1
|
Zhang J, Zhang F, Dong Z, Zhang W, Sun T, Chen L. Response and acclimation of cyanobacteria to acidification: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173978. [PMID: 38897479 DOI: 10.1016/j.scitotenv.2024.173978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria, as vital components of aquatic ecosystems, face increasing challenges due to acidification driven by various anthropogenic and natural factors. Understanding how cyanobacteria adapt and respond to acidification is crucial for predicting their ecological dynamics and potential impacts on ecosystem health. This comprehensive review synthesizes current knowledge on the acclimation mechanisms and responses of cyanobacteria to acidification stress. Detailly, ecological roles of cyanobacteria were firstly briefly concluded, followed by the effects of acidification on aquatic ecosystems and cyanobacteria. Then the review focuses on the physiological, biochemical, and molecular strategies employed by cyanobacteria to cope with acidification stress, highlighting key adaptive mechanisms and their ecological implications. Finally, a summary of strategies to enhance acid resistance in cyanobacteria and future directions was discussed. Utilizing omics data and machine learning technology to build a cyanobacterial acid regulatory network allows for predicting the impact of acidification on cyanobacteria and inferring its broader effects on ecosystems. Additionally, acquiring acid-tolerant chassis cells of cyanobacteria through innovative techniques facilitates the advancement of environmentally friendly production of acidic chemicals. By synthesizing empirical evidence and theoretical frameworks, this review aims to elucidate the complex interplay between cyanobacteria and acidification stressors, providing insights for future research directions and ecosystem management strategies.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China..
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China.
| |
Collapse
|
2
|
Bongirwar R, Shukla P. Engineering regulatory networks of cyanobacteria. Trends Biotechnol 2024; 42:949-952. [PMID: 38296717 DOI: 10.1016/j.tibtech.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Engineering a cell's regulatory networks to dynamically control gene expression has been considered a new frontier in biological engineering. In cyanobacteria, the lack of well-characterized, modular gene regulatory elements makes regulatory network engineering challenging. Here, we suggest potential tools to modify various gene expression steps in cyanobacterial regulatory networks.
Collapse
Affiliation(s)
- Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Liu X, Tang K, Hu J. Application of Cyanobacteria as Chassis Cells in Synthetic Biology. Microorganisms 2024; 12:1375. [PMID: 39065143 PMCID: PMC11278661 DOI: 10.3390/microorganisms12071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it possible to break through laboratory research into large-scale industrial applications. The synthesis of a range of biochemicals has been demonstrated in cyanobacteria; however, low product titers are the biggest barrier to the commercialization of cyanobacterial biotechnology. This review summarizes the applied improvement strategies from the perspectives of cyanobacteria chassis cells and synthetic biology. The harvest advantages of cyanobacterial products and the latest progress in improving production strategies are discussed according to the product status. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in the application and development of cyanobacteria genetic tool kits in biochemical synthesis, environmental monitoring, and remediation were assessed.
Collapse
Affiliation(s)
| | | | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.L.); (K.T.)
| |
Collapse
|
4
|
Li Z, Li S, Chen L, Sun T, Zhang W. Fast-growing cyanobacterial chassis for synthetic biology application. Crit Rev Biotechnol 2024; 44:414-428. [PMID: 36842999 DOI: 10.1080/07388551.2023.2166455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 12/28/2022] [Indexed: 02/28/2023]
Abstract
Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.
Collapse
Affiliation(s)
- Zhixiang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
5
|
Cardoso ACS, Azevedo RS, Brum RJ, Santos LO, Marins LF. Optimization of Recombinant Protein Production in Synechococcus elongatus PCC 7942: Utilizing Native Promoters and Magnetic Fields. Curr Microbiol 2024; 81:143. [PMID: 38627283 DOI: 10.1007/s00284-024-03672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 holds significant potential as a biofactory for recombinant protein (RP) production due to its capacity to harness light energy and utilize CO2. This study aimed to enhance RP production by integration of native promoters and magnetic field application (MF) in S. elongatus PCC 7942. The psbA2 promoter, which responds to stress conditions, was chosen for the integration of the ZsGreen1 gene. Results indicated successful gene integration, affirming prior studies that showed no growth alterations in transgenic strains. Interestingly, exposure to 30 mT (MF30) demonstrated a increase in ZsGreen1 transcription under the psbA2 promoter, revealing the influence of MF on cyanobacterial photosynthetic machinery. This enhancement is likely attributed to stress-induced shifts in gene expression and enzyme activity. MF30 positively impacted photosystem II (PSII) without disrupting the electron transport chain, aligning with the "quantum-mechanical mechanism" theory. Notably, fluorescence levels and gene expression with application of 30 mT were significantly different from control conditions. This study showcases the efficacy of utilizing native promoters and MF for enhancing RP production in S. elongatus PCC 7942. Native promoters eliminate the need for costly exogenous inducers and potential cell stress. Moreover, the study expands the scope of optimizing RP production in photoautotrophic microorganisms, providing valuable insights for biotechnological applications.
