1
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
2
|
Mirveis Z, Howe O, Cahill P, Patil N, Byrne HJ. Monitoring and modelling the glutamine metabolic pathway: a review and future perspectives. Metabolomics 2023; 19:67. [PMID: 37482587 PMCID: PMC10363518 DOI: 10.1007/s11306-023-02031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Analysis of the glutamine metabolic pathway has taken a special place in metabolomics research in recent years, given its important role in cell biosynthesis and bioenergetics across several disorders, especially in cancer cell survival. The science of metabolomics addresses the intricate intracellular metabolic network by exploring and understanding how cells function and respond to external or internal perturbations to identify potential therapeutic targets. However, despite recent advances in metabolomics, monitoring the kinetics of a metabolic pathway in a living cell in situ, real-time and holistically remains a significant challenge. AIM This review paper explores the range of analytical approaches for monitoring metabolic pathways, as well as physicochemical modeling techniques, with a focus on glutamine metabolism. We discuss the advantages and disadvantages of each method and explore the potential of label-free Raman microspectroscopy, in conjunction with kinetic modeling, to enable real-time and in situ monitoring of the cellular kinetics of the glutamine metabolic pathway. KEY SCIENTIFIC CONCEPTS Given its important role in cell metabolism, the ability to monitor and model the glutamine metabolic pathways are highlighted. Novel, label free approaches have the potential to revolutionise metabolic biosensing, laying the foundation for a new paradigm in metabolomics research and addressing the challenges in monitoring metabolic pathways in living cells.
Collapse
Affiliation(s)
- Zohreh Mirveis
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland.
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological, Health and Sport Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
3
|
Muhamadali H, Winder CL, Dunn WB, Goodacre R. Unlocking the secrets of the microbiome: exploring the dynamic microbial interplay with humans through metabolomics and their manipulation for synthetic biology applications. Biochem J 2023; 480:891-908. [PMID: 37378961 PMCID: PMC10317162 DOI: 10.1042/bcj20210534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Metabolomics is a powerful research discovery tool with the potential to measure hundreds to low thousands of metabolites. In this review, we discuss the application of GC-MS and LC-MS in discovery-based metabolomics research, we define metabolomics workflows and we highlight considerations that need to be addressed in order to generate robust and reproducible data. We stress that metabolomics is now routinely applied across the biological sciences to study microbiomes from relatively simple microbial systems to their complex interactions within consortia in the host and the environment and highlight this in a range of biological species and mammalian systems including humans. However, challenges do still exist that need to be overcome to maximise the potential for metabolomics to help us understanding biological systems. To demonstrate the potential of the approach we discuss the application of metabolomics in two broad research areas: (1) synthetic biology to increase the production of high-value fine chemicals and reduction in secondary by-products and (2) gut microbial interaction with the human host. While burgeoning in importance, the latter is still in its infancy and will benefit from the development of tools to detangle host-gut-microbial interactions and their impact on human health and diseases.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Catherine L. Winder
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Warwick B. Dunn
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
4
|
Winder CL, Witting M, Tugizimana F, Dunn WB, Reinke SN. Providing metabolomics education and training: pedagogy and considerations. Metabolomics 2022; 18:106. [PMID: 36512139 PMCID: PMC9746579 DOI: 10.1007/s11306-022-01957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolomics is a highly multidisciplinary and non-standardised research field. Metabolomics researchers must possess and apply extensive cross-disciplinary content knowledge, subjective experience-based judgement, and the associated diverse skill sets. Accordingly, appropriate educational and training initiatives are important in developing this knowledge and skills base in the metabolomics community. For these initiatives to be successful, they must consider both pedagogical best practice and metabolomics-specific contextual challenges. AIM OF REVIEW The aim of this review is to provide consolidated pedagogical guidance for educators and trainers in metabolomics educational and training programmes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we discuss the principles of pedagogical best practice as they relate to metabolomics. We then discuss the challenges and considerations in developing and delivering education and training in metabolomics. Finally, we present examples from our own teaching practice to illustrate how pedagogical best practice can be integrated into metabolomics education and training programmes.
