring population dynamics, as they do not consider the interactions between cells via metabolites or physical contact, nor do they consider competition for limited resources such as nutrients or space. Here we examine methods that are commonly used to model and simulate cell populations. First, we cover simple models where analytic solutions are available, and then move on to more complex scenarios where computational methods are required. Overall, we present a summary of mathematical models used to describe cell population dynamics, which may aid future model development and highlights the importance of population modeling in biology.
Collapse
Affiliation(s)
- Daniel A Charlebois
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, NY, USA.,Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, NY, USA.,Department of Biomedical Engineering, Stony Brook University, NY, USA
| |
Collapse
|
15
|
Essarioui A, LeBlanc N, Kistler HC, Kinkel LL. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere. MICROBIAL ECOLOGY 2017; 74:157-167. [PMID: 28058470 DOI: 10.1007/s00248-016-0907-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be critical to mediating the coevolutionary dynamics and selective trajectories for inhibitory and nutrient use phenotypes among Streptomyces and Fusarium populations in soil, with significant implications for microbial community functional characteristics.
Collapse
Affiliation(s)
- Adil Essarioui
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA.
- National Institute of Agronomic Research, Regional Center of Errachidia, Errachidia, Morocco.
| | - Nicholas LeBlanc
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Harold C Kistler
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
- Cereal Disease Lab, USDA-ARS, 1551 Lindig Street, St Paul, MN, USA
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:55-70. [PMID: 28185400 DOI: 10.1111/1758-2229.12523] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
With rapidly improving sequencing technologies, scientists have recently gained the ability to examine diverse microbial communities at high genomic resolution, revealing that both free-living and host-associated microbes partition their environment at fine phylogenetic scales. This 'microdiversity,' or closely related (> 97% similar 16S rRNA gene) but ecologically and physiologically distinct sub-taxonomic groups, appears to be an intrinsic property of microorganisms. However, the functional implications of microdiversity as well as its effects on microbial biogeography are poorly understood. Here, we present two theoretical models outlining the evolutionary mechanisms that drive the formation of microdiverse 'sub-taxa.' Additionally, we review recent literature and reveal that microdiversity influences a wide range of functional traits across diverse ecosystems and microbes. Moving to higher levels of organization, we use laboratory data from marine, soil, and host-associated bacteria to demonstrate that the aggregated trait-based response of microdiverse sub-taxa modifies the fundamental niche of microbes. The correspondence between microdiversity and niche space represents a critical tool for future studies of microbial ecology. By combining growth experiments on diverse isolates with examinations of environmental abundance patterns, researchers can better quantify the fundamental and realized niches of microbes and improve understanding of microbial biogeography and response to future environmental change.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
17
|
Microbial diversity arising from thermodynamic constraints. ISME JOURNAL 2016; 10:2725-2733. [PMID: 27035705 PMCID: PMC5042319 DOI: 10.1038/ismej.2016.49] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/15/2023]
Abstract
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.
Collapse
|
18
|
Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities. PLoS Comput Biol 2013; 9:e1003398. [PMID: 24385891 PMCID: PMC3873226 DOI: 10.1371/journal.pcbi.1003398] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/01/2013] [Indexed: 02/02/2023] Open
Abstract
Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies. Understanding the structure and functioning of polymicrobial communities is a major challenge in biology, as witnessed by the dramatic yet mysterious roles played by the human microbiome in human health. Microbial multispecies communities often show complex spatial structures and patterns of metabolic exchange, yet our understanding of how species spatial and ecological relationships emerge from the metabolic rules of species interactions is still limited. What mechanisms underlie multispecies community self-organization? In this study, we simulate the growth of a minimal—two species— community and show how the emergent properties of community spatial structure and function depend on the nature of metabolic interactions between the two species. We found that strong mutual need for help (strong metabolic interdependence) favours the emergence of mutualism, increased productivity and lineage mixing via striking and highly stable branching patterns. In contrast, when the mutual need for help is low, conflict dominates and the two species tend to segregate. Finally, we show how the emergent species mixing follows from a positive feedback of providing aid to neighbouring helpers.
Collapse
|