1
|
Chen L, Deng X, Xie X, Wang K, Chen H, Cen S, Huang F, Wang C, Li Y, Wei C, Qiu G. Candidatus Thiothrix phosphatis SCUT-1: A novel polyphosphate-accumulating organism abundant in the enhanced biological phosphorus removal system. WATER RESEARCH 2024; 267:122479. [PMID: 39369504 DOI: 10.1016/j.watres.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
A novel coccus Thiothrix-related polyphosphate-accumulating organism (PAO) was enriched in an acetate-fed enhanced biological phosphorus removal (EBPR) system. High EBPR performance was achieved for an extended period (>100 days). A high-quality draft genome (completeness 97.2 %, contamination 3.26 %) was retrieved, representing a novel Thiothrix species (with similarity<93.2 % to known Thiothrix species), and was denoted as 'Candidatus Thiothrix phosphatis SCUT-1'. Its acetate uptake rate (6.20 mmol C/g VSS/h) surpassed most Ca. Accumulibacter and known glycogen-accumulating organisms (GAOs), conferring their predominance in the acetate-fed system. Metatranscriptomic analysis suggested that Ca. Thiothrix phosphatis SCUT-1 employed both low- and high-affinity pathways for acetate activation, and both the conventional (PhaABC) pathway and the fatty acid β-oxidation pathway for PHA synthesis; additionally, a much more efficient FAD-dependent malate: quinone oxidoreductase (MQO) were encoded and employed than the traditional malate dehydrogenase (MDH) to oxidize malate to oxaloacetate in the TCA and glyoxylate cycle, collectively contributing to a higher acetate utilization and processing rate of this microorganism. Batch tests further demonstrated the versatile ability of this PAO in using VFA (acetate, propionate, and butyrate), lactate, amino acids (aspartate and glutamate), and glucose as carbon sources for EBPR, showing a partially overlapped but unique ecological niche of this microorganism comparing to Ca. Accumulibacter and known GAOs. A metabolic model was built for Ca. Thiothrix phosphatis SCUT-1 using the above-mentioned carbon sources for EBPR. Overall, this study represents the first comprehensive characterization of the physiology and metabolic characteristics of representative coccus Thiothrix-related PAOs, which are expected to provide new insights into PAO microbiology in EBPR systems.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kaiying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Sheqi Cen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yaqian Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
2
|
Gureeva MV, Muntyan MS, Ravin NV, Grabovich MY. Wastewater Treatment with Bacterial Representatives of the Thiothrix Morphotype. Int J Mol Sci 2024; 25:9093. [PMID: 39201777 PMCID: PMC11355018 DOI: 10.3390/ijms25169093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Bacteria of the Thiothrix morphotype, comprising the genera Thiothrix, Thiolinea and Thiofilum, are frequently encountered in domestic and industrial wastewater treatment systems, but they are usually not clearly differentiated due to the marked similarity in their morphologies. Methods ranging from light microscopy, FISH and PCR to modern high-throughput sequencing are used to identify them. The development of these bacteria in wastewater treatment systems has both advantages and disadvantages. On the one hand, the explosive growth of these bacteria can lead to activated sludge bulking or clogging of the treatment system's membranes, with a consequent decrease in the water treatment efficiency. On the other hand, members of the Thiothrix morphotype can improve the quality of granular sludge and increase the water treatment efficiency. This may be due to their capacity for sulfide oxidation, denitrification combined with the oxidation of reduced sulfur compounds, enhanced biological phosphate removal and possibly denitrifying phosphate removal. The recently obtained pangenome of the genus Thiothrix allows the explanation, at the genomic level, of the experimental results of various studies. Moreover, this review summarizes the data on the factors affecting the proliferation of representatives of the Thiothrix morphotype.
Collapse
Affiliation(s)
- Maria V. Gureeva
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia;
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia;
| | - Margarita Yu. Grabovich
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia;
| |
Collapse
|
3
|
Pincam T, Liu YQ, Booth A, Wang Y, Lan G, Zeng P. A comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge for nutrient removal in full-scale wastewater treatment plants. CHEMOSPHERE 2024; 362:142644. [PMID: 38901698 DOI: 10.1016/j.chemosphere.2024.142644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Understanding the microbial community structure of sludge is crucial for improving the design, operation and optimisation of full-scale wastewater treatment plants (WWTPs). This study aimed to have a comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge from two full-scale sequential batch reactors-based WWTPs with nutrient removal for the first time. To better understand key functional bacteria such as polyphosphate accumulating bacteria (PAOs), competitive bacteria such as glycogen accumulating bacteria (GAOs) and nitrifying bacteria for both nitrogen and phosphorus removal, another two full-scale WWTPs with only carbon (C) removal and C and nitrogen (N) removal were compared too. It was found that the richness and diversity of the microbial population in sludge increased with pollutant removal from only C, C and N, to C,N, P removal. For C, N P removal, granule structure led to a more diverse and rich microbial community structure than flocculent structure. Although more abundant nitrifying bacteria were enriched in granular sludge than flocculent sludge, the abundance of total putative PAOs was equivalent. However, the most typical putative PAOs such as Tetrasphaera and Candidatus Accumulibacter seemed to be more correlated with biological phosphorus removal performance, which might be more proper to be used as an indication for P removal potential. The higher abundance of GAOs in flocculent sludge with better phosphorus removal performance might suggest that further investigation is needed to understand the functions of GAOs. In addition, the equivalent abundances of PAOs in the WWTPs with only C removal and with C, N, and P removal, respectively, indicate that many newly reported putative PAOs might not contribute to P removal. This study provides insight into the microbial communities and functional bacteria in aerobic granular sludge and flocculent sludge in full-scale SBRs, which can provide microbes-informed optimisation of reactor operation for better nutrient removal.
Collapse
Affiliation(s)
- Tararag Pincam
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Alexander Booth
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guihong Lan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University (SWPU), Chengdu, 610500, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Huang J, Xu J, Zhang H, Liu J, He C. Combined Effects of Tetracycline and Copper Ion on Microorganisms During the Biological Phosphorus Removal. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:13. [PMID: 39012472 DOI: 10.1007/s00128-024-03920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Tetracycline and copper ion are common pollutants in wastewater, and the effects of mixed pollutants on microorganisms in wastewater biological treatment have been less studied. In order to reveal the effects of mixed pollutants of tetracycline and copper ion on the microorganisms during the biological phosphorus removal, three ratios of tetracycline and copper ions were designed by the direct equipartition ray method. The relative abundance and diversity of microbial community were investigated, and the microbial interactions were revealed through microbiological methods. The results demonstrated that, for three different ratios, the inhibitory effect of specific phosphorus uptake rate became more significant with the increase of the tetracycline-copper ions concentration and the reaction time. The microbial community decreased with the increase of the proportion of tetracycline in different ratios. The relative abundance of Acinetobacter decreased with the increase of the proportion of tetracycline, while the relative abundance of Ca.Competibacter was higher under the conditions of low mixtures concentrations. Positive interactions and symbiotic relationships among microorganisms were predominant for three different ratios. However, as the proportion of tetracycline increased, the community structure of microorganisms shifted from phosphate-accumulating organisms to glycogen accumulating organisms and denitrifying bacteria. This study can provide a reference for the effect of mixed pollutants on microorganisms and the mechanism of wastewater treatment.
Collapse
Affiliation(s)
- Jian Huang
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China
| | - Junshuai Xu
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
| | - Hua Zhang
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China.