Collapse
Affiliation(s)
- Catherine L Winder
- Analytical & Clinical Metabolomics Group and Liverpool Training Centre for Metabolomics, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
- International Research and Development Division, Omnia Group Ltd., Bryanston, Johannesburg, 2021, South Africa
| | - Warwick B Dunn
- Analytical & Clinical Metabolomics Group and Liverpool Training Centre for Metabolomics, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup, 6027, Australia.
| | | |
Collapse
|
5
|
Iman MN, Herawati E, Fukusaki E, Putri SP. Metabolomics-driven strain improvement: A mini review. Front Mol Biosci 2022; 9:1057709. [PMID: 36438656 PMCID: PMC9681786 DOI: 10.3389/fmolb.2022.1057709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023] Open
Abstract
In recent years, mass spectrometry-based metabolomics has been established as a powerful and versatile technique for studying cellular metabolism by comprehensive analysis of metabolites in the cell. Although there are many scientific reports on the use of metabolomics for the elucidation of mechanism and physiological changes occurring in the cell, there are surprisingly very few reports on its use for the identification of rate-limiting steps in a synthetic biological system that can lead to the actual improvement of the host organism. In this mini review, we discuss different strategies for improving strain performance using metabolomics data and compare the application of metabolomics-driven strain improvement techniques in different host microorganisms. Finally, we highlight several success stories on the use of metabolomics-driven strain improvement strategies, which led to significant bioproductivity improvements.
Collapse
Affiliation(s)
- Marvin Nathanael Iman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Elisa Herawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Versatile tools of synthetic biology applied to drug discovery and production. Future Med Chem 2022; 14:1325-1340. [PMID: 35975897 DOI: 10.4155/fmc-2022-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although synthetic biology is an emerging research field, which has come to prominence within the last decade, it already has many practical applications. Its applications cover the areas of pharmaceutical biotechnology and drug discovery, bringing essential novel methods and strategies such as metabolic engineering, reprogramming the cell fate, drug production in genetically modified organisms, molecular glues, functional nucleic acids and genome editing. This review discusses the main avenues for synthetic biology application in pharmaceutical biotechnology. The authors believe that synthetic biology will reshape drug development and drug production to a similar extent as the advances in organic chemical synthesis in the 20th century. Therefore, synthetic biology already plays an essential role in pharmaceutical, biotechnology, which is the main focus of this review.
Collapse
|
7
|
Reiter A, Asgari J, Wiechert W, Oldiges M. Metabolic Footprinting of Microbial Systems Based on Comprehensive In Silico Predictions of MS/MS Relevant Data. Metabolites 2022; 12:257. [PMID: 35323700 PMCID: PMC8949988 DOI: 10.3390/metabo12030257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic footprinting represents a holistic approach to gathering large-scale metabolomic information of a given biological system and is, therefore, a driving force for systems biology and bioprocess development. The ongoing development of automated cultivation platforms increases the need for a comprehensive and rapid profiling tool to cope with the cultivation throughput. In this study, we implemented a workflow to provide and select relevant metabolite information from a genome-scale model to automatically build an organism-specific comprehensive metabolome analysis method. Based on in-house literature and predicted metabolite information, the deduced metabolite set was distributed in stackable methods for a chromatography-free dilute and shoot flow-injection analysis multiple-reaction monitoring profiling approach. The workflow was used to create a method specific for Saccharomyces cerevisiae, covering 252 metabolites with 7 min/sample. The method was validated with a commercially available yeast metabolome standard, identifying up to 74.2% of the listed metabolites. As a first case study, three commercially available yeast extracts were screened with 118 metabolites passing quality control thresholds for statistical analysis, allowing to identify discriminating metabolites. The presented methodology provides metabolite screening in a time-optimised way by scaling analysis time to metabolite coverage and is open to other microbial systems simply starting from genome-scale model information.