Collapse
Affiliation(s)
- Arthur C S Cardoso
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Raíza S Azevedo
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Rayanne J Brum
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis F Marins
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil.
| |
Collapse
|
6
|
Wang C, Song Z, Zhang H, Sun Y, Hu X. Deciphering variations in the surficial bacterial compositions and functional profiles in the intersection between North and South Yellow Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106355. [PMID: 38244366 DOI: 10.1016/j.marenvres.2024.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The coastal ocean systems play paramount role in the nutrient biogeochemistry because of its interconnected environment. To gain a novel insight into coupling relationships between bacterial community, functioning properties and nutrient metabolism, we conducted analysis on the patterns and driving factors of planktonic bacterial functional community across subsurface water of marine ranching near the Yellow Sea in both summer and winter. Illumina HiSeq Sequencing and a corresponding set of biogeochemical data were used to assess distribution patterns of taxa, adaptive mechanism and metabolic function. Results demonstrated that Proteobacteria, Cyanobacteria, Actinobacteriota and Bacteroidota were dominant phyla both in summer and winter. Taxonomic profiles related to nutrient variation were found to be highly correlated with Dissolved Oxygen (DO) and Chlorophyll fluorescence (FLUO), and distinct diversity differences were also found between summer and winter samples. Functional activity in summer associated with the relative abundance of phototrophy and photoautotrophy were the highest in the subsurface water, while in winter the dominant functional properties were mainly include chemoheterotrophy and aerobic_ chemoheterotrophy. A significant difference related to functional activity between summer and winter, mainly representing ligninolysis and iron_respiration. In general, our study provides a framework for understanding the relative importance of environmental factors, temperature variation and nutrient availability in shaping the metabolic processes of aquatic microorganisms, particularly in ocean mariculture systems.
Collapse
Affiliation(s)
- Caixia Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zenglei Song
- Yantai Vocational College, Yantai, 264003, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China.
| |
Collapse
|
7
|
Moore LR, Caspi R, Campbell DA, Casey JR, Crevecoeur S, Lea-Smith DJ, Long B, Omar NM, Paley SM, Schmelling NM, Torrado A, Zehr JP, Karp PD. CyanoCyc cyanobacterial web portal. Front Microbiol 2024; 15:1340413. [PMID: 38357349 PMCID: PMC10864581 DOI: 10.3389/fmicb.2024.1340413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
CyanoCyc is a web portal that integrates an exceptionally rich database collection of information about cyanobacterial genomes with an extensive suite of bioinformatics tools. It was developed to address the needs of the cyanobacterial research and biotechnology communities. The 277 annotated cyanobacterial genomes currently in CyanoCyc are supplemented with computational inferences including predicted metabolic pathways, operons, protein complexes, and orthologs; and with data imported from external databases, such as protein features and Gene Ontology (GO) terms imported from UniProt. Five of the genome databases have undergone manual curation with input from more than a dozen cyanobacteria experts to correct errors and integrate information from more than 1,765 published articles. CyanoCyc has bioinformatics tools that encompass genome, metabolic pathway and regulatory informatics; omics data analysis; and comparative analyses, including visualizations of multiple genomes aligned at orthologous genes, and comparisons of metabolic networks for multiple organisms. CyanoCyc is a high-quality, reliable knowledgebase that accelerates scientists' work by enabling users to quickly find accurate information using its powerful set of search tools, to understand gene function through expert mini-reviews with citations, to acquire information quickly using its interactive visualization tools, and to inform better decision-making for fundamental and applied research.