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China.
| | - Jun Liu
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory, Hefei, Anhui, 230601, PR China
| | - Chunhua He
- College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilisation, Hefei, 230601, PR China
- Anhui Institute of Ecological Civilisation, Hefei, 230601, PR China
| |
Collapse
|
5
|
Sheik AG, Krishna SBN, Patnaik R, Ambati SR, Bux F, Kumari S. Digitalization of phosphorous removal process in biological wastewater treatment systems: Challenges, and way forward. ENVIRONMENTAL RESEARCH 2024; 252:119133. [PMID: 38735379 DOI: 10.1016/j.envres.2024.119133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Phosphorus in wastewater poses a significant environmental threat, leading to water pollution and eutrophication. However, it plays a crucial role in the water-energy-resource recovery-environment (WERE) nexus. Recovering Phosphorus from wastewater can close the phosphorus loop, supporting circular economy principles by reusing it as fertilizer or in industrial applications. Despite the recognized importance of phosphorus recovery, there is a lack of analysis of the cyber-physical framework concerning the WERE nexus. Advanced methods like automatic control, optimal process technologies, artificial intelligence (AI), and life cycle assessment (LCA) have emerged to enhance wastewater treatment plants (WWTPs) operations focusing on improving effluent quality, energy efficiency, resource recovery, and reducing greenhouse gas (GHG) emissions. Providing insights into implementing modeling and simulation platforms, control, and optimization systems for Phosphorus recovery in WERE (P-WERE) in WWTPs is extremely important in WWTPs. This review highlights the valuable applications of AI algorithms, such as machine learning, deep learning, and explainable AI, for predicting phosphorus (P) dynamics in WWTPs. It emphasizes the importance of using AI to analyze microbial communities and optimize WWTPs for different various objectives. Additionally, it discusses the benefits of integrating mechanistic and data-driven models into plant-wide frameworks, which can enhance GHG simulation and enable simultaneous nitrogen (N) and Phosphorus (P) removal. The review underscores the significance of prioritizing recovery actions to redirect Phosphorus from effluent to reusable products for future considerations.
Collapse
Affiliation(s)
- Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Reeza Patnaik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Seshagiri Rao Ambati
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
6
|
Xie X, Deng X, Chen L, Yuan J, Chen H, Wei C, Liu X, Wuertz S, Qiu G. Integrated genomics provides insights into the evolution of the polyphosphate accumulation trait of Ca. Accumulibacter. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100353. [PMID: 39221073 PMCID: PMC11361876 DOI: 10.1016/j.ese.2023.100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Candidatus Accumulibacter, a prominent polyphosphate-accumulating organism (PAO) in wastewater treatment, plays a crucial role in enhanced biological phosphorus removal (EBPR). The genetic underpinnings of its polyphosphate accumulation capabilities, however, remain largely unknown. Here, we conducted a comprehensive genomic analysis of Ca. Accumulibacter-PAOs and their relatives within the Rhodocyclaceae family, identifying 124 core genes acquired via horizontal gene transfer (HGT) at its least common ancestor. Metatranscriptomic analysis of an enrichment culture of Ca. Accumulibacter revealed active transcription of 44 of these genes during an EBPR cycle, notably including the polyphosphate kinase 2 (PPK2) gene instead of the commonly recognized polyphosphate kinase 1 (PPK1) gene. Intriguingly, the phosphate regulon (Pho) genes showed minimal transcriptions, pointing to a distinctive fact of Pho dysregulation, where PhoU, the phosphate signaling complex protein, was not regulating the high-affinity phosphate transport (Pst) system, resulting in continuous phosphate uptake. To prevent phosphate toxicity, Ca. Accumulibacter utilized the laterally acquired PPK2 to condense phosphate into polyphosphate, resulting in the polyphosphate-accumulating feature. This study provides novel insights into the evolutionary emergence of the polyphosphate-accumulating trait in Ca. Accumulibacter, offering potential advancements in understanding the PAO phenotype in the EBPR process.
Collapse
Affiliation(s)
- Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
7
|
Zhang Y, Lin X, Xia T, Chen H, Huang F, Wei C, Qiu G. Effects of intensive chlorine disinfection on nitrogen and phosphorus removal in WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170273. [PMID: 38280590 DOI: 10.1016/j.scitotenv.2024.170273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The increased use of disinfection since the pandemic has led to increased effective chlorine concentration in municipal wastewater. Whereas, the specific impacts of active chlorine on nitrogen and phosphorus removal, the mediating communities, and the related metabolic activities in wastewater treatment plants (WWTPs) lack systematic investigation. We systematically analyzed the influences of chlorine disinfection on nitrogen and phosphorus removal activities using activated sludge from five full-scale WWTPs. Results showed that at an active chlorine concentration of 1.0 mg/g-SS, the nitrogen and phosphorus removal systems were not significantly affected. Major effects were observed at 5.0 mg/g-SS, where the nitrogen and phosphorus removal efficiency decreased by 38.9 % and 44.1 %, respectively. At an active chlorine concentration of 10.0 mg/g-SS, the nitrification, denitrification, phosphorus release and uptake activities decreased by 15.1 %, 69.5-95.9 %, 49.6 % and 100 %, respectively. The proportion of dead cells increased by 6.1 folds. Reverse transcriptional quantitative polymerase chain reaction (RT-qPCR) analysis showed remarkable inhibitions on transcriptions of the nitrite oxidoreductase gene (nxrB), the nitrite reductase genes (nirS and nirK), and the nitrite reductase genes (narG). The nitrogen and phosphorus removal activities completely disappeared with an active chlorine concentration of 25.0 mg/g-SS. Results also showed distinct sensitivities of different functional bacteria in the activated sludge. Even different species within the same functional group differ in their susceptibility. This study provides a reference for the understanding of the threshold active chlorine concentration values which may potentially affect biological nitrogen and phosphorus removal in full-scale WWTPs, which are expected to be beneficial for decision-making in WWTPs to counteract the potential impacts of increased active chlorine concentrations in the influent wastewater.
Collapse
Affiliation(s)
- Yixing Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Tang Xia
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
8
|
Stewart RD, Myers KS, Amstadt C, Seib M, McMahon KD, Noguera DR. Refinement of the " Candidatus Accumulibacter" genus based on metagenomic analysis of biological nutrient removal (BNR) pilot-scale plants operated with reduced aeration. mSystems 2024; 9:e0118823. [PMID: 38415636 PMCID: PMC10949500 DOI: 10.1128/msystems.01188-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Members of the "Candidatus Accumulibacter" genus are widely studied as key polyphosphate-accumulating organisms (PAOs) in biological nutrient removal (BNR) facilities performing enhanced biological phosphorus removal (EBPR). This diverse lineage includes 18 "Ca. Accumulibacter" species, which have been proposed based on the phylogenetic divergence of the polyphosphate kinase 1 (ppk1) gene and genome-scale comparisons of metagenome-assembled genomes (MAGs). Phylogenetic classification based on the 16S rRNA genetic marker has been difficult to attain because most "Ca. Accumulibacter" MAGs are incomplete and often do not include the rRNA operon. Here, we investigate the "Ca. Accumulibacter" diversity in pilot-scale treatment trains performing BNR under low dissolved oxygen (DO) conditions using genome-resolved metagenomics. Using long-read sequencing, we recovered medium- and high-quality MAGs for 5 of the 18 "Ca. Accumulibacter" species, all with rRNA operons assembled, which allowed a reassessment of the 16S rRNA-based phylogeny of this genus and an analysis of phylogeny based on the 23S rRNA gene. In addition, we recovered a cluster of MAGs that based on 16S rRNA, 23S rRNA, ppk1, and genome-scale phylogenetic analyses do not belong to any of the currently recognized "Ca. Accumulibacter" species for which we propose the new species designation "Ca. Accumulibacter jenkinsii" sp. nov. Relative abundance evaluations of the genus across all pilot plant operations revealed that regardless of the operational mode, "Ca. A. necessarius" and "Ca. A. propinquus" accounted for more than 40% of the "Ca. Accumulibacter" community, whereas the newly proposed "Ca. A. jenkinsii" accounted for about 5% of the "Ca. Accumulibacter" community.IMPORTANCEOne of the main drivers of energy use and operational costs in activated sludge processes is the amount of oxygen provided to enable biological phosphorus and nitrogen removal. Wastewater treatment facilities are increasingly considering reduced aeration to decrease energy consumption, and whereas successful BNR has been demonstrated in systems with minimal aeration, an adequate understanding of the microbial communities that facilitate nutrient removal under these conditions is still lacking. In this study, we used genome-resolved metagenomics to evaluate the diversity of the "Candidatus Accumulibacter" genus in pilot-scale plants operating with minimal aeration. We identified the "Ca. Accumulibacter" species enriched under these conditions, including one novel species for which we propose "Ca. Accumulibacter jenkinsii" sp. nov. as its designation. Furthermore, the MAGs obtained for five additional "Ca. Accumulibacter" species further refine the phylogeny of the "Ca. Accumulibacter" genus and provide new insight into its diversity within unconventional biological nutrient removal systems.
