1
|
Tzitiridou-Chatzopoulou M, Kountouras J, Zournatzidou G. The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes. CHILDREN (BASEL, SWITZERLAND) 2024; 11:552. [PMID: 38790548 PMCID: PMC11119242 DOI: 10.3390/children11050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Over the past decade, microbiome research has significantly expanded in both scope and volume, leading to the development of new models and treatments targeting the gut-brain axis to mitigate the effects of various disorders. Related research suggests that interventions during the critical period from birth to three years old may yield the greatest benefits. Investigating the substantial link between the gut and brain during this crucial developmental phase raises fundamental issues about the role of microorganisms in human health and brain development. This underscores the importance of focusing on the prevention rather than the treatment of neurodevelopmental and neuropsychiatric disorders. The present review examines the gut microbiota from birth to age 3, with a particular focus on its potential relationship with neurodevelopment. This review emphasizes the immunological mechanisms underlying this relationship. Additionally, the study investigates the impact of the microbiome on cognitive development and neurobehavioral issues such as anxiety and autism. Importantly, it highlights the need to integrate mechanistic studies of animal models with epidemiological research across diverse cultures to better understand the role of a healthy microbiome in early life and the implications of dysbiosis. Furthermore, this review summarizes factors contributing to the transmission of gut microbiome-targeted therapies and their effects on neurodevelopment. Recent studies on environmental toxins known to impact neurodevelopment are also reviewed, exploring whether the microbiota may mitigate or modulate these effects.
Collapse
Affiliation(s)
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54 642 Thessaloniki, Greece;
| | - Georgia Zournatzidou
- Department of Business Administration, University of Western Macedonia, 50 100 Kozani, Greece
- Department of Accounting and Finance, Hellenic Mediterranean University, 71 410 Heraklion, Greece
| |
Collapse
|
2
|
Tomasulo A, Simionati B, Facchin S. Microbiome One Health model for a healthy ecosystem. SCIENCE IN ONE HEALTH 2024; 3:100065. [PMID: 39077385 PMCID: PMC11262273 DOI: 10.1016/j.soh.2024.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/24/2024] [Indexed: 07/31/2024]
Abstract
The attention on microbiome research and its translation to application deployment is escalating along with diffused hype. There is real excitement in this new science, leveraging the growing potential of advances in molecular biology and sequencing techniques. Yet, despite the substantial efforts provided by the scientific communities, the true significance of research achievements requires coordinated and constructive actions across interdisciplinary fields. Individual researchers, universities, small and large companies, venture capitalists, and governments play a fundamental role in fostering collaboration and promoting knowledge that will benefit each other and sustain global prosperity. Making meaningful connections across different fields and getting a new perspective on how technological developments interrelate are the main drivers for creativity and progress. To help the broader innovation community focus on potentially new cross-sectorial developments, the One Health-microbiome-centric approach, defined here as "Microbiome One Health " , is considered as the efficient, holistic approach to product and service exploitations meant to preserve human well-being within a healthy ecosystem. The model opposes the biomedical system and generalizes the "One World-One Health ™" concept. The focus will be given to Nutrition as a driver of health and the food system for its commercial exploitation microbiome-centric, specifically at the interface of human/animal/agricultural. Remarkably, at the interface of humans/animals, the interaction with pets, specifically dogs, has been recognized as a driving force of novel microbiome exploitation.
Collapse
Affiliation(s)
| | | | - Sonia Facchin
- University of Padova, Department of Surgery, Oncology and Gastroenterology DISCOG, Padova, Italy
| |
Collapse
|
3
|
McGuinness AJ, Stinson LF, Snelson M, Loughman A, Stringer A, Hannan AJ, Cowan CSM, Jama HA, Caparros-Martin JA, West ML, Wardill HR. From hype to hope: Considerations in conducting robust microbiome science. Brain Behav Immun 2024; 115:120-130. [PMID: 37806533 DOI: 10.1016/j.bbi.2023.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/14/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
Microbiome science has been one of the most exciting and rapidly evolving research fields in the past two decades. Breakthroughs in technologies including DNA sequencing have meant that the trillions of microbes (particularly bacteria) inhabiting human biological niches (particularly the gut) can be profiled and analysed in exquisite detail. This microbiome profiling has profound impacts across many fields of research, especially biomedical science, with implications for how we understand and ultimately treat a wide range of human disorders. However, like many great scientific frontiers in human history, the pioneering nature of microbiome research comes with a multitude of challenges and potential pitfalls. These include the reproducibility and robustness of microbiome science, especially in its applications to human health outcomes. In this article, we address the enormous promise of microbiome science and its many challenges, proposing constructive solutions to enhance the reproducibility and robustness of research in this nascent field. The optimisation of microbiome science spans research design, implementation and analysis, and we discuss specific aspects such as the importance of ecological principals and functionality, challenges with microbiome-modulating therapies and the consideration of confounding, alternative options for microbiome sequencing, and the potential of machine learning and computational science to advance the field. The power of microbiome science promises to revolutionise our understanding of many diseases and provide new approaches to prevention, early diagnosis, and treatment.