Collapse
Affiliation(s)
- Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Jian Asgari
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Computational Systems Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
8
|
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. BIORESOURCE TECHNOLOGY 2022; 344:126196. [PMID: 34710610 DOI: 10.1016/j.biortech.2021.126196] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics, an essential tool in modern synthetic biology based on the design-build-test-learn platform, is useful for obtaining a detailed understanding of cellular metabolic mechanisms through comprehensive analyses of the metabolite pool size and its dynamic changes. Metabolomics is critical to the design of a rational metabolic engineering strategy by determining the rate-limiting reaction and assimilated carbon distribution in a biosynthetic pathway of interest. Microalgae and cyanobacteria are promising photosynthetic producers of biofuels and bio-based chemicals, with high potential for developing a bioeconomic society through bio-based carbon neutral manufacturing. Metabolomics technologies optimized for photosynthetic organisms have been developed and utilized in various microalgal and cyanobacterial species. This review provides a concise overview of recent achievements in photosynthetic metabolomics, emphasizing the importance of microalgal and cyanobacterial cell factories that satisfy industrial requirements.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
9
|
Sirohi R, Joun J, Choi HI, Gaur VK, Sim SJ. Algal glycobiotechnology: omics approaches for strain improvement. Microb Cell Fact 2021; 20:163. [PMID: 34419059 PMCID: PMC8379821 DOI: 10.1186/s12934-021-01656-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Microalgae has the capability to replace petroleum-based fuels and is a promising option as an energy feedstock because of its fast growth, high photosynthetic capacity and remarkable ability to store energy reserve molecules in the form of lipids and starch. But the commercialization of microalgae based product is difficult due to its high processing cost and low productivity. Higher accumulation of these molecules may help to cut the processing cost. There are several reports on the use of various omics techniques to improve the strains of microalgae for increasing the productivity of desired products. To effectively use these techniques, it is important that the glycobiology of microalgae is associated to omics approaches to essentially give rise to the field of algal glycobiotechnology. In the past few decades, lot of work has been done to improve the strain of various microalgae such as Chlorella, Chlamydomonas reinhardtii, Botryococcus braunii etc., through genome sequencing and metabolic engineering with major focus on significantly increasing the productivity of biofuels, biopolymers, pigments and other products. The advancements in algae glycobiotechnology have highly significant role to play in innovation and new developments for the production algae-derived products as above. It would be highly desirable to understand the basic biology of the products derived using -omics technology together with biochemistry and biotechnology. This review discusses the potential of different omic techniques (genomics, transcriptomics, proteomics, metabolomics) to improve the yield of desired products through algal strain manipulation.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea
| | - Jaemin Joun
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea
| | - Hong Ii Choi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226 001, India
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
10
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
11
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
12
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
14
|
Abstract
Untargeted metabolomics aims to quantify the complete set of metabolites within a biological system, most commonly by liquid chromatography/mass spectrometry (LC/MS). Since nearly the inception of the field, compound identification has been widely recognized as the rate-limiting step of the experimental workflow. In spite of exponential increases in the size of metabolomic databases, which now contain experimental MS/MS spectra for over a half a million reference compounds, chemical structures still cannot be confidently assigned to many signals in a typical LC/MS dataset. The purpose of this Perspective is to consider why identification rates continue to be low in untargeted metabolomics. One rationalization is that many naturally occurring metabolites detected by LC/MS are true "novel" compounds that have yet to be incorporated into metabolomic databases. An alternative possibility, however, is that research data do not provide database matches because of informatic artifacts, chemical contaminants, and signal redundancies. Increasing evidence suggests that, for at least some sample types, many unidentifiable signals in untargeted metabolomics result from the latter rather than new compounds originating from the specimen being measured. The implications of these observations on chemical discovery in untargeted metabolomics are discussed.
Collapse
Affiliation(s)
- Miriam Sindelar
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Majchrzak T, Wojnowski W, Rutkowska M, Wasik A. Real-Time Volatilomics: A Novel Approach for Analyzing Biological Samples. TRENDS IN PLANT SCIENCE 2020; 25:302-312. [PMID: 31948793 DOI: 10.1016/j.tplants.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The use of the 'omics techniques in environmental research has become common-place. The most widely implemented of these include metabolomics, proteomics, genomics, and transcriptomics. In recent years, a similar approach has also been taken with the analysis of volatiles from biological samples, giving rise to the so-called 'volatilomics' in plant analysis. Developments in direct infusion mass spectrometry (DI-MS) techniques have made it possible to monitor the changes in the composition of volatile flux from parts of plants, single specimens, and entire ecosystems in real-time. The application of these techniques enables a unique insight into the dynamic metabolic processes that occur in plants. Here, we provide an overview of the use of DI-MS in real-time volatilomics research involving plants.