Collapse
Affiliation(s)
- Rachel D. Stewart
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carly Amstadt
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matt Seib
- Madison Metropolitan Sewerage District, Madison, Wisconsin, USA
| | - Katherine D. McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Bai M, Zhao W, Wang Y, Bi X, Su S, Qiu H, Gao Z. Towards low carbon demand and highly efficient nutrient removal: Establishing denitrifying phosphorus removal in anaerobic/anoxic/oxic + nitrification system. BIORESOURCE TECHNOLOGY 2024; 395:130385. [PMID: 38281549 DOI: 10.1016/j.biortech.2024.130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
A two-sludge anaerobic/anoxic/oxic + nitrification system with simultaneous nitrogen and phosphorus removal was studied for enhanced low-strength wastewater treatment. After 158 days of operation, excellent NH4+-N, chemical oxygen demand (COD) and PO43--P removal (99.0 %, 90.0 % and 92.0 %, respectively) were attained under a low carbon/nitrogen ratio of 5, resulting in effluent NH4+-N, COD and PO43--P concentrations of 0.3, 30.0 and 0.5 mg/L, respectively. The results demonstrate that the anaerobic/anoxic/oxic sequencing batch reactor (A2-SBR) and nitrification sequencing batch reactor (N-SBR) had favorable denitrifying phosphorus removal and nitrification performance, respectively. High-throughput sequencing results indicate that the phosphate-accumulating organisms Dechloromonas (1.1 %) and Tetrasphaera (1.2 %) were enriched in the A2-SBR, while the ammonia-oxidizing bacteria Nitrosomonas (7.8 %) and the nitrite-oxidizing bacteria Nitrospira (18.1 %) showed excellent accumulation in the N-SBR. Further analysis via functional prediction revealed that denitrification is the primary pathway of nitrogen metabolism throughout the system. Overall, the system achieved low carbon and high efficiency nutrient removal.
Collapse
Affiliation(s)
- Meng Bai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Weihua Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China.
| | - Yanyan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Shaoqing Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Haojie Qiu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Zhongxiu Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| |
Collapse
|
10
|
Wan J, Zhang Z, Li P, Ma Y, Li H, Guo Q, Wang Y, Dagot C. Simultaneous nitrogen and phosphorus removal through an integrated partial-denitrification/anammox process in a single UAFB system. CHEMOSPHERE 2024; 350:141040. [PMID: 38145846 DOI: 10.1016/j.chemosphere.2023.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
With the aim of obtaining enhanced nitrogen removal and phosphate recovery in mainstream sewage, we examined an integrated partial-denitrification/anaerobic ammonia oxidation (PD/A) process over a period of 189 days to accomplish this goal. An up-flow anaerobic fixed-bed reactor (UAFB) used in the integrated PD/A process was started up with anammox sludge inoculated and the influent composition controlled. Results showed that the system achieved a phosphorus removal efficiency of 82% when the influent concentration reached 12.0 mg/L. Batch tests demonstrated that stable and efficient removal of chemical oxygen demand (COD), nitrogen, and phosphorus was achieved at a COD/NO3--N ratio of 3.5. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis indicated that hydroxyapatite was the main crystal in the biofilm. Furthermore, substrate variation along the axial length of UAFB indicated that partial denitrification and anammox primarily took place near the reactor's bottom. According to a microbiological examination, 0.4% of the PD/A process's microorganisms were anaerobic ammonia oxidizing bacteria (AnAOB). Ca. Brocadia, Ca. Kuenenia, and Ca. Jettenia served as the principal AnAOB generals in the system. Thauera, Candidatus Accumulibacter, Pseudomonas, and Acinetobacter, which together accounted for 27% of the denitrifying and phosphorus-accumulating bacteria, were helpful in advanced nutrient removal. Therefore, the combined PD/A process can be a different option in the future for sewage treatment to achieve contemporaneous nutrient removal.
Collapse
Affiliation(s)
- Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China.
| | - Zixuan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Pei Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yifei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China
| | - Qiong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China.
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China
| | - Christophe Dagot
- GRESE EA 4330, Université de Limoges, 123 Avenue Albert Thomas, F-87060, Limoges, Cedex, France; INSERM, U1092, Limoges, France
| |
Collapse
|
11
|
Yuan J, Deng X, Xie X, Chen L, Wei C, Feng C, Qiu G. Blind spots of universal primers and specific FISH probes for functional microbe and community characterization in EBPR systems. ISME COMMUNICATIONS 2024; 4:ycae011. [PMID: 38524765 PMCID: PMC10958769 DOI: 10.1093/ismeco/ycae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing are commonly used for microbial ecological analyses in biological enhanced phosphorus removal (EBPR) systems, the successful application of which was governed by the oligonucleotides used. We performed a systemic evaluation of commonly used probes/primers for known polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). Most FISH probes showed blind spots and covered nontarget bacterial groups. Ca. Competibacter probes showed promising coverage and specificity. Those for Ca. Accumulibacter are desirable in coverage but targeted out-group bacteria, including Ca. Competibacter, Thauera, Dechlorosoma, and some polyphosphate-accumulating Cyanobacteria. Defluviicoccus probes are good in specificity but poor in coverage. Probes targeting Tetrasphaera or Dechloromonas showed low coverage and specificity. Specifically, DEMEF455, Bet135, and Dech453 for Dechloromonas covered Ca. Accumulibacter. Special attentions are needed when using these probes to resolve the PAO/GAO phenotype of Dechloromonas. Most species-specific probes for Ca. Accumulibacter, Ca. Lutibacillus, Ca. Phosphoribacter, and Tetrasphaera are highly specific. Overall, 1.4% Ca. Accumulibacter, 9.6% Ca. Competibacter, 43.3% Defluviicoccus, and 54.0% Dechloromonas in the MiDAS database were not covered by existing FISH probes. Different 16S rRNA amplicon primer sets showed distinct coverage of known PAOs and GAOs. None of them covered all members. Overall, 520F-802R and 515F-926R showed the most balanced coverage. All primers showed extremely low coverage of Microlunatus (<36.0%), implying their probably overlooked roles in EBPR systems. A clear understanding of the strength and weaknesses of each probe and primer set is a premise for rational evaluation and interpretation of obtained community results.
