1
|
Das J, Ghosh S, Tyagi K, Sahoo D, Jha G. Methionine biosynthetic genes and methionine sulfoxide reductase A are required for Rhizoctonia solani AG1-IA to cause sheath blight disease in rice. Microb Biotechnol 2024; 17:e14441. [PMID: 38568774 PMCID: PMC10990046 DOI: 10.1111/1751-7915.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.
Collapse
Affiliation(s)
- Joyati Das
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Srayan Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
- Department of BiosciencesDurham UniversityDurhamUK
| | - Kriti Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Debashis Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| | - Gopaljee Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew DelhiIndia
| |
Collapse
|
2
|
Chandan RK, Kumar R, Kabyashree K, Yadav SK, Roy M, Swain DM, Jha G. A prophage tail-like protein facilitates the endophytic growth of Burkholderia gladioli and mounting immunity in tomato. THE NEW PHYTOLOGIST 2023; 240:1202-1218. [PMID: 37559429 DOI: 10.1111/nph.19184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
A prophage tail-like protein (Bg_9562) of Burkholderia gladioli strain NGJ1 possesses broad-spectrum antifungal activity, and it is required for the bacterial ability to forage over fungi. Here, we analyzed whether heterologous overexpression of Bg_9562 or exogenous treatment with purified protein can impart disease tolerance in tomato. The physiological relevance of Bg_9562 during endophytic growth of NGJ1 was also investigated. Bg_9562 overexpressing lines demonstrate fungal and bacterial disease tolerance. They exhibit enhanced expression of defense genes and activation of mitogen-activated protein kinases. Treatment with Bg_9562 protein induces defense responses and imparts immunity in wild-type tomato. The defense-inducing ability lies within 18-51 aa region of Bg_9562 and is due to sequence homology with the bacterial flagellin epitope. Interaction studies suggest that Bg_9562 is perceived by FLAGELLIN-SENSING 2 homologs in tomato. The silencing of SlSERK3s (BAK1 homologs) prevents Bg_9562-triggered immunity. Moreover, type III secretion system-dependent translocation of Bg_9562 into host apoplast is important for elicitation of immune responses during colonization of NGJ1. Our study emphasizes that Bg_9562 is important for the endophytic growth of B. gladioli, while the plant perceives it as an indirect indicator of the presence of bacteria to mount immune responses. The findings have practical implications for controlling plant diseases.
Collapse
Affiliation(s)
- Ravindra Kumar Chandan
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kristi Kabyashree
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mandira Roy
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Durga Madhab Swain
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
3
|
Wang H, Li Z, Shen L, Zhang P, Lin Y, Huang X, Du S, Liu H. Ketoprofen exposure perturbs nitrogen assimilation and ATP synthesis in rice roots: An integrated metabolome and microbiome analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122485. [PMID: 37659631 DOI: 10.1016/j.envpol.2023.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Ketoprofen, a commonly used non-steroidal anti-inflammatory drug (NSAID), can enter farmland environments via sewage irrigation and manure application and is toxic to plants. However, there have been relatively few studies on the association of ketoprofen with nitrogen (N) assimilation and metabolic responses in plants. Accordingly, the goal of this study was to investigate the effects of ketoprofen on ATP synthesis and N assimilation in rice roots. The results showed that with increasing ketoprofen concentration, root vitality, respiration rate, ATP content, and H+-ATPase activity decreased and plasma membrane permeability increased. The expressions of OSA9, a family III H+-ATPase gene, and OSA6 and OSA10, family IV genes, were upregulated, indicating a response of the roots to ketoprofen. Nitrate, ammonium, and free amino acids content decreased with increased ketoprofen. The levels of enzymes involved in N metabolism, namely nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthetase, and glutamate dehydrogenase, also decreased under ketoprofen treatment. Principal component analysis revealed that ketoprofen treatment can significantly affect energy synthesis and nitrogen assimilation in rice roots, while these effects can be alleviated by the antioxidant response. Most of the metabolite contents increased, including amino acids, carbohydrates, and secondary metabolites. Key metabolic pathways, namely substance synthesis and energy metabolism, were found to be disrupted. Microbiome analysis showed that community diversity and richness of rice root microorganisms in solution increased with increasing levels of ketoprofen treatment, and the microbial community structure and metabolic pathways significantly changed. The results of this study provides new insights into the response of rice roots to ketoprofen.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Yanyao Lin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
4
|