Collapse
Affiliation(s)
| | - Ron Caspi
- SRI International, Menlo Park, CA, United States
| | | | - John R. Casey
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, United States
| | - Sophie Crevecoeur
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Bin Long
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | | | | | | | - Alejandro Torrado
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and Spanish National Research Council, Sevilla, Spain
| | - Jonathan P. Zehr
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | |
Collapse
|
8
|
Jaiswal D, Nenwani M, Wangikar PP. Isotopically non-stationary 13 C metabolic flux analysis of two closely related fast-growing cyanobacteria, Synechococcus elongatus PCC 11801 and 11802. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:558-573. [PMID: 37219374 DOI: 10.1111/tpj.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Synechococcus elongatus PCC 11801 and 11802 are closely related cyanobacterial strains that are fast-growing and tolerant to high light and temperature. These strains hold significant promise as chassis for photosynthetic production of chemicals from carbon dioxide. A detailed quantitative understanding of the central carbon pathways would be a reference for future metabolic engineering studies with these strains. We conducted isotopic non-stationary 13 C metabolic flux analysis to quantitively assess the metabolic potential of these two strains. This study highlights key similarities and differences in the central carbon flux distribution between these and other model/non-model strains. The two strains demonstrated a higher Calvin-Benson-Bassham (CBB) cycle flux coupled with negligible flux through the oxidative pentose phosphate pathway and the photorespiratory pathway and lower anaplerosis fluxes under photoautotrophic conditions. Interestingly, PCC 11802 shows the highest CBB cycle and pyruvate kinase flux values among those reported in cyanobacteria. The unique tricarboxylic acid (TCA) cycle diversion in PCC 11801 makes it ideal for the large-scale production of TCA cycle-derived chemicals. Additionally, dynamic labeling transients were measured for intermediates of amino acid, nucleotide, and nucleotide sugar metabolism. Overall, this study provides the first detailed metabolic flux maps of S. elongatus PCC 11801 and 11802, which may aid metabolic engineering efforts in these strains.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Minal Nenwani
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
9
|
Dodia H, Sunder AV, Borkar Y, Wangikar PP. Precision fermentation with mass spectrometry-based spent media analysis. Biotechnol Bioeng 2023; 120:2809-2826. [PMID: 37272489 DOI: 10.1002/bit.28450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Optimization and monitoring of bioprocesses requires the measurement of several process parameters and quality attributes. Mass spectrometry (MS)-based techniques such as those coupled to gas chromatography (GCMS) and liquid Chromatography (LCMS) enable the simultaneous measurement of hundreds of metabolites with high sensitivity. When applied to spent media, such metabolome analysis can help determine the sequence of substrate uptake and metabolite secretion, consequently facilitating better design of initial media and feeding strategy. Furthermore, the analysis of metabolite diversity and abundance from spent media will aid the determination of metabolic phases of the culture and the identification of metabolites as surrogate markers for product titer and quality. This review covers the recent advances in metabolomics analysis applied to the development and monitoring of bioprocesses. In this regard, we recommend a stepwise workflow and guidelines that a bioprocesses engineer can adopt to develop and optimize a fermentation process using spent media analysis. Finally, we show examples of how the use of MS can revolutionize the design and monitoring of bioprocesses.
Collapse
Affiliation(s)
- Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | - Yogen Borkar
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| |
Collapse
|
10
|
Toepel J, Karande R, Klähn S, Bühler B. Cyanobacteria as whole-cell factories: current status and future prospectives. Curr Opin Biotechnol 2023; 80:102892. [PMID: 36669448 DOI: 10.1016/j.copbio.2023.102892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
Cyanobacteria as phototrophic microorganisms bear great potential to produce chemicals from sustainable resources such as light and CO2. Most studies focus on either strain engineering or tackling metabolic constraints. Recently gained knowledge on internal electron and carbon fluxes and their regulation provides new opportunities to efficiently channel cellular resources toward product formation. Concomitantly, novel photobioreactor concepts are developed to ensure sufficient light supply. This review summarizes the newest developments in the field of cyanobacterial engineering to finally establish photosynthesis-based production processes. A holistic approach tackling genetic, metabolic, and biochemical engineering in parallel is considered essential to turn their application into an ecoefficient and economically feasible option for a future green bioeconomy.