Collapse
Affiliation(s)
- Jing Yuan
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| |
Collapse
|
12
|
Chen L, Wei G, Zhang Y, Wang K, Wang C, Deng X, Li Y, Xie X, Chen J, Huang F, Chen H, Zhang B, Wei C, Qiu G. Candidatus Accumulibacter use fermentation products for enhanced biological phosphorus removal. WATER RESEARCH 2023; 246:120713. [PMID: 37839225 DOI: 10.1016/j.watres.2023.120713] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kaiying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yaqian Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Wang Z, Song W, Zhang X, Zheng M, Li H, Yu K, Guo F. Expanding the Diversity of Accumulibacter with a Novel Type and Deciphering the Transcriptional and Morphological Features among Co-Occurring Strains. Appl Environ Microbiol 2023; 89:e0077123. [PMID: 37466435 PMCID: PMC10467341 DOI: 10.1128/aem.00771-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
"Candidatus Accumulibacter" is the major polyphosphate-accumulating organism (PAO) in global wastewater treatment systems, and its phylogenetic and functional diversity have expanded in recent years. In addition to the widely recognized type I and II sublineages, we discovered a novel type enriched in laboratory bioreactors. Core gene and machine learning-based gene feature profiling supported the assertion that type III "Ca. Accumulibacter" is a potential PAO with the unique function of using dimethyl sulfoxide as an electron acceptor. Based on the correlation between ppk1 and genome similarity, the species-level richness of Accumulibacter was estimated to be over 100, suggesting that the currently recognized species are only the tip of the iceberg. Meanwhile, the interstrain transcriptional and morphological features of multiple "Ca. Accumulibacter" strains co-occurring in a bioreactor were investigated. Metatranscriptomics of seven co-occurring strains indicated that the expression level and interphasic dynamics of PAO phenotype-related genes had minimal correlation with their phylogeny. In particular, the expression of denitrifying and polyphosphate (poly-P) metabolism genes exhibited higher interstrain and interphasic divergence than expression of glycogen and polyhydroxyalkanoate metabolic genes. A strategy of cloning rRNA genes from different strains based on similar genomic synteny was successfully applied to differentiate their morphology via fluorescence in situ hybridization. Our study further expands the phylogenetic and functional diversity of "Ca. Accumulibacter" and proposes that deciphering the function and capability of certain "Ca. Accumulibacter" should be tailored to the environment and population in question. IMPORTANCE In the last 2 decades, "Ca. Accumulibacter" has garnered significant attention as the core functional but uncultured taxon for enhanced biological phosphorus removal due to its phylogenetic and functional diversity and intragenus niche differentiation. Since 2002, it has been widely known that this genus has two sublineages (type I and II). However, in this study, a metagenomic approach led to the discovery of a novel type (type III) with proposed novel functional features. By comparing the average nucleotide identity of "Ca. Accumulibacter" genomes and the similarity of ppk1, a phylogenetic biomarker largely deposited in databases, the global species-level richness of "Ca. Accumulibacter" was estimated for the first time to be over 100. Furthermore, we observed the co-occurrence of multiple "Ca. Accumulibacter" strains in a single bioreactor and found the simultaneous transcriptional divergence of these strains intriguing with regard to their niche differentiation within a single community. Our results indicated a decoupling feature between transcriptional pattern and phylogeny for co-occurring strains.
Collapse
Affiliation(s)
- Zhongjie Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xue Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Minjia Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Feng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
14
|
Chu Z, Wang W, Yin M, Yang Z. Zirconium Component Modified Porous Nanowood for Efficient Removal of Phosphate from Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111807. [PMID: 37299711 DOI: 10.3390/nano13111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Rapid urban industrialization and agricultural production have led to the discharge of excessive phosphate into aquatic systems, resulting in a rise in water pollution. Therefore, there is an urgent need to explore efficient phosphate removal technologies. Herein, a novel phosphate capture nanocomposite (PEI-PW@Zr) with mild preparation conditions, environmental friendliness, recyclability, and high efficiency has been developed by modifying aminated nanowood with a zirconium (Zr) component. The Zr component imparts the ability to capture phosphate to the PEI-PW@Zr, while the porous structure provides a mass transfer channel, resulting in excellent adsorption efficiency. Additionally, the nanocomposite maintains more than 80% phosphate adsorption efficiency even after ten adsorption-desorption cycles, indicating its recyclability and potential for repeated use. This compressible nanocomposite provides novel insights into the design of efficient phosphate removal cleaners and offers potential approaches for the functionalization of biomass-based composites.
Collapse
Affiliation(s)
- Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Mengping Yin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Cao Y, Wu X, Li B, Tang X, Lin X, Li P, Chen H, Huang F, Wei C, Wei J, Qiu G. Ca-La layered double hydroxide (LDH) for selective and efficient removal of phosphate from wastewater. CHEMOSPHERE 2023; 325:138378. [PMID: 36906008 DOI: 10.1016/j.chemosphere.2023.138378] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Adsorption showed advantages in removing phosphorus (P) at low concentrations. Desirable adsorbents should have sufficiently high adsorption capacity and selectivity. In this study, a Ca-La layered double hydroxide (LDH) was synthesized for the first time by using a simple hydrothermal coprecipitation method for phosphate removal from wastewater. A maximum adsorption capacity of 194.04 mgP/g was achieved, ranking on the top of known LDHs. Adsorption kinetic experiments showed that 0.02 g/L Ca-La LDH could effectively reduce PO43-P from 1.0 to <0.02 mg/L within 30 min. With the copresence of bicarbonate and sulfate at concentrations 17.1 and 35.7 times of that of PO43-P, the Ca-La LDH showed promising selectivity towards phosphate (with a reduction in the adsorption capacity of <13.6%). In addition, four other (Mg-La, Co-La, Ni-La, and Cu-La) LDHs containing different divalent metal ions were synthesized by using the same coprecipitation method. Results showed much higher P adsorption performance of the Ca-La LDH than those LDHs. Field Emission Electron Microscopy (FE-SEM)-Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and mesoporous analysis were performed to characterize and compare the adsorption mechanisms of different LDHs. The high adsorption capacity and selectivity of the Ca-La LDH were mainly explained by selective chemical adsorption, ion exchange, and inner sphere complexation.
Collapse
Affiliation(s)
- Yuhang Cao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuewei Wu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Pengfei Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Zhao B, Yang Y, Zhao C, Zhang C, Zhang Z, Wang L, Wang S, Wang J. Exploration of the metabolic flexibility of glycogen accumulating organisms through metatranscriptome analysis and metabolic characterization. J Environ Sci (China) 2023; 126:234-248. [PMID: 36503752 DOI: 10.1016/j.jes.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 06/17/2023]
Abstract
Glycogen accumulating organisms (GAOs) are closely related to the deterioration of enhanced biological phosphorus removal systems. However, the metabolic mechanisms that drive GAOs remain unclear. Here, the two-thirds supernatant of a reactor were decanted following the anaerobic period to enrich GAOs. Long-term monitoring demonstrated that the system was stable and exhibited typical characteristics of GAOs metabolism. Acetate was completely consumed after 60 min of the anaerobic phase. The level of glycogen decreased from 0.20 to 0.14 g/gSS during the anaerobic phase, whereas the level of glycogen significantly increased to 0.21g/gSS at the end of the aerobic period. Moreover, there was almost no phosphate release and absorption in the complete periods, thus confirming the successful construction of a GAOs enrichment system. Microbial community analysis demonstrated that Ca. Contendobacter was among the core functional genera and showed the highest activity among all of the communities. Furthermore, our study is the first to identify the involvement of the ethyl-malonyl-CoA pathway in the synthesis of polyhydroxyvalerate via croR, ccr, ecm, mcd, mch and mcl genes. The Embden-Meyerhof-Parnas (EMP) pathway was preferentially used via glgP. Furthermore, the glyoxylate cycle was the main source of ATP under anaerobic conditions, whereas the tricarboxylic acid cycle provided ATP under aerobic conditions. aceA and mdh appeared to be major modulators of the glyoxylate pathway for controlling energy flow. Collectively, our findings not only revealed the crucial metabolic mechanisms in a GAOs enrichment system but also provided insights into the potential application of Ca. Contendobacter for wastewater treatment.
