1
|
Ozaki H, Mizokami Y, Sugiura D, Sohtome T, Miyake C, Sakai H, Noguchi K. Tight relationship between two photosystems is robust in rice leaves under various nitrogen conditions. JOURNAL OF PLANT RESEARCH 2023; 136:201-210. [PMID: 36536238 DOI: 10.1007/s10265-022-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Leaf nitrogen (N) level affects not only photosynthetic CO2 assimilation, but also two photosystems of the photosynthetic electron transport. The quantum yield of photosystem II [Y(II)] and the non-photochemical yield due to the donor side limitation of photosystem I [Y(ND)], which denotes the fraction of oxidized P700 (P700+) to total P700, oppositely change depending on leaf N level, and the negative correlation between these two parameters has been reported in leaves of plants cultivated at various N levels in growth chambers. Here, we aimed to clarify whether this correlation is maintained after short-term changes in leaf N level, and what parameters are the most responsive to the changes in leaf N level under field conditions. We cultivated rice varieties at two N fertilization levels in paddy fields, treated additional N fertilization to plants grown at low N, and measured parameters of two photosystems of mature leaves. In rice leaves under low N condition, the Y(ND) increased and the photosynthetic linear electron flow was suppressed. In this situation, the accumulation of P700+ can function as excess energy dissipation. After the N addition, both Y(ND) and Y(II) changed, and the negative correlation between them was maintained. We used a newly-developed device to assess the photosystems. This device detected the similar changes in Y(ND) after the N addition, and the negative correlation between Y(ND) and photosynthetic O2 evolution rates was observed in plants under various N conditions. This study has provided strong field evidence that the Y(ND) largely changes depending on leaf N level, and that the Y(II) and Y(ND) are negatively correlated with each other irrespective of leaf N level, varieties and annual variation. The Y(ND) can stably monitor the leaf N status and the linear electron flow under field conditions.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Takayuki Sohtome
- Department of System Development, Bunkoukeiki Co. Ltd, Tokyo, 192-0033, Japan
| | - Chikahiro Miyake
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Hidemitsu Sakai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
2
|
Saito K, Mitsuhashi K, Tamura H, Ishikita H. Quantum mechanical analysis of excitation energy transfer couplings in photosystem II. Biophys J 2023; 122:470-483. [PMID: 36609140 PMCID: PMC9941724 DOI: 10.1016/j.bpj.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
We evaluated excitation energy transfer (EET) coupling (J) between all pairs of chlorophylls (Chls) and pheophytins (Pheos) in the protein environment of photosystem II based on the time-dependent density functional theory with a quantum mechanical/molecular mechanics approach. In the reaction center, the EET coupling between Chls PD1 and PD2 is weaker (|J(PD1/PD2)| = 79 cm-1), irrespective of a short edge-to-edge distance of 3.6 Å (Mg-to-Mg distance of 8.1 Å), than the couplings between PD1 and the accessory ChlD1 (|J(PD1/ChlD2)| = 104 cm-1) and between PD2 and ChlD2 (|J(PD2/ChlD1)| = 101 cm-1), suggesting that PD1 and PD2 are two monomeric Chls rather than a "special pair". There exist strongly coupled Chl pairs (|J| > ∼100 cm-1) in the CP47 and CP43 core antennas, which may be candidates for the red-shifted Chls observed in spectroscopic studies. In CP47 and CP43, Chls ligated to CP47-His26 and CP43-His56, which are located in the middle layer of the thylakoid membrane, play a role in the "hub" that mediates the EET from the lumenal to stromal layers. In the stromal layer, Chls ligated to CP47-His466, CP43-His441, and CP43-His444 mediate the EET from CP47 to ChlD2/PheoD2 and from CP43 to ChlD1/PheoD1 in the reaction center. Thus, the excitation energy from both CP47 and CP43 can always be utilized for the charge-separation reaction in the reaction center.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | - Koji Mitsuhashi
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Chu R, Zhang QH, Wei YZ. Effect of enhanced UV-B radiation on growth and photosynthetic physiology of Iris tectorum maxim. PHOTOSYNTHESIS RESEARCH 2022; 153:177-189. [PMID: 35834037 DOI: 10.1007/s11120-022-00933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Iris tectorum Maxim. is an important plant that plays a very crucial role in the ecological welfare of wetlands. In this study, the effects of different intensities of UV-B radiation on the growth, photosynthetic pigment content, chlorophyll fluorescence characteristics, chloroplast ultrastructure, and gas exchange parameters of Iris tectorum Maxim. were studied. The results showed that enhanced UV-B radiation had a significant influence on the above-mentioned parameters of iris. Compared with the control, enhanced UV-B radiation caused certain damage to the leaf appearance. With the increasing intensity of radiation, the apparent damage degree became more serious. Enhanced UV-B radiation significantly decreased leaf chlorophyll contents, and the effect accumulated with the exposure time. Enhanced UV-B radiation increased Fo, significantly increased the non-photochemical quenching coefficient NPQ, reduced PSII and Qp, and significantly decreased the Fm, Fv/Fm, and Fv/Fo in leaves. The effect of UV-B radiation on PSII destruction of Iris tectorum Maxim. increased as the radiation intensity increased and the exposure time prolonged. The chloroplast structure was damaged under the enhanced UV-B radiation. More specifically, thylakoid lamellae were distorted, swelling and even blurred, and a large number of starch granules appeared. The effect of the high intensity of radiation on chloroplast ultrastructure was greater than that of lower intensity. Enhanced UV-B radiation reduced significantly the net photosynthetic rate, stomatal conductance, and transpiration rate, and the degree of degradation increased with the increasing irradiation intensity. However, the intercellular CO2 content increased, which suggests that the main reason for the decrease of photosynthetic rate was the non-stomatal factors.