Collapse
Affiliation(s)
- Amelia J McGuinness
- Deakin University, Geelong, Australia, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Geelong, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia.
| | - Amy Loughman
- Deakin University, Geelong, Australia, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Geelong, Australia
| | - Andrea Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | | | - Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
| | | | - Madeline L West
- Deakin University, Geelong, Australia, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Geelong, Australia
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Du S, Li XQ, Feng J, Huang Q, Liu YR. Soil core microbiota drive community resistance to mercury stress and maintain functional stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165056. [PMID: 37348729 DOI: 10.1016/j.scitotenv.2023.165056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Soil microbial communities have resistance to environmental stresses and thus can maintain ecosystem functions such as decomposition, nutrient provisioning, and plant pathogen control. However, predominant factors driving community resistance of soil microbiome to heavy metal pollution stresses and ecosystem functional stability are still unclear, limiting our ability to forecast how soil pollution might affect ecosystem sustainability. Here, we conducted microcosm experiments to estimate the importance of soil microbiome in predicting community resistance to heavy metal mercury (Hg) stress in paired paddy and upland fields. We found that community resistance of soil microbiome was strongly correlated with ecosystem functional stability, so were the individual groups of organisms such as bacteria, saprotrophic fungi, and phototrophic protists. The core phylotypes within soil microbiome had a major contribution to community resistance, which was essential for the maintenance of functional stability. Co-occurrence network further confirmed that community resistances of main ecological clusters were positively correlated with ecosystem functional stability. Together, our results provide new insights into the link between community resistance and functional stability, and highlight the importance of core microbiota in driving community resistance to environmental stresses and maintain functional stability.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Qi Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier-Verges MC, Charles TC, Cotter PD, Ferrocino I, Kriaa A, Lebre P, Cowan D, Lange L, Kiran S, Markiewicz L, Meisner A, Olivares M, Sarand I, Schelkle B, Selvin J, Smidt H, van Overbeek L, Berg G, Cocolin L, Sanz Y, Fernandes WL, Liu SJ, Ryan M, Singh B, Kostic T. Microbiome Interconnectedness throughout Environments with Major Consequences for Healthy People and a Healthy Planet. Microbiol Mol Biol Rev 2023; 87:e0021222. [PMID: 37367231 PMCID: PMC10521359 DOI: 10.1128/mmbr.00212-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.
Collapse
Affiliation(s)
| | | | | | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Tomislav Cernava
- University of Southampton, Faculty of Environmental and Life Sciences, Southampton, United Kingdom
| | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | | | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pedro Lebre
- University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- University of Pretoria, Pretoria, South Africa
| | - Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | - Lidia Markiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Olsztyn, Poland
| | - Annelein Meisner
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inga Sarand
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | | | | | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Leo van Overbeek
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - S. J. Liu
- Chinese Academy of Sciences, Institute of Microbiology, Beijing, China
| | - Matthew Ryan
- Genetic Resources Collection, CABI, Egham, United Kingdom
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
6
|
Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J. Microplastics in urban waters and its effects on microbial communities: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88410-88431. [PMID: 36327084 DOI: 10.1007/s11356-022-23810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.
Collapse
Affiliation(s)
- Saber Entezari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Amir Mostashari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Hossein Ganjidoust
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran.
| | - Bita Ayati
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
7
|
Abstract
The diversity and functional significance of microbiomes have become increasingly clear through the extensive sampling of Earth's many habitats and the rapid adoption of new sequencing technologies. However, much remains unknown about what makes a "healthy" microbiome, how to restore a disrupted microbiome, and how microbiomes assemble. In December 2019, we convened a workshop that focused on how to identify potential "rules of life" that govern microbiome structure and function. This collection of mSystems Perspective pieces reflects many of the main challenges and opportunities in the field identified by both in-person and virtual workshop participants. By borrowing conceptual and theoretical approaches from other fields, including economics and philosophy, these pieces suggest new ways to dissect microbiome patterns and processes. The application of conceptual advances, including trait-based theory and community coalescence, is providing new insights on how to predict and manage microbiome diversity and function. Technological and analytical advances, including deep transfer learning, metabolic models, and advances in analytical chemistry, are helping us sift through complex systems to pinpoint mechanisms of microbiome assembly and dynamics. Integration of all of these advancements (theory, concepts, technology) across biological and spatial scales is providing dramatically improved temporal and spatial resolution of microbiome dynamics. This integrative microbiome research is happening in a new moment in science where academic institutions, scientific societies, and funding agencies must act collaboratively to support and train a diverse and inclusive community of microbiome scientists.