Collapse
Affiliation(s)
- Tomasz Majchrzak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland
| | - Wojciech Wojnowski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland
| | - Małgorzata Rutkowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland
| | - Andrzej Wasik
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland.
| |
Collapse
|
16
|
Gowers GOF, Chee SM, Bell D, Suckling L, Kern M, Tew D, McClymont DW, Ellis T. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nat Commun 2020; 11:868. [PMID: 32054834 PMCID: PMC7018806 DOI: 10.1038/s41467-020-14708-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/24/2020] [Indexed: 02/08/2023] Open
Abstract
Synthetic biology, genome engineering and directed evolution offer innumerable tools to expedite engineering of strains for optimising biosynthetic pathways. One of the most radical is SCRaMbLE, a system of inducible in vivo deletion and rearrangement of synthetic yeast chromosomes, diversifying the genotype of millions of Saccharomyces cerevisiae cells in hours. SCRaMbLE can yield strains with improved biosynthetic phenotypes but is limited by screening capabilities. To address this bottleneck, we combine automated sample preparation, an ultra-fast 84-second LC-MS method, and barcoded nanopore sequencing to rapidly isolate and characterise the best performing strains. Here, we use SCRaMbLE to optimise yeast strains engineered to produce the triterpenoid betulinic acid. Our semi-automated workflow screens 1,000 colonies, identifying and sequencing 12 strains with between 2- to 7-fold improvement in betulinic acid titre. The broad applicability of this workflow to rapidly isolate improved strains from a variant library makes this a valuable tool for biotechnology.
Collapse
Affiliation(s)
- G-O F Gowers
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - S M Chee
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
| | - D Bell
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
- Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - L Suckling
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
- Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - M Kern
- GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - D Tew
- GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - D W McClymont
- London Biofoundry, Imperial College London, London, SW7 2AZ, UK
- SynbiCITE, Imperial College London, London, SW7 2AZ, UK
| | - T Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Babele PK, Young JD. Applications of stable isotope-based metabolomics and fluxomics toward synthetic biology of cyanobacteria. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1472. [PMID: 31816180 DOI: 10.1002/wsbm.1472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/24/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Unique features of cyanobacteria (e.g., photosynthesis and nitrogen fixation) make them potential candidates for production of biofuels and other value-added biochemicals. As prokaryotes, they can be readily engineered using synthetic and systems biology tools. Metabolic engineering of cyanobacteria for the synthesis of desired compounds requires in-depth knowledge of central carbon and nitrogen metabolism, pathway fluxes, and their regulation. Metabolomics and fluxomics offer the comprehensive analysis of metabolism by directly characterizing the biochemical activities of cells. This information is acquired by measuring the abundance of key metabolites and their rates of interconversion, which can be achieved by labeling cells with stable isotopes, quantifying metabolite pool sizes and isotope incorporation by gas chromatography/liquid chromatography-mass spectrometry GC/LC-MS or nuclear magnetic resonance (NMR), and mathematical modeling to estimate in vivo metabolic fluxes. Herein, we review progress that has been made to adapt metabolomics and fluxomics tools to examine model cyanobacterial species. We summarize the application of metabolic flux analysis (MFA) strategies to identify metabolic bottlenecks that can be targeted to boost cell growth, improve stress tolerance, or enhance biochemical production in cyanobacteria. Despite the advances in metabolomics, fluxomics, and other synthetic and systems biology tools during the past years, further efforts are required to increase our understanding of cyanobacterial metabolism in order to create efficient photosynthetic hosts for the production of value-added compounds. This article is categorized under: Laboratory Methods and Technologies > Metabolomics Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jamey D Young
- Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee.,Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
18
|
Sinha R, Sharma B, Dangi AK, Shukla P. Recent metabolomics and gene editing approaches for synthesis of microbial secondary metabolites for drug discovery and development. World J Microbiol Biotechnol 2019; 35:166. [DOI: 10.1007/s11274-019-2746-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/13/2019] [Indexed: 02/08/2023]
|
19
|
Niu G, Li W. Next-Generation Drug Discovery to Combat Antimicrobial Resistance. Trends Biochem Sci 2019; 44:961-972. [PMID: 31256981 DOI: 10.1016/j.tibs.2019.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
The widespread emergence of antibiotic-resistant pathogens poses a severe threat to public health. This problem becomes even worse with a coincident decline in the supply of new antibiotics. Conventional bioactivity-guided natural product discovery has failed to meet the urgent need for new antibiotics, largely due to limited resources and high rediscovery rates. Recent advances in cultivation techniques, analytical technologies, and genomics-based approaches have greatly expanded our access to previously underexploited microbial sources. These strategies will enable us to access new reservoirs of microorganisms and unleash their chemical potentials, thus opening new opportunities for the discovery of next-generation drugs to address the growing concerns of antimicrobial resistance.