Yang Q, Zhang X, Solairaj D, Lin R, Wang K, Zhang H. TMT-Based Proteomic Analysis of Hannaella sinensis-Induced Apple Resistance-Related Proteins. Foods 2023; 12:2637. [PMID: 37509729 PMCID: PMC10378395 DOI: 10.3390/foods12142637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Studies on the molecular mechanism of antagonistic yeasts to control apple postharvest diseases are not comprehensive enough. Our preliminary investigations screened the biocontrol effect of Hannaella sinensis, an antagonistic yeast, and discovered its control efficacy on apple blue mold decay. However, the molecular mechanism of H. sinensis-induced resistance in apple has not been studied. In this study, proteins from apple treated with H. sinensis and sterile saline were analyzed using TMT proteomics technology. It was found that H. sinensis treatment induced the expressions of apple resistance-related proteins. Among the proteins in H. sinensis-induced apple, proteins related to plant defense mechanisms, such as reactive oxygen species scavenging, improvement of plant resistance and synthesis of resistant substances, improvement of plant disease resistance, the degradation of the pathogen cell wall, cell signaling, antibacterial activity, transport of defense-related substances, and protein processing, were differentially regulated. The results of this study revealed the underlying molecular mechanisms of H. sinensis-induced apple resistance at the protein level; the results also provided a theoretical basis for the commercial application of H. sinensis.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dhanasekaran Solairaj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rouling Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Ghosh S, Jha G. Editorial: Utilization of microbiome to develop disease resistance in crop plants against phytopathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1204896. [PMID: 37304723 PMCID: PMC10250699 DOI: 10.3389/fpls.2023.1204896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Srayan Ghosh
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Gopaljee Jha
- Plant-microbe interactions lab, National Institute of Plant Genome Research, Delhi, India
| |
Collapse
|
6
|
The effect of Nano-calcium carbonate on β-glucosidase immobilized by alginate and chitosan. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
7
|
Hernandez-Montiel LG, Droby S, Preciado-Rangel P, Rivas-García T, González-Estrada RR, Gutiérrez-Martínez P, Ávila-Quezada GD. A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122641. [PMID: 34961112 PMCID: PMC8708500 DOI: 10.3390/plants10122641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 05/06/2023]
Abstract
Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global production. Phytopathogens control is performed with synthetic fungicides, but the application causes environmental contamination problems and human and animal health in addition to generating resistance. Yeasts are antagonist microorganisms that have been used in the last years as biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application for biocontrol of phytopathogens has been an effective action worldwide. This review explores the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phytopathogens, their relationship with OMIC sciences, and patents at the world level that involve yeast-based-products for their biocontrol.
Collapse
Affiliation(s)
- Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Calle Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro, Km 7.5, Ejido Ana, Torreón 27170, Mexico;
| | - Tomás Rivas-García
- Departamento de Sociología Rural, Universidad Autónoma Chapingo, Carr. Federal México-Texcoco, Km 38.5, San Diego 56230, Mexico;
| | - Ramsés R. González-Estrada
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Porfirio Gutiérrez-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Graciela D. Ávila-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Escorza 900, Col. Centro, Chihuahua 31000, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| |
Collapse
|
8
|
Das J, Kumar R, Yadav SK, Jha G. The alternative sigma factors, rpoN1 and rpoN2 are required for mycophagous activity of Burkholderia gladioli strain NGJ1. Environ Microbiol 2021; 24:2781-2796. [PMID: 34766435 DOI: 10.1111/1462-2920.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Bacteria utilize RpoN, an alternative sigma factor (σ54) to grow in diverse habitats, including nitrogen-limiting conditions. Here, we report that a rice-associated mycophagous bacterium Burkholderia gladioli strain NGJ1 encodes two paralogues of rpoN viz. rpoN1 and rpoN2. Both of them are upregulated during 24 h of mycophagous interaction with Rhizoctonia solani, a polyphagous fungal pathogen. Disruption of either one of rpoNs renders the mutant NGJ1 bacterium defective in mycophagy, whereas ectopic expression of respective rpoN genes restores mycophagy in the complementing strains. NGJ1 requires rpoN1 and rpoN2 for efficient biocontrol to prevent R. solani to establish disease in rice and tomato. Further, we have identified 17 genes having RpoN regulatory motif in NGJ1, majority of them encode potential type III secretion system (T3SS) effectors, nitrogen assimilation, and cellular transport-related functions. Several of these RpoN regulated genes as well as certain previously reported T3SS apparatus (hrcC and hrcN) and effector (Bg_9562 and endo-β-1,3-glucanase) encoding genes are upregulated in NGJ1 but not in ΔrpoN1 or ΔrpoN2 mutant bacterium, during mycophagous interaction with R. solani. This highlights that RpoN1 and RpoN2 modulate T3SS, nitrogen assimilation as well as cellular transport systems in NGJ1 and thereby promote bacterial mycophagy.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
9
|
Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 2021; 22:e51857. [PMID: 33786997 PMCID: PMC8183406 DOI: 10.15252/embr.202051857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Ankita Magotra
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Srayan Ghosh
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Aiswarya Krishnan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Amrita Pradhan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Rahul Kumar
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Joyati Das
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Mamta Sharma
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Gopaljee Jha
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| |
Collapse
|