Collapse
Affiliation(s)
- Run Chu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Qin-Hu Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yu-Zhen Wei
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
4
|
Yang F, Debatosh D, Song T, Zhang JH. Light Harvesting-like Protein 3 Interacts with Phytoene Synthase and Is Necessary for Carotenoid and Chlorophyll Biosynthesis in Rice. RICE (NEW YORK, N.Y.) 2021; 14:32. [PMID: 33745012 PMCID: PMC7981378 DOI: 10.1186/s12284-021-00474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carotenoid biosynthesis is essential for the generation of photosynthetic pigments, phytohormone production, and flower color development. The light harvesting like 3 (LIL3) protein, which belongs to the light-harvesting complex protein family in photosystems, interacts with geranylgeranyl reductase (GGR) and protochlorophyllide oxidoreductase (POR) both of which are known to regulate terpenoid and chlorophyll biosynthesis, respectively, in both rice and Arabidopsis. RESULTS In our study, a CRISPR-Cas9 generated 4-bp deletion mutant oslil3 showed aberrant chloroplast development, growth defects, low fertility rates and reduced pigment contents. A comparative transcriptomic analysis of oslil3 suggested that differentially expressed genes (DEGs) involved in photosynthesis, cell wall modification, primary and secondary metabolism are differentially regulated in the mutant. Protein-protein interaction assays indicated that LIL3 interacts with phytoene synthase (PSY) and in addition the gene expression of PSY genes are regulated by LIL3. Subcellular localization of LIL3 and PSY suggested that both are thylakoid membrane anchored proteins in the chloroplast. We suggest that LIL3 directly interacts with PSY to regulate carotenoid biosynthesis. CONCLUSION This study reveals a new role of LIL3 in regulating pigment biosynthesis through interaction with the rate limiting enzyme PSY in carotenoid biosynthesis in rice presenting it as a putative target for genetic manipulation of pigment biosynthesis pathways in crop plants.
Collapse
Affiliation(s)
- Feng Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Das Debatosh
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Tao Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
| | - Jian-Hua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
5
|
Stadnichuk IN, Novikova TM, Miniuk GS, Boichenko VA, Bolychevtseva YV, Gusev ES, Lukashev EP. Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina. BIOCHEMISTRY (MOSCOW) 2020; 85:679-688. [PMID: 32586231 DOI: 10.1134/s000629792006005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
# Deceased. Cryptophyte algae belong to a special group of oxygenic photosynthetic organisms containing pigment combination unique for plastids - phycobiliproteins and chlorophyll a/c-containing antenna. Despite the progress in investigation of morphological and ecological features, as well as genome-based systematics of cryptophytes, their photosynthetic apparatus remains poorly understood. The ratio of the photosystems (PS)s I and II is unknown and information on participation of the two antennal complexes in functions of the two photosystems is inconsistent. In the present work we demonstrated for the first time that the cryptophyte alga Rhodomonas salina had the PSI to PSII ratio in thylakoid membranes equal to 1 : 4, whereas this ratio in cyanobacteria and higher plants was known to be 3 : 1 and 1 : 1, respectively. Furthermore, it was established that contrary to the case of cyanobacteria the phycobiliprotein antenna represented by phycoerythrin-545 (PE-545) in R. salina was associated only with the PSII, which indicated specific spatial organization of these protein pigments within the thylakoids that did not facilitate interaction with the PSI.
