1
|
Kanika NH, Hou X, Liu H, Dong Y, Wang J, Wang C. Specific gut microbiome's role in skin pigmentation: insights from SCARB1 mutants in Oujiang colour common carp. J Appl Microbiol 2024; 135:lxae226. [PMID: 39243120 DOI: 10.1093/jambio/lxae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
AIMS Beyond the pivotal roles of the gut microbiome in initiating physiological processes and modulating genetic factors, a query persists: Can a single gene mutation alter the abundance of the gut microbiome community? Not only this, but the intricate impact of gut microbiome composition on skin pigmentation has been largely unexplored. METHODS AND RESULTS Based on these premises, our study examines the abundance of lipase-producing gut microbes about differential gene expression associated with bile acid synthesis and lipid metabolism-related blood metabolites in red (whole wild) and white (whole white wild and SCARB1-/- mutant) Oujiang colour common carp. Following the disruption of the SCARB1 gene in the resulting mutant fish with white body colour (SCARB1-/-), there is a notable decrease in the abundance of gut microbiomes (Bacillus, Staphylococcus, Pseudomonas, and Serratia) associated with lipase production. This reduction parallels the downregulation seen in wild-type white body colour fish (WW), as contrasting to the wild-type red body colour fish (WR). Meanwhile, in SCARB1-/- fish, there was a downregulation noted not only at the genetic and metabolic levels but also a decrease in lipase-producing bacteria. This consistency with WW contrasts significantly with WR. Similarly, genes involved in the bile acid synthesis pathway, along with blood metabolites related to lipid metabolism, exhibited downregulation in SCARB1-/- fish. CONCLUSIONS The SCARB1 knockout gene blockage led to significant alterations in the gut microbiome, potentially influencing the observed reduction in carotenoid-associated skin pigmentation. Our study emphasizes that skin pigmentation is not only impacted by genetic factors but also by the gut microbiome. Meanwhile, the gut microbiome's adaptability can be rapidly shaped and may be driven by specific single-gene variations.
Collapse
Affiliation(s)
- Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Dong
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Talukder P, Chanda S, Chaudhuri B, Choudhury SR, Saha D, Dash S, Banerjee A, Chatterjee B. CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer. Appl Biochem Biotechnol 2024; 196:4439-4456. [PMID: 37737443 DOI: 10.1007/s12010-023-04708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The development and emergence of clustered regularly interspaced short palindromic repeats (CRISPR) as a genome-editing technology have created a plethora of opportunities in genetic engineering. The ability of sequence-specific addition or removal of DNA in an efficient and cost-effective manner has revolutionized modern research in the field of life science and healthcare. CRISPR is widely used as a genome engineering tool in clinical studies for observing gene expression and metabolic pathway regulations in detail. Even in the case of transgenic research and personalized gene manipulation studies, CRISPR-based technology is used extensively. To understand and even to correct the underlying genetic problem is of cancer, CRISPR-based technology can be used. Various kinds of work is going on throughout the world which are attempting to target different genes in order to discover novel and effective methodologies for the treatment of cancer. In this review, we provide a brief overview on the application of CRISPR gene editing technology in cancer treatment focusing on the key aspects of cancer screening, modelling and therapy techniques.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India.
| | - Sounak Chanda
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | - Biswadeep Chaudhuri
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | | | - Debanjan Saha
- School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632014, India
| | - Sudipta Dash
- Department of Biotechnology, IIT, Kharagpur, West Bengal, 721302, India
| | - Abhineet Banerjee
- Department of Biotechnology, NIT, Durgapur, West Bengal, 713209, India
| | | |
Collapse
|
3
|
Liu N, Qin L, Zeng H, Wen A, Miao S. Integrative proteomic-transcriptomic analysis revealed the lifestyles of Lactobacillus paracasei H4-11 and Kluyveromyces marxianus L1-1 under co-cultivation conditions. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Abedin MM, Chourasia R, Phukon LC, Sarkar P, Ray RC, Singh SP, Rai AK. Lactic acid bacteria in the functional food industry: biotechnological properties and potential applications. Crit Rev Food Sci Nutr 2023; 64:10730-10748. [PMID: 37405373 DOI: 10.1080/10408398.2023.2227896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and β-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.