Collapse
Affiliation(s)
- Jörg Toepel
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rohan Karande
- Research and Transfer Center for bioactive Matter b-ACTmatter, University of Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
11
|
Santos-Merino M, Yun L, Ducat DC. Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microbiol 2023; 14:1126032. [PMID: 36865782 PMCID: PMC9971976 DOI: 10.3389/fmicb.2023.1126032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Lisa Yun
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Kondo K, Yoshimi R, Apdila ET, Wakabayashi KI, Awai K, Hisabori T. Changes in intracellular energetic and metabolite states due to increased galactolipid levels in Synechococcus elongatus PCC 7942. Sci Rep 2023; 13:259. [PMID: 36604524 PMCID: PMC9816115 DOI: 10.1038/s41598-022-26760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
The lipid composition of thylakoid membranes is conserved from cyanobacteria to green plants. However, the biosynthetic pathways of galactolipids, the major components of thylakoid membranes, are known to differ substantially between cyanobacteria and green plants. We previously reported on a transformant of the unicellular rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, namely SeGPT, in which the synthesis pathways of the galactolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol are completely replaced by those of green plants. SeGPT exhibited increased galactolipid content and could grow photoautotrophically, but its growth rate was slower than that of wild-type S. elongatus PCC 7942. In the present study, we investigated pleiotropic effects that occur in SeGPT and determined how its increased lipid content affects cell proliferation. Microscopic observations revealed that cell division and thylakoid membrane development are impaired in SeGPT. Furthermore, physiological analyses indicated that the bioenergetic state of SeGPT is altered toward energy storage, as indicated by increased levels of intracellular ATP and glycogen. We hereby report that we have identified a new promising candidate as a platform for material production by modifying the lipid synthesis system in this way.
Collapse
Affiliation(s)
- Kumiko Kondo
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan
| | - Rina Yoshimi
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503 Japan
| | - Egi Tritya Apdila
- grid.263536.70000 0001 0656 4913Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-Ku, Shizuoka, 422-8529 Japan
| | - Ken-ichi Wakabayashi
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503 Japan
| | - Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-Ku, Shizuoka, 422-8529, Japan.
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
13
|
Lindberg P, Kenkel A, Bühler K. Introduction to Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:1-24. [PMID: 37009973 DOI: 10.1007/10_2023_217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Cyanobacteria are highly interesting microbes with the capacity for oxygenic photosynthesis. They fulfill an important purpose in nature but are also potent biocatalysts. This chapter gives a brief overview of this diverse phylum and shortly addresses the functions these organisms have in the natural ecosystems. Further, it introduces the main topics covered in this volume, which is dealing with the development and application of cyanobacteria as solar cell factories for the production of chemicals including potential fuels. We discuss cyanobacteria as industrial workhorses, present established chassis strains, and give an overview of the current target products. Genetic engineering strategies aiming at the photosynthetic efficiency as well as approaches to optimize carbon fluxes are summarized. Finally, main cultivation strategies are sketched.
Collapse
Affiliation(s)
- Pia Lindberg
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Amelie Kenkel
- Helmholtzcenter for Environmental Research, Leipzig, Germany
| | - Katja Bühler
- Helmholtzcenter for Environmental Research, Leipzig, Germany.
| |
Collapse
|
14
|
Jurkaš V, Weissensteiner F, De Santis P, Vrabl S, Sorgenfrei FA, Bierbaumer S, Kara S, Kourist R, Wangikar PP, Winkler CK, Kroutil W. Transmembrane Shuttling of Photosynthetically Produced Electrons to Propel Extracellular Biocatalytic Redox Reactions in a Modular Fashion. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207971. [PMID: 38505002 PMCID: PMC10946770 DOI: 10.1002/ange.202207971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 03/21/2024]
Abstract
Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.
Collapse
Affiliation(s)
- Valentina Jurkaš
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | | | - Piera De Santis
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Stephan Vrabl
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Frieda A. Sorgenfrei
- Austrian Centre of Industrial Biotechnology, c/oInstitute of Chemistry, University of GrazHeinrichstraße 288010GrazAustria
| | - Sarah Bierbaumer
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Pramod P. Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaDBT-Pan IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaWadhwani Research Centre for BioengineeringIndian Institute of Technology BombayPowaiMumbai 400076India
| | | | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Field of Excellence BioHealth—University of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
15
|
Jurkaš V, Weissensteiner F, De Santis P, Vrabl S, Sorgenfrei FA, Bierbaumer S, Kara S, Kourist R, Wangikar PP, Winkler CK, Kroutil W. Transmembrane Shuttling of Photosynthetically Produced Electrons to Propel Extracellular Biocatalytic Redox Reactions in a Modular Fashion. Angew Chem Int Ed Engl 2022; 61:e202207971. [PMID: 35921249 PMCID: PMC9804152 DOI: 10.1002/anie.202207971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/05/2023]
Abstract
Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.