Collapse
Affiliation(s)
- Bin Zhao
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Yanping Yang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Chunchun Zhang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Zhaohui Zhang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Liang Wang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China.
| |
Collapse
|
17
|
Zhang C, Guisasola A, Baeza JA. Exploring the stability of an A-stage-EBPR system for simultaneous biological removal of organic matter and phosphorus. CHEMOSPHERE 2023; 313:137576. [PMID: 36529170 DOI: 10.1016/j.chemosphere.2022.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This work evaluates the performance and stability of a continuous anaerobic/aerobic A-stage system with integrated enhanced biological phosphorus removal (A-stage-EBPR) under different operational conditions. Dissolved oxygen (DO) in the aerobic reactor was tested in the 0.2-2 mgDO/L range using real wastewater amended with propionic acid, obtaining almost full simultaneous COD and P removal without nitrification in the range 0.5-1 mgDO/L, but failing at 0.2 mgDO/L. Anaerobic purge was tested to evaluate a possible mainstream P-recovery strategy, generating a P-enriched stream containing 22% of influent P. COD and N mass balances indicated that about 43% of the influent COD could be redirected to the anaerobic digestion for methane production and 66% of influent NH4+-N was discharged in the effluent for the following N-removal B-stage. Finally, when the system was switched to glutamate as sole carbon source, successful EBPR activity and COD removal were maintained for two months, but after this period settleability problems appeared with biomass loss. Microbial community analysis indicated that Propionivibrio, Thiothrix and Lewinella were the most abundant species when propionic acid was the carbon source and Propionivibrio was the most favoured with glutamate. Thiothrix, Hydrogenophaga, Dechloromonas and Desulfobacter appeared as the dominant polyphosphate-accumulating organisms (PAOs) under different operation stages.
Collapse
Affiliation(s)
- Congcong Zhang
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
18
|
Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. Enhanced Bio-P removal: Past, present, and future - A comprehensive review. CHEMOSPHERE 2022; 309:136518. [PMID: 36191763 DOI: 10.1016/j.chemosphere.2022.136518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brendan Mackey
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland Springfield, Queensland, 4350, Australia.
| | - Jyoti Kainthola
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India, 500043
| | - Phil Heck
- Central Valley Water Reclamation Facility, Salt Lake City, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
19
|
Enhanced phosphate removal by coral reef-like flocs: Coagulation performance and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Pelevina AV, Berestovskaya YY, Grachev VA, Dorofeev AG, Slatinskaya OV, Maksimov GV, Kallistova AY, Nikolaev YA, Grouzdev EV, Ravin NV, Pimenov NV, Mardanov AV. A Phosphate-Accumulating Microbial Community in the Laboratory Bioreactor Predominated by “Candidatus Accumulibacter”. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722800232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 53:1148-1172. [PMID: 37090929 PMCID: PMC10116781 DOI: 10.1080/10643389.2022.2128194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Collapse
Affiliation(s)
- Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, Florida, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
23
|
Reevaluation of the Phylogenetic Diversity and Global Distribution of the Genus " Candidatus Accumulibacter". mSystems 2022; 7:e0001622. [PMID: 35467400 PMCID: PMC9238405 DOI: 10.1128/msystems.00016-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
“Candidatus Accumulibacter” was the first microorganism identified as a polyphosphate-accumulating organism (PAO) important for phosphorus removal from wastewater. Members of this genus are diverse, and the current phylogeny and taxonomic framework appear complicated, with most publicly available genomes classified as “Candidatus Accumulibacter phosphatis,” despite notable phylogenetic divergence. The ppk1 marker gene allows for a finer-scale differentiation into different “types” and “clades”; nevertheless, taxonomic assignments remain inconsistent across studies. Therefore, a comprehensive reevaluation is needed to establish a common understanding of this genus, in terms of both naming and basic conserved physiological traits. Here, we provide this reassessment using a comparison of genome, ppk1, and 16S rRNA gene-based approaches from comprehensive data sets. We identified 15 novel species, along with “Candidatus Accumulibacter phosphatis,” “Candidatus Accumulibacter delftensis,” and “Candidatus Accumulibacter aalborgensis.” To compare the species in situ, we designed new species-specific fluorescence in situ hybridization (FISH) probes and revealed their morphology and arrangement in activated sludge. Based on the MiDAS global survey, “Ca. Accumulibacter” species were widespread in wastewater treatment plants (WWTPs) with phosphorus removal, indicating process design as a major driver for their abundance. Genome mining for PAO-related pathways and FISH-Raman microspectroscopy confirmed the potential for PAO metabolism in all “Ca. Accumulibacter” species, with detection in situ of the typical PAO storage polymers. Genome annotation further revealed differences in the nitrate/nitrite reduction pathways. This provides insights into the niche differentiation of these lineages, potentially explaining their coexistence in the same ecosystem while contributing to overall phosphorus and nitrogen removal. IMPORTANCE “Candidatus Accumulibacter” is the most studied PAO, with a primary role in biological nutrient removal. However, the species-level taxonomy of this lineage is convoluted due to the use of different phylogenetic markers or genome sequencing approaches. Here, we redefined the phylogeny of these organisms, proposing a comprehensive approach which could be used to address the classification of other diverse and uncultivated lineages. Using genome-resolved phylogeny, compared to phylogeny based on the 16S rRNA gene and other phylogenetic markers, we obtained a higher-resolution taxonomy and established a common understanding of this genus. Furthermore, genome mining of genes and pathways of interest, validated in situ by application of a new set of FISH probes and Raman microspectroscopy, provided additional high-resolution metabolic insights into these organisms.