Collapse
Affiliation(s)
- Md Minhajul Abedin
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Puja Sarkar
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Ramesh C Ray
- Centre for Food Biology and Environment Studies, Bhubaneswar, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
5
|
Abstract
Our current food system relies on unsustainable practices, which often fail to provide healthy diets to a growing population. Therefore, there is an urgent demand for new sustainable nutrition sources and processes. Microorganisms have gained attention as a new food source solution, due to their low carbon footprint, low reliance on land, water and seasonal variations coupled with a favourable nutritional profile. Furthermore, with the emergence and use of new tools, specifically in synthetic biology, the uses of microorganisms have expanded showing great potential to fulfil many of our dietary needs. In this review, we look at the different applications of microorganisms in food, and examine the history, state-of-the-art and potential to disrupt current foods systems. We cover both the use of microbes to produce whole foods out of their biomass and as cell factories to make highly functional and nutritional ingredients. The technical, economical, and societal limitations are also discussed together with the current and future perspectives.
Collapse
Affiliation(s)
- Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Wen L, Yang L, Chen C, Li J, Fu J, Liu G, Kan Q, Ho CT, Huang Q, Lan Y, Cao Y. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit Rev Food Sci Nutr 2023; 64:8367-8383. [PMID: 37068005 DOI: 10.1080/10408398.2023.2199425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Aman Mohammadi M, Maximiano MR, Hosseini SM, Franco OL. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess Biosyst Eng 2023; 46:483-497. [PMID: 36707422 DOI: 10.1007/s00449-022-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023]
Abstract
The developments in the food supply chain to support the growing population of the world is one of today's most pressing issues, and to achieve this goal improvements should be performed in both crops and microbes. For this purpose, novel approaches such as genome editing (GE) methods have upgraded the biological sciences for genome manipulation and, among such methods, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are the main exciting innovations since the Green Revolution. CRISPR/Cas systems can be a potent tool for the food industry, improvement of agricultural crops and even for protecting food-grade bacteria from foreign genetic invasive elements. This review introduces the history and mechanism of the CRISPR-Cas system as a genome editing tool and its applications in the vaccination of starter cultures, production of antimicrobials and bioactive compounds, and genome editing of microorganisms.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Octavio Luiz Franco
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
8
|
Chavan AR, Singh AK, Gupta RK, Nakhate SP, Poddar BJ, Gujar VV, Purohit HJ, Khardenavis AA. Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential. Biotechnol Genet Eng Rev 2023:1-46. [PMID: 36714949 DOI: 10.1080/02648725.2022.2152627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023]
Abstract
Prebiotics as a part of dietary nutrition can play a crucial role in structuring the composition and metabolic function of intestinal microbiota and can thus help in managing a clinical scenario by preventing diseases and/or improving health. Among the different prebiotics, non-digestible carbohydrates are molecules that selectively enrich a typical class of bacteria with probiotic potential. This review summarizes the current knowledge about the different aspects of prebiotics, such as its production, characterization and purification by various techniques, and its link to novel product development at an industrial scale for wide-scale use in diverse range of health management applications. Furthermore, the path to effective valorization of agricultural residues in prebiotic production has been elucidated. This review also discusses the recent developments in application of genomic tools in the area of prebiotics for providing new insights into the taxonomic characterization of gut microorganisms, and exploring their functional metabolic pathways for enzyme synthesis. However, the information regarding the cumulative effect of prebiotics with beneficial bacteria, their colonization and its direct influence through altered metabolic profile is still getting established. The future of this area lies in the designing of clinical condition specific functional foods taking into consideration the host genotypes, thus facilitating the creation of balanced and required metabolome and enabling to maintain the healthy status of the host.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaibhav Vilasrao Gujar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- JoVE, Mumbai, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Van der Veken D, Leroy F. Prospects for the applicability of coagulase-negative cocci in fermented-meat products using omics approaches. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Jiang N, Wu R, Wu C, Wang R, Wu J, Shi H. Multi-omics approaches to elucidate the role of interactions between microbial communities in cheese flavor and quality. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2070199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P. R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
11
|
Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, Naseem W, Nasir N, Waheed HM. An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications. Mol Biotechnol 2022; 65:227-242. [PMID: 35474409 PMCID: PMC9041284 DOI: 10.1007/s12033-022-00501-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/13/2022] [Indexed: 01/18/2023]
Abstract