Collapse
Affiliation(s)
- Valentina Jurkaš
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | | | - Piera De Santis
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Stephan Vrabl
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Frieda A. Sorgenfrei
- Austrian Centre of Industrial Biotechnology, c/oInstitute of Chemistry, University of GrazHeinrichstraße 288010GrazAustria
| | - Sarah Bierbaumer
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Pramod P. Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaDBT-Pan IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaWadhwani Research Centre for BioengineeringIndian Institute of Technology BombayPowaiMumbai 400076India
| | | | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Field of Excellence BioHealth—University of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
16
|
Riaz S, Jiang Y, Xiao M, You D, Klepacz-Smółka A, Rasul F, Daroch M. Generation of miniploid cells and improved natural transformation procedure for a model cyanobacterium Synechococcus elongatus PCC 7942. Front Microbiol 2022; 13:959043. [PMID: 35958137 PMCID: PMC9360974 DOI: 10.3389/fmicb.2022.959043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The biotechnologically important and naturally transformable cyanobacterium, Synechococcus elongatus PCC 7942, possesses multiple genome copies irrespective of its growth rate or condition. Hence, segregating mutations across all genome copies typically takes several weeks. In this study, Synechococcus 7942 cultivation on a solid growth medium was optimised using different concentrations of agar, the addition of antioxidants, and overexpression of the catalase gene to facilitate the rapid acquisition of colonies and fully segregated lines. Synechococcus 7942 was grown at different temperatures and nutritional conditions. The miniploid cells were identified using flow cytometry and fluorimetry. The natural transformation was carried out using miniploid cells and validated with PCR and high performance liquid chromatography (HPLC). We identified that 0.35% agar concentration and 200 IU of catalase could improve the growth of Synechococcus 7942 on a solid growth medium. Furthermore, overexpression of a catalase gene enhanced the growth rate and supported diluted culture to grow on a solid medium. Our results reveal that high temperature and phosphate-depleted cells contain the lowest genome copies (2.4 ± 0.3 and 1.9 ± 0.2) and showed the potential to rapidly produce fully segregated mutants. In addition, higher antibiotic concentrations improve the selection of homozygous transformants while maintaining similar genome copies at a constant temperature. Based on our observation, we have an improved cultivation and natural transformation protocol for Synechococcus 7942 by optimising solid media culturing, generating low-ploidy cells that ultimately reduced the time required for the complete segregation of engineered lines.
Collapse
Affiliation(s)
- Sadaf Riaz
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, United States
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Meng Xiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, University of Technology, Łódź, Poland
| | - Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
17
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
18
|
Hu L, Guo S, Wang B, Fu R, Fan D, Jiang M, Fei Q, Gonzalez R. Bio-valorization of C1 gaseous substrates into bioalcohols: Potentials and challenges in reducing carbon emissions. Biotechnol Adv 2022; 59:107954. [DOI: 10.1016/j.biotechadv.2022.107954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
19
|
Jaiswal D, Nenwani M, Mishra V, Wangikar PP. Probing the metabolism of γ-glutamyl peptides in cyanobacteria via metabolite profiling and 13 C labeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:708-726. [PMID: 34727398 DOI: 10.1111/tpj.15564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are attractive model organisms for the study of photosynthesis and diurnal metabolism and as hosts for photoautotrophic production of chemicals. Exposure to bright light or environmental pollutants and a diurnal lifestyle of these prokaryotes may result in significant oxidative stress. Glutathione is a widely studied γ-glutamyl peptide that plays a key role in managing oxidative stress and detoxification of xenobiotics in cyanobacteria. The functional role and biosynthesis pathways of this tripeptide have been studied in detail in various phyla, including cyanobacteria. However, other γ-glutamyl peptides remain largely unexplored. We use an integrated approach to identify a number of γ-glutamyl peptides based on signature mass fragments and mass shifts in them in 13 C and 15 N enriched metabolite extracts. The newly identified compounds include γ-glutamyl dipeptides and derivatives of glutathione. Carbon backbones of the former turn over much faster than that of glutathione, suggesting that they follow a distinct biosynthesis pathway. Further, transients of isotopic 13 C enrichment show positional labeling in these peptides, which allows us to delineate the alternative biosynthesis pathways. Importantly, the amino acid of γ-glutamyl dipeptides shows much faster turnover compared to the glutamate moiety. The significant accumulation of γ-glutamyl dipeptides under slow-growth conditions combined with the results from dynamic 13 C labeling suggests that these compounds may act as reservoirs of amino acids in cyanobacteria.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Minal Nenwani
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vivek Mishra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|