Collapse
Affiliation(s)
- Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
20
|
Ribeiro B, Shapira P. Anticipating governance challenges in synthetic biology: Insights from biosynthetic menthol. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE 2019; 139:311-320. [PMID: 30774160 PMCID: PMC6360377 DOI: 10.1016/j.techfore.2018.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 05/04/2023]
Abstract
This paper advances an anticipatory governance framework to investigate and prepare for the potential implications of an emerging technology. Within the growing domain of synthetic biology, we draw on an end-to-end assessment of biosynthetic menthol that incorporates consideration of multiple dimensions of production and use. Based on documentary analysis, available data, and interviews, our approach unfolds in three steps. First, we map the sociotechnical transition in menthol production, comparing existing agricultural and chemical production methods with new biosynthetic processes - or what we call the biological (bio) turn. Second, we explore the rationales, promises and expectations of menthol's bio-turn and explore the drivers of transition so as to clarify which goals and values innovation is addressing. Third, we reflect on the opportunities and challenges of such a transition to put forward an agenda for responsible innovation and anticipatory governance. The bio-turn in menthol is analysed through five responsible innovation dimensions: the potential distribution of benefits and burdens; social resilience; environmental sustainability; infrastructure and business models; and public perception and public interest. We consider the implications of our analysis both for the responsible development and application of synthetic biology for menthol and for the broader assessment and sociotechnical construction of emerging technologies.
Collapse
Affiliation(s)
- Barbara Ribeiro
- Manchester Institute of Innovation Research, Alliance Manchester Business School, University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Philip Shapira
- Manchester Institute of Innovation Research, Alliance Manchester Business School, University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332-0345, United States of America
| |
Collapse
|
21
|
Ni J, Liu H, Tao F, Wu Y, Xu P. Remodeling of the Photosynthetic Chain Promotes Direct CO
2
Conversion into Valuable Aromatic Compounds. Angew Chem Int Ed Engl 2018; 57:15990-15994. [DOI: 10.1002/anie.201808402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hong‐Yu Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fei Tao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yu‐Tong Wu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
22
|
Ni J, Liu H, Tao F, Wu Y, Xu P. Remodeling of the Photosynthetic Chain Promotes Direct CO2Conversion into Valuable Aromatic Compounds. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hong‐Yu Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fei Tao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yu‐Tong Wu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
23
|
The Smell of Synthetic Biology: Engineering Strategies for Aroma Compound Production in Yeast. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4030054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Yeast—especially Saccharomyces cerevisiae—have long been a preferred workhorse for the production of numerous recombinant proteins and other metabolites. S. cerevisiae is a noteworthy aroma compound producer and has also been exploited to produce foreign bioflavour compounds. In the past few years, important strides have been made in unlocking the key elements in the biochemical pathways involved in the production of many aroma compounds. The expression of these biochemical pathways in yeast often involves the manipulation of the host strain to direct the flux towards certain precursors needed for the production of the given aroma compound. This review highlights recent advances in the bioengineering of yeast—including S. cerevisiae—to produce aroma compounds and bioflavours. To capitalise on recent advances in synthetic yeast genomics, this review presents yeast as a significant producer of bioflavours in a fresh context and proposes new directions for combining engineering and biology principles to improve the yield of targeted aroma compounds.
Collapse
|