Collapse
|
24
|
Qiu G, Law Y, Zuniga-Montanez R, Deng X, Lu Y, Roy S, Thi SS, Hoon HY, Nguyen TQN, Eganathan K, Liu X, Nielsen PH, Williams RBH, Wuertz S. Global warming readiness: Feasibility of enhanced biological phosphorus removal at 35 °C. WATER RESEARCH 2022; 216:118301. [PMID: 35364353 DOI: 10.1016/j.watres.2022.118301] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Recent research has shown enhanced biological phosphorus removal (EBPR) from municipal wastewater at warmer temperatures around 30 °C to be achievable in both laboratory-scale reactors and full-scale treatment plants. In the context of a changing climate, the feasibility of EBPR at even higher temperatures is of interest. We operated two lab-scale EBPR sequencing batch reactors for > 300 days at 30 °C and 35 °C, respectively, and followed the dynamics of the communities of polyphosphate accumulating organisms (PAOs) and competing glycogen accumulating organisms (GAOs) using a combination of 16S rRNA gene metabarcoding, quantitative PCR and fluorescence in situ hybridization analyses. Stable and nearly complete phosphorus (P) removal was achieved at 30 °C; similarly, long term P removal was stable at 35 °C with effluent PO43-_P concentrations < 0.5 mg/L on half of all monitored days. Diverse and abundant Candidatus Accumulibacter amplicon sequence variants were closely related to those found in temperate environments, suggesting that EBPR at this temperature does not require a highly specialized PAO community. A slow-feeding strategy effectively limited the carbon uptake rates of GAOs, allowing PAOs to outcompete GAOs at both temperatures. Candidatus Competibacter was the main GAO, along with cluster III Defluviicoccus members. These organisms withstood the slow-feeding regime, suggesting that their bioenergetic characteristics of carbon uptake differ from those of their tetrad-forming relatives. Comparative cycle studies revealed higher carbon and P cycling activity of Ca. Accumulibacter when the temperature was increased from 30 °C to 35 °C, implying that the lowered P removal performance at 35 °C was not a direct effect of temperature, but a result of higher metabolic rates of carbon (and/or P) utilization of PAOs and GAOs, the resultant carbon deficiency, and escalated community competition. An increase in the TOC-to-PO43--P ratio (from 25:1 to 40:1) effectively eased the carbon deficiency and benefited PAOs. In general, a slow-feeding strategy and sufficiently high carbon input benefited a high and stable EBPR at 35 °C, representing basic conditions suitable for full-scale treatment plants experiencing higher water temperatures.
Collapse
Affiliation(s)
- Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Samarpita Roy
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Hui Yi Hoon
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Kaliyamoorthy Eganathan
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
25
|
Parasana N, Shah M, Unnarkat A. Recent advances in developing innovative sorbents for phosphorus removal-perspective and opportunities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38985-39016. [PMID: 35304717 DOI: 10.1007/s11356-022-19662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus is an essential mineral for the growth of plants which is supplied in the form of fertilizers. Phosphorus remains an inseparable part of developing agrarian economics. Phosphorus enters waterways through three different sources: domestic, agricultural, and industrial sources. Rainfall is the main cause for washing away a large amount of phosphates from farm soils into nearby waterways. The surplus of phosphorus in the water sources cause eutrophication and degradation of the habitat with an adverse effect on aquatic life and plants. Phosphate elimination is necessary to control eutrophication in water sources. Among the different methods reported for the removal and recovery of phosphorus: ion exchange, precipitation, crystallization, and others, adsorption standout as a sustainable solution. The current review offers a comparative assessment of the literature on novel materials and techniques for the removal of phosphorus. Herein, different adsorbents, their behaviors, mechanisms, and capacity of materials are discussed in detail. The adsorbents are categorized under different heads: iron-based, silica-alumina-based, calcium-based, biochar-based wherein the metal and metal oxides are employed in phosphorus removal. The ideal attribute of adsorbent will be the utilization of spent adsorbents as a phosphate plant food and a soil conditioner in agriculture. The review provides the perspective on the current research with potential challenges and directives for possible research in the field.
Collapse
Affiliation(s)
- Nautam Parasana
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India
| | - Manan Shah
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India
| | - Ashish Unnarkat
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Raisan, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
26
|
Chen L, Chen H, Hu Z, Tian Y, Wang C, Xie P, Deng X, Zhang Y, Tang X, Lin X, Li B, Wei C, Qiu G. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. WATER RESEARCH 2022; 216:118258. [PMID: 35320769 DOI: 10.1016/j.watres.2022.118258] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This work analyzed, for the first time, the bioenergetics of PAOs and GAOs in full-scale wastewater treatment plants (WWTPs) for the uptake of different carbon sources. Fifteen samples were collected from five full-scale WWTPs. Predominance of different PAOs, i.e., Ca. Accumulibacter (0.00-0.49%), Tetrasphaera (0.37-3.94%), Microlunatus phosphovorus (0.01-0.18%), etc., and GAOs, i.e., Ca. Competibacter (0.08-5.39%), Defluviicoccus (0.05-5.34%), Micropruina (0.17-1.87%), etc., were shown by 16S rRNA gene amplicon sequencing. Despite the distinct PAO/GAO community compositions in different samples, proton motive force (PMF) was found as the key driving force (up to 90.1%) for the uptake of volatile fatty acids (VFAs, acetate and propionate) and amino acids (glutamate and aspartate) by both GAOs and PAOs at the community level, contrasting the previous understanding that Defluviicoccus have a low demand of PMF for acetate uptake. For the uptake of acetate or propionate, PAOs rarely activated F1, F0- ATPase (< 11.7%) or fumarate reductase (< 5.3%) for PMF generation; whereas, intensive involvements of these two pathways (up to 49.2% and 61.0%, respectively) were observed for GAOs, highlighting a major and community-level difference in their VFA uptake biogenetics in full-scale systems. However, different from VFAs, the uptake of glutamate and aspartate by both PAOs and GAOs commonly involved fumarate reductase and F1, F0-ATPase activities. Apart from these major and community-level differences, high level fine-scale micro-diversity in carbon uptake bioenergetics was observed within PAO and GAO lineages, probably resulting from their versatilities in employing different pathways for reducing power generation. Ca. Accumulibacter and Halomonas seemed to show higher dependency on the reverse operation of F1, F0-ATPase than other PAOs, likely due to the low involvement of glyoxylate shunt pathway. Unlike Tetrasphaera, but similar to Ca. Accumulibacter, Microlunatus phosphovorus took up glutamate and aspartate via the proton/glutamate-aspartate symporter driven by PMF. This feature was testified using a pure culture of Microlunatus phosphovorus stain NM-1. The major difference between PAOs and GAOs highlights the potential to selectively suppress GAOs for community regulation in EBPR systems. The finer-scale carbon uptake bioenergetics of PAOs or GAOs from different lineages benefits in understanding their interactions in community assembly in complex environment.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zekun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yucheng Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peiran Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
27
|
Petrovski S, Batinovic S, Rose JJ, Seviour RJ. Biological control of problem bacterial populations causing foaming in activated sludge wastewater treatment plants - phage therapy and beyond. Lett Appl Microbiol 2022; 75:776-784. [PMID: 35598184 DOI: 10.1111/lam.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The production of a stable foam on the surfaces of reactors is a global operating problem in activated sludge plants. In many cases these foams are stabilized by hydrophobic members of the Mycolata, a group of Actinobacteria whose outer membranes contains long chain hydroxylated mycolic acids. There is currently no single strategy which works for all foams. One attractive approach is to use lytic bacteriophages specific for the foam stabilizing Mycolata population. Such phages are present in activated sludge mixed liquor, and can be recovered readily from it. However, no phage has been recovered which lyses Gordonia amarae and Gordonia pseudoamarae, probably the most common foaming Mycolata members. Whole genome sequencing revealed that both G. amarae and G. pseudoamarae from plants around the world are particularly well endowed with genes encoding anti-viral defence mechanisms. However, both these populations were lysed rapidly by a parasitic nanobacterium isolated from a plant in Australia. This organism, a member of the Saccharibacteria was also effective against many other Mycolata, thus providing a potential agent for control of foams stabilized by them.