Genome-editing technology has enabled scientists to make changes in model organisms' DNA at the genomic level to get biotechnologically important products from them. Most commonly employed technologies for this purpose are transcription activator like effector nucleases (TALENs), homing-endonucleases or meganucleases, zinc finger nucleases (ZFNs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9). Among these tools, CRISPR/Cas9 is most preferred because it's easy to use, has a small mutation rate, has great effectiveness, low cost of development, and decreased rate of advancement. CRISPR/Cas9 has a lot of applications in plants, animals, humans, and microbes. It also has applications in many fields such as horticulture, cancer, food biotechnology, and targeted human genome treatments. CRISPR technology has shown great potential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic to provide early and easy detection methods, possible treatment, and vaccine development. In the present review, genome-editing tools with their basic assembly and features have been discussed. Exceptional notice has been paid to CRISPR technology on basis of its structure and significant applications in humans, plants, animals, and microbes such as bacteria, viruses, and fungi. The review has also shed a little light on current CRISPR challenges and future perspectives.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Farheen Aamir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan ,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Memoona Imtiaz
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Hafiza Mariam Waheed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| |
Collapse
|
12
|
Mass spectrometry imaging and its potential in food microbiology. Int J Food Microbiol 2022; 371:109675. [DOI: 10.1016/j.ijfoodmicro.2022.109675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
13
|
Sun Y, Li J, Zhu L, Jiang L. Cooperation and competition between CRISPR- and omics-based technologies in foodborne pathogens detection: a state of the art review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
|
15
|
Zhou W, Yuan Y, Zhang Y, Chen D. A Decade of CRISPR Gene Editing in China and Beyond: A Scientometric Landscape. CRISPR J 2021; 4:313-320. [PMID: 34152220 DOI: 10.1089/crispr.2020.0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Since its Nobel Prize-winning breakthrough in 2012, CRISPR-Cas-based gene-editing system has emerged as one of the most promising biotechnologies in decades. In this article, we present an objective and comprehensive evaluation of CRISPR-based gene-editing technologies, including base editing and prime editing, based on the bibliometric analysis of 22,902 published records. We also assessed the status of CRISPR gene-editing technologies in academia from 2010 to 2020 globally, with respect to countries, institutions, and researchers, and used text clustering methods to assess technical trends and research hotspots. Our results indicate, not surprisingly, that this is a thriving and prominent area of research. By comparing the relevance and growth of CRISPR gene-editing technologies in China with other countries by several metrics, we show that the Chinese scientific community attaches considerable importance to the field of plant genome engineering, with more scholars from agricultural sectors than other sectors.
Collapse
Affiliation(s)
- Wuyuan Zhou
- Zhejiang Academy of Science and Technology Information, Hangzhou, China; and Hangzhou, China
| | - Yajun Yuan
- Zhejiang Academy of Science and Technology Information, Hangzhou, China; and Hangzhou, China
| | | | - Deng Chen
- Zhejiang Academy of Science and Technology Information, Hangzhou, China; and Hangzhou, China
| |
Collapse
|
16
|
Amer B, Baidoo EEK. Omics-Driven Biotechnology for Industrial Applications. Front Bioeng Biotechnol 2021; 9:613307. [PMID: 33708762 PMCID: PMC7940536 DOI: 10.3389/fbioe.2021.613307] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomanufacturing is a key component of biotechnology that uses biological systems to produce bioproducts of commercial relevance, which are of great interest to the energy, material, pharmaceutical, food, and agriculture industries. Biotechnology-based approaches, such as synthetic biology and metabolic engineering are heavily reliant on "omics" driven systems biology to characterize and understand metabolic networks. Knowledge gained from systems biology experiments aid the development of synthetic biology tools and the advancement of metabolic engineering studies toward establishing robust industrial biomanufacturing platforms. In this review, we discuss recent advances in "omics" technologies, compare the pros and cons of the different "omics" technologies, and discuss the necessary requirements for carrying out multi-omics experiments. We highlight the influence of "omics" technologies on the production of biofuels and bioproducts by metabolic engineering. Finally, we discuss the application of "omics" technologies to agricultural and food biotechnology, and review the impact of "omics" on current COVID-19 research.
Collapse
Affiliation(s)
- Bashar Amer
- Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Edward E. K. Baidoo
- Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- U.S. Department of Energy, Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
17
|
Shami A, Mostafa M, Abd-Elsalam KA. CRISPR applications in plant bacteriology: today and future perspectives. CRISPR AND RNAI SYSTEMS 2021:551-577. [DOI: 10.1016/b978-0-12-821910-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
19
|
Morovic W, Budinoff CR. Epigenetics: A New Frontier in Probiotic Research. Trends Microbiol 2020; 29:117-126. [PMID: 32409146 DOI: 10.1016/j.tim.2020.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Research into the benefits of probiotics has progressed beyond interventional studies to identifying the underlying molecular mechanisms. Health-promoting effector molecules produced by probiotics are well documented and have been linked to specific genes and even individual nucleotides. However, the factors controlling the expression of these molecules are poorly understood and we argue that epigenetic influences likely play an important role in mediating the health-promoting attributes of probiotics. Here, we review established epigenetic regulation of important microbial genetic systems involved in health promotion, safety, and industrialization to provide evidence that the same regulation occurs in probiotic organisms. We advocate for studies combining genomic and meta-epigenomic data to better understand the mode of action of probiotics, their associated microbiomes, and their effects on consumers.
Collapse
|