Collapse
Affiliation(s)
- I N Stadnichuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia.
| | - T M Novikova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - G S Miniuk
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - V A Boichenko
- Institute of Fundamental Problems of Biology of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Yu V Bolychevtseva
- Kovalevski Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, 299011, Russia
| | - E S Gusev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia
| | - E P Lukashev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
6
|
Furukawa R, Aso M, Fujita T, Akimoto S, Tanaka R, Tanaka A, Yokono M, Takabayashi A. Formation of a PSI-PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2019; 132:867-880. [PMID: 31541373 DOI: 10.1007/s10265-019-01138-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/08/2019] [Indexed: 05/10/2023]
Abstract
Mosses are one of the earliest land plants that diverged from fresh-water green algae. They are considered to have acquired a higher capacity for thermal energy dissipation to cope with dynamically changing solar irradiance by utilizing both the "algal-type" light-harvesting complex stress-related (LHCSR)-dependent and the "plant-type" PsbS-dependent mechanisms. It is hypothesized that the formation of photosystem (PS) I and II megacomplex is another mechanism to protect photosynthetic machinery from strong irradiance. Herein, we describe the analysis of the PSI-PSII megacomplex from the model moss, Physcomitrella patens, which was resolved using large-pore clear-native polyacrylamide gel electrophoresis (lpCN-PAGE). The similarity in the migration distance of the Physcomitrella PSI-PSII megacomplex to the Arabidopsis megacomplex shown during lpCN-PAGE suggested that the Physcomitrella PSI-PSII and Arabidopsis megacomplexes have similar structures. Time-resolved chlorophyll fluorescence measurements show that excitation energy was rapidly and efficiently transferred from PSII to PSI, providing evidence of an ordered association of the two photosystems. We also found that LHCSR and PsbS co-migrated with the Physcomitrella PSI-PSII megacomplex. The megacomplex showed pH-dependent chlorophyll fluorescence quenching, which may have been induced by LHCSR and/or PsbS proteins with the collaboration of zeaxanthin. We discuss the mechanism that regulates the energy distribution balance between two photosystems in Physcomitrella.
Collapse
Affiliation(s)
- Ryo Furukawa
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Michiki Aso
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Ryouichi Tanaka
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Makio Yokono
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan.
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, 243-0041, Japan.
| | - Atsushi Takabayashi
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
7
|
On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148079. [PMID: 31518567 DOI: 10.1016/j.bbabio.2019.148079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
Photosynthetic pigment-protein complexes (PPCs) accomplish light-energy capture and photochemistry in natural photosynthesis. In this review, we examine three pigment protein complexes in oxygenic photosynthesis: light-harvesting antenna complexes and two reaction centers: Photosystem II (PSII), and Photosystem I (PSI). Recent technological developments promise unprecedented insights into how these multi-component protein complexes are assembled into higher order structures and thereby execute their function. Furthermore, the interfacial domain between light-harvesting antenna complexes and PSII, especially the potential roles of the structural loops from CP29 and the PB-loop of ApcE in higher plant and cyanobacteria, respectively, are discussed. It is emphasized that the structural nuances are required for the structural dynamics and consequently for functional regulation in response to an ever-changing and challenging environment.
Collapse
|
8
|
Nagao R, Kagatani K, Ueno Y, Shen JR, Akimoto S. Ultrafast Excitation Energy Dynamics in a Diatom Photosystem I-Antenna Complex: A Femtosecond Fluorescence Upconversion Study. J Phys Chem B 2019; 123:2673-2678. [DOI: 10.1021/acs.jpcb.8b12086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kohei Kagatani
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
9
|
Shimakawa G, Miyake C. Oxidation of P700 Ensures Robust Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1617. [PMID: 30459798 PMCID: PMC6232666 DOI: 10.3389/fpls.2018.01617] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
In the light, photosynthetic cells can potentially suffer from oxidative damage derived from reactive oxygen species. Nevertheless, a variety of oxygenic photoautotrophs, including cyanobacteria, algae, and plants, manage their photosynthetic systems successfully. In the present article, we review previous research on how these photoautotrophs safely utilize light energy for photosynthesis without photo-oxidative damage to photosystem I (PSI). The reaction center chlorophyll of PSI, P700, is kept in an oxidized state in response to excess light, under high light and low CO2 conditions, to tune the light utilization and dissipate the excess photo-excitation energy in PSI. Oxidation of P700 is co-operatively regulated by a number of molecular mechanisms on both the electron donor and acceptor sides of PSI. The strategies to keep P700 oxidized are diverse among a variety of photoautotrophs, which are evolutionarily optimized for their ecological niche.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
10
|
Giovanardi M, Pantaleoni L, Ferroni L, Pagliano C, Albanese P, Baldisserotto C, Pancaldi S. In pea stipules a functional photosynthetic electron flow occurs despite a reduced dynamicity of LHCII association with photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1025-1038. [DOI: 10.1016/j.bbabio.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
11
|
Lv S, Zhang K, Zeng Y, Tang D. Double Photosystems-Based ‘Z-Scheme’ Photoelectrochemical Sensing Mode for Ultrasensitive Detection of Disease Biomarker Accompanying Three-Dimensional DNA Walker. Anal Chem 2018; 90:7086-7093. [DOI: 10.1021/acs.analchem.8b01825] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shuzhen Lv
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Kangyao Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, People’s Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| |
Collapse
|