Collapse
Affiliation(s)
- Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Jayson Ja Rose
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
28
|
Bacterial Community Composition and Function in a Tropical Municipal Wastewater Treatment Plant. WATER 2022. [DOI: 10.3390/w14101537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial diversity and community composition are of great importance in wastewater treatment; however, little is known about the diversity and community structure of bacteria in tropical municipal wastewater treatment plants (WWTPs). Therefore, in this study, activated sludge samples were collected from the return sludge, anaerobic sludge, anoxic sludge, and aerobic sludge of an A2O WWTP in Haikou, China. Illumina MiSeq high-throughput sequencing was used to examine the 16S ribosomal RNA (rRNA) of bacteria in the samples. The microbial community diversity in this tropical WWTP was higher than in temperate, subtropical, and plateau WWTPs. Proteobacteria, Bacteroidota, Patescibacteria, and Chloroflexi were the dominant phyla. Nitrification bacteria Nitrosomonas, and Nitrospira were also detected. Tetrasphaera, instead of Candidatus Accumulibacter, were the dominant polyphosphate accumulating organisms (PAOs), while, glycogen accumulating organisms (GAOs), such as Candidatus Competibacter and Defluviicoccus were also detected. The bacterial community functions predicted by PICRUSt2 were related to metabolism, genetic information processing, and environmental information processing. This study provides a reference for the optimization of tropical municipal WWTPs.
Collapse
|
29
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Zhao C, Zhang C, Shen Z, Yang Y, Qiu Z, Li C, Xue B, Zhang X, Yang X, Wang S, Wang J. Ethylmalonyl-CoA pathway involved in polyhydroxyvalerate synthesis in Candidatus Contendobacter. AMB Express 2022; 12:39. [PMID: 35333986 PMCID: PMC8956781 DOI: 10.1186/s13568-022-01380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Here a stable glycogen accumulating organisms (GAOs) system was operated by anaerobic–aerobic mode in the sequencing batch reactor. We focused on the metabolic mechanisms of PHAs storage from GAOs. Our system showed the classic characteristic of glycogen accumulating metabolism (GAM). Glycogen consumption was followed by acetic acid uptake to synthesize poly-β-hydroxyalkanoates (PHAs) during the anaerobic period, and glycogen was synthesized by PHAs degradation in the aerobic stage. Microbial community structure indicated that Candidatus Contendobacter was the most prevalent GAOs. We found that the ethylmalonyl-CoA (EMC) pathway was the crucial pathway supplying the core substance propionyl-CoA for poly-β-hydroxyvalerate (PHV) synthesis in Candidatus Contendobacter. All genes in EMC pathway were mainly located in Candidatus Contendobacter by gene source analysis. The key genes expression of EMC pathway increased with Candidatus Contendobacter enrichment, further validating that propionyl-CoA was synthesized by Candidatus Contendobacter predominantly via EMC pathway. Our work revealed the novel mechanisms underlying PHV synthesis through EMC pathway and further improved the intercellular storage metabolism of GAOs. We observed GAM characteristic in the GAOs enrichment system. Metagenome-based analysis revealed that Candidatus Contendobacter was the dominant GAOs. The EMC pathway was a novel propionyl-CoA synthesis pathway for PHV in Candidatus Contendobacter.
Collapse
|
31
|
Tian Y, Chen H, Chen L, Deng X, Hu Z, Wang C, Wei C, Qiu G, Wuertz S. Glycine adversely affects enhanced biological phosphorus removal. WATER RESEARCH 2022; 209:117894. [PMID: 34890912 DOI: 10.1016/j.watres.2021.117894] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is used extensively in full-scale wastewater treatment plants for the removal of phosphorus. Despite previous evidence showing that glycine is a carbon source for a certain lineage of polyphosphate accumulating organisms (PAOs) such as Tetrasphaera, it is still unknown whether glycine can support EBPR. We observed an overall adverse effect of glycine on EBPR using activated sludge from both full-scale wastewater treatment plants and lab-scale reactors harboring distant and diverse PAOs and glycogen accumulating organisms (GAOs), including Candidatus Accumulibacter, Thiothrix, Tetrasphaera, Dechloromonas, Ca. Competibacter, and Defluviicoccus, among others. Glycine induced phosphorus (P) release under anaerobic conditions without being effectively taken up by cells. The induced P release rate correlated with glycine concentration in the range of 10 to 50 mg C/L. PAOs continued to release P in the presence of glycine under aerobic conditions without any evident P uptake. Under mixed carbon conditions, the occurrence of glycine did not seem to affect acetate uptake; however, it significantly reduced the rate of P uptake in the aerobic phase. Overall, glycine did not appear to be an effective carbon source for a majority of PAOs and GAOs in full-scale and lab-scale systems, and neither did other community members utilize glycine under anaerobic or aerobic conditions. Metatranscriptomic analysis showed the transcription of glycine cleavage T, P and H protein genes, but not of the L protein or the downstream genes in the glycine cleavage pathway, suggesting barriers to metabolizing glycine. The high transcription of a gene encoding a drug/metabolite transporter suggests a potential efflux mechanism, where glycine transported into the cells is in turn exported at the expense of ATP, resulting in P release without affecting the glycine concentration in solution. The ability of glycine to induce P release without cellular uptake suggests a way to effectively recover P from P-enriched waste sludge.
Collapse
Affiliation(s)
- Yucheng Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zekun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
32
|
Wang D, Thunéll S, Lindberg U, Jiang L, Trygg J, Tysklind M. Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113941. [PMID: 34731954 DOI: 10.1016/j.jenvman.2021.113941] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Understanding the mechanisms of pollutant removal in Wastewater Treatment Plants (WWTPs) is crucial for controlling effluent quality efficiently. However, the numerous treatment units, operational factors, and the underlying interactions between these units and factors usually obfuscate the comprehensive and precise understanding of the processes. We have previously proposed a machine learning (ML) framework to uncover complex cause-and-effect relationships in WWTPs. However, only one interpretable ML model, Random forest (RF), was studied and the interpretation method was not granular enough to reveal very detailed relationships between operational factors and effluent parameters. Thus, in this paper, we present an upgraded framework involving three interpretable tree-based models (RF, XGboost and LightGBM), three metrics (R2, Root mean squared error (RMSE), and Mean absolute error (MAE)) and a more advanced interpretation system SHapley Additive exPlanations (SHAP). Details of the framework are provided along with a demonstration of its practical applicability based on a case study of the Umeå WWTP in Sweden. Results show that, for both labels TSSe (Total suspended solids in effluent) and PO4e (Phosphate in effluent), the XGBoost models are optimal whereas the RF models are the least optimal, due to overfitting and polarized fitting. This study has yielded multiple new and significant findings with respect to the control of TSSe and PO4e in the Umeå WWTP and other similarly configured WWTPs. Additionally, this study has produced two important generic findings relating to ML applications for WWTPs (or even other process industries) in terms of cause-and-effect investigations. First, the model comparison should be carried out from multiple perspectives to ensure that underlying details are fully revealed and examined. Second, using a precise, robust, and granular (feature attribution available for individual instances) explanation method can bring extra insight into both model comparison and model interpretation. SHAP is recommended as we found it to be of great value in this study.