Collapse
|
8
|
Lange L, Berg G, Cernava T, Champomier-Vergès MC, Charles T, Cocolin L, Cotter P, D’Hondt K, Kostic T, Maguin E, Makhalanyane T, Meisner A, Ryan M, Kiran GS, de Souza RS, Sanz Y, Schloter M, Smidt H, Wakelin S, Sessitsch A. Microbiome ethics, guiding principles for microbiome research, use and knowledge management. ENVIRONMENTAL MICROBIOME 2022; 17:50. [PMID: 36180931 PMCID: PMC9526347 DOI: 10.1186/s40793-022-00444-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The overarching biological impact of microbiomes on their hosts, and more generally their environment, reflects the co-evolution of a mutualistic symbiosis, generating fitness for both. Knowledge of microbiomes, their systemic role, interactions, and impact grows exponentially. When a research field of importance for planetary health evolves so rapidly, it is essential to consider it from an ethical holistic perspective. However, to date, the topic of microbiome ethics has received relatively little attention considering its importance. Here, ethical analysis of microbiome research, innovation, use, and potential impact is structured around the four cornerstone principles of ethics: Do Good; Don't Harm; Respect; Act Justly. This simple, but not simplistic approach allows ethical issues to be communicative and operational. The essence of the paper is captured in a set of eleven microbiome ethics recommendations, e.g., proposing gut microbiome status as common global heritage, similar to the internationally agreed status of major food crops.
Collapse
Affiliation(s)
- Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | | | | | | | | | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Kathleen D’Hondt
- Department of Economy, Science and Innovation, Flemish Government, Brussels, Belgium
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Emmanuelle Maguin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Annelein Meisner
- Wageningen Research, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology- Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | | |
Collapse
|
9
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
10
|
Du S, Li XQ, Hao X, Hu HW, Feng J, Huang Q, Liu YR. Stronger responses of soil protistan communities to legacy mercury pollution than bacterial and fungal communities in agricultural systems. ISME COMMUNICATIONS 2022; 2:69. [PMID: 37938257 PMCID: PMC9723755 DOI: 10.1038/s43705-022-00156-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 08/22/2023]
Abstract
Soil pollution is an important stressor affecting biodiversity and ecosystem functioning. However, we lack a holistic understanding of how soil microbial communities respond to heavy metal pollution in agricultural ecosystems. Here, we explored the distribution patterns and inter-kingdom interactions of entire soil microbiome (including bacteria, fungi, and protists) in 47 paired paddy and upland fields along a gradient of legacy mercury (Hg) pollution. We found that the richness and composition of protistan community had stronger responses to Hg pollution than those of bacterial and fungal communities in both paddy and upland soils. Mercury polluted soils harbored less protistan phototrophs but more protistan consumers. We further revealed that long-term Hg pollution greatly increased network complexity of protistan community than that of bacterial and fungal communities, as well as intensified the interactions between protists and the other microorganisms. Moreover, our results consistently indicated that protistan communities had stronger responses to long-term Hg pollution than bacterial and fungal communities in agricultural soils based on structural equation models and random forest analyses. Our study highlights that soil protists can be used as bioindicators of Hg pollution, with important implications for the assessment of contaminated farmlands and the sustainable management of agricultural ecosystems.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin-Qi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Kawaka F. Characterization of symbiotic and nitrogen fixing bacteria. AMB Express 2022; 12:99. [PMID: 35907164 PMCID: PMC9339069 DOI: 10.1186/s13568-022-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Symbiotic nitrogen fixing bacteria comprise of diverse species associated with the root nodules of leguminous plants. Using an appropriate taxonomic method to confirm the identity of superior and elite strains to fix nitrogen in legume crops can improve sustainable global food and nutrition security. The current review describes taxonomic methods preferred and commonly used to characterize symbiotic bacteria in the rhizosphere. Peer reviewed, published and unpublished articles on techniques used for detection, classification and identification of symbiotic bacteria were evaluated by exploring their advantages and limitations. The findings showed that phenotypic and cultural techniques are still affordable and remain the primary basis of species classification despite their challenges. Development of new, robust and informative taxonomic techniques has really improved characterization and identification of symbiotic bacteria and discovery of novel and new species that are effective in biological nitrogen fixation (BNF) in diverse conditions and environments.
Collapse
Affiliation(s)
- Fanuel Kawaka
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
12
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Ferrocino I, Rantsiou K, Cocolin L. Microbiome and -omics application in food industry. Int J Food Microbiol 2022; 377:109781. [DOI: 10.1016/j.ijfoodmicro.2022.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
|
14
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
15
|
Lacorte GA, Cruvinel LA, de Paula Ávila M, Dias MF, de Abreu Pereira A, Nascimento AMA, de Melo Franco BDG. Investigating the influence of Food Safety Management Systems (FSMS) on microbial diversity of Canastra cheeses and their processing environments. Food Microbiol 2022; 105:104023. [DOI: 10.1016/j.fm.2022.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
|