Collapse
Affiliation(s)
- Dong Wang
- Department of Chemistry, Umeå University, SE, 901 87, Umeå, Sweden
| | | | | | - Lili Jiang
- Department of Computing Science, Umeå University, SE, 901 87, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, SE, 901 87, Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE, 901 87, Umeå, Sweden.
| |
Collapse
|
33
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
34
|
Xu S, Chai W, Xiao R, Smets BF, Palomo A, Lu H. Survival strategy of comammox bacteria in a wastewater nutrient removal system with sludge fermentation liquid as additional carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149862. [PMID: 34461473 DOI: 10.1016/j.scitotenv.2021.149862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Complete ammonia oxidizing (comammox) bacteria are frequently detected in wastewater biological nutrient removal (BNR) systems. This study identified "Candidatus Nitrospira nitrosa"-like comammox bacteria as the predominant ammonia oxidizers (97.5-99.4%) in a lab-scale BNR system with acetate and sludge fermentation liquid as external carbon sources. The total nitrogen and phosphorus removals of the system were 75.9% and 86.9% with minimal N2O emission (0.27%). Low ammonia concentration, mixotrophic growth potentials and metabolic interactions with diverse heterotrophs collectively contributed to the survival of comammox bacteria in the system. The recovered draft genomes of comammox bacteria indicated their potentials in using acetate and propionate but not butyrate. Acetate and propionate indeed stimulated the transcription of comammox amoA genes (up-regulated by 4.1 folds compared with no organic addition), which was positively correlated with the ammonia oxidation rate of the community (r = 0.75, p < 0.05). Comammox bacteria could provide vitamins/cofactors (e.g., cobalamin and biotin) to heterotrophs (e.g., Burkholderiaceae), and in return receive amino acids (e.g., phenylalanine and tyrosine) from heterotrophs, which they cannot synthesize. Compared with comammox bacteria, ammonia oxidizing bacteria (AOB) exhibited lower metabolic versatility, and lacked more pathways for the synthesis of amino acids and vitamin/cofactors, leading to their washout in the studied system. BNRs with comammox bacteria as the major nitrifiers hold great potentials in achieving superior performance at low aeration cost and low N2O emission and at full-scale plants.
Collapse
Affiliation(s)
- Shaoyi Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenbo Chai
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Alejandro Palomo
- Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Ameliorating effect of nitrate on nitrite inhibition for denitrifying P-accumulating organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149133. [PMID: 34311377 DOI: 10.1016/j.scitotenv.2021.149133] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Lowered air supply and organic carbon need are the key factors to reduce wastewater treatment costs and thereby, avoid eutrophication. Denitrifying PO43-- removal (DPR) process using nitrate instead of oxygen for PO43- uptake was started up in the sequencing batch reactor (SBR) at a nitrate dosing rate of 20-25 mg N L-1 d-1. Operation with a real municipal wastewater supplied with CH3COONa, K2HPO4 and KNO3 succeeded in the cultivation of biomass containing denitrifying polyphosphate accumulating organisms (DPAOs). The durations of SBR process anaerobic/anoxic/oxic cycles were 1.5 h, 3.5 h and 1 h, respectively. SBR operation resulted in a maximum PO43--P uptake of 17 mg PO43--P g-1 MLSS. The highest TN and PO43- removal efficiencies were observed during the first half of reactor operation at 77 (±10) % and 71 (±5) %, respectively. An average COD removal rate of 172 (±98) mg g-1 MLSS and a high average removal efficiency of 89 (±4) % were achieved. Nitrite effect with/without nitrate as DPR electron acceptor was investigated in batch-scale to show possibilities to use high nitrite and nitrate contents simultaneously as electron acceptors for the anoxic phosphate uptake. Nitrate attenuation against nitrite toxicity can be economically justified in full-scale treatment applications in which wastewater has a high nitrogen content. Nitrate attenuated nitrite toxicity (caused by nitrite content at 5-100 mg NO2--N L-1) when using supplemental additions of nitrate (at concentrations of 45-200 mg NO3--N L-1) in batch tests. Illumina sequencing emphasized that during biomass adaption microbial community changed by lowered aerobic cycle length and by lowered nitrate dosing towards representation of key DPAO/PAO- organisms, such as Candidatus Accumulibacter, Xanthomonadaceae, Comomonadaceae, Saprospiraceae and Rhodocyclaceae. This study showed that DPAO biomass adaption to nitrate maintained an efficient COD, nitrogen and phosphorus removal and the biomass can be applied for treatment of wastewater containing high nitrite and nitrate content.
Collapse
|
36
|
Rey-Martínez N, Merdan G, Guisasola A, Baeza JA. Nitrite and nitrate inhibition thresholds for a glutamate-fed bio-P sludge. CHEMOSPHERE 2021; 283:131173. [PMID: 34182653 DOI: 10.1016/j.chemosphere.2021.131173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is an efficient and sustainable technology to remove phosphorus from wastewater. A widely known cause of EBPR deterioration in wastewater treatment plants (WWTPs) is the presence of nitrate/nitrite or oxygen in the anaerobic reactor. Moreover, most existing studies on the effect of either permanent aerobic conditions or inhibition of EBPR by nitrate or free nitrous acid (FNA) have been conducted with a "Candidatus Accumulibacter" or Tetrasphaera-enriched sludge, which are the two major reported groups of polyphosphate accumulating organisms (PAO) with key roles in full-scale EBPR WWTPs. This work reports the denitrification capabilities of a bio-P microbial community developed using glutamate as the sole source of carbon and nitrogen. This bio-P sludge exhibited a high denitrifying PAO (DPAO) activity, in fact, 56% of the phosphorus was uptaken under anoxic conditions. Furthermore, this mixed culture was able to use nitrite and nitrate as electron acceptor for P-uptake, being 1.8 μg HNO2-N·L-1 the maximum FNA concentration at which P-uptake can occur. Net P-removal was observed under permanent aerobic conditions. However, this microbial culture was more sensitive to FNA and permanent aerobic conditions compared to "Ca. Accumulibacter"-enriched sludge.
Collapse
Affiliation(s)
- Natalia Rey-Martínez
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain.
| | - Gökçe Merdan
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain; Department of Environmental Engineering, Namık Kemal University, Turkey.
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain.
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
37
|
Kleerebezem R, Sousa DZ. Editorial overview: Microbial community engineering. Curr Opin Biotechnol 2021; 67:vi-ix. [PMID: 33745678 DOI: 10.1016/j.copbio.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| |
Collapse
|
38
|
Saw NMMT, Suwanchaikasem P, Zuniga-Montanez R, Qiu G, Marzinelli EM, Wuertz S, Williams RBH. Influence of Extraction Solvent on Nontargeted Metabolomics Analysis of Enrichment Reactor Cultures Performing Enhanced Biological Phosphorus Removal (EBPR). Metabolites 2021; 11:269. [PMID: 33925970 PMCID: PMC8145293 DOI: 10.3390/metabo11050269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolome profiling is becoming more commonly used in the study of complex microbial communities and microbiomes; however, to date, little information is available concerning appropriate extraction procedures. We studied the influence of different extraction solvent mixtures on untargeted metabolomics analysis of two continuous culture enrichment communities performing enhanced biological phosphate removal (EBPR), with each enrichment targeting distinct populations of polyphosphate-accumulating organisms (PAOs). We employed one non-polar solvent and up to four polar solvents for extracting metabolites from biomass. In one of the reactor microbial communities, we surveyed both intracellular and extracellular metabolites using the same set of solvents. All samples were analysed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS). UPLC-MS data obtained from polar and non-polar solvents were analysed separately and evaluated using extent of repeatability, overall extraction capacity and the extent of differential abundance between physiological states. Despite both reactors demonstrating the same bioprocess phenotype, the most appropriate extraction method was biomass specific, with methanol: water (50:50 v/v) and methanol: chloroform: water (40:40:20 v/v) being chosen as the most appropriate for each of the two different bioreactors, respectively. Our approach provides new data on the influence of solvent choice on the untargeted surveys of the metabolome of PAO enriched EBPR communities and suggests that metabolome extraction methods need to be carefully tailored to the specific complex microbial community under study.
Collapse
Affiliation(s)
- Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Pipob Suwanchaikasem
- Singapore Phenome Centre, Nanyang Technological University, Singapore 636921, Singapore;
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Ezequiel M. Marzinelli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|