1
|
Rovira-Alsina L, Romans-Casas M, Perona-Vico E, Ceballos-Escalera A, Balaguer MD, Bañeras L, Puig S. Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39739109 DOI: 10.1007/10_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products. Their versatility spans across gas, food, water and soil streams, offering multiple solutions at different technological readiness levels to advance several sustainable development goals (SDGs) set out in the 2030 Agenda. By critically examining recent studies, this chapter uncovers challenges, optimisation strategies, and future research directions for real-world MET implementations. The integration of economic perspectives with technological developments provides a comprehensive understanding of the opportunities and demands associated with METs in advancing the circular economy agenda, emphasising their pivotal role in waste minimisation, resource efficiency promotion, and closed-loop system renovation.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | | | - Elisabet Perona-Vico
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | - Lluís Bañeras
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
2
|
He J, Tang M, Zhong F, Deng J, Li W, Zhang L, Lin Q, Xia X, Li J, Guo T. Current trends and possibilities of typical microbial protein production approaches: a review. Crit Rev Biotechnol 2024; 44:1515-1532. [PMID: 38566484 DOI: 10.1080/07388551.2024.2332927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.
Collapse
Affiliation(s)
- JinTao He
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Min Tang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - FeiFei Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Changsha Institute for Food and Drug Control, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Lin Zhang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - QinLu Lin
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Juan Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
3
|
Durkin A, Vinestock T, Guo M. Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective. CARBON CAPTURE SCIENCE & TECHNOLOGY 2024; 13:None. [PMID: 39759871 PMCID: PMC11698304 DOI: 10.1016/j.ccst.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 01/07/2025]
Abstract
Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth's natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste. In this review, we address the recovery of resources from food and beverage processing wastewater (FPWW), which offers a synergistic solution to some of the environmental issues with traditional food production. Research on resource recovery from FPWW typically focuses on technologies to recover specific resources without considering integrative process systems to recover multiple resources while simultaneously satisfying regulations on final effluent quality. Process Systems Engineering (PSE) offers methodologies able to address this holistic process design problem, including modelling the trade-offs between competing objectives. Optimisation of FPWW treatment and resource recovery has significant scope to reduce the environmental impacts of food production systems. There is significant potential to recover carbon, nitrogen, and phosphorus resources while respecting effluent quality limits, even when the significant uncertainties inherent to wastewater systems are considered. This review article gives an overview of the environmental challenges we face, discussed within the framework of the planetary boundary, and highlights the impacts caused by the agri-food sector. This paper also presents a comprehensive review of the characteristics of FPWW and available technologies to recover carbon and nutrient resources from wastewater streams with a particular focus on bioprocesses. PSE research and modelling advances are discussed in this review. Based on this discussion, we conclude the article with future research directions.
Collapse
Affiliation(s)
- Alex Durkin
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - Tom Vinestock
- Department of Engineering, King’s College London, WC2R 2LS, UK
| | - Miao Guo
- Department of Engineering, King’s College London, WC2R 2LS, UK
| |
Collapse
|
4
|
Santillan E, Yasumaru F, Vethathirri RS, Thi SS, Hoon HY, Sian DCP, Wuertz S. Microbial community-based protein from soybean-processing wastewater as a sustainable alternative fish feed ingredient. Sci Rep 2024; 14:2620. [PMID: 38297061 PMCID: PMC10831065 DOI: 10.1038/s41598-024-51737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
As the global demand for food increases, aquaculture plays a key role as the fastest growing animal protein sector. However, existing aquafeeds contain protein ingredients that are not sustainable under current production systems. We evaluated the use of microbial community-based single cell protein (SCP), produced from soybean processing wastewater, as a partial fishmeal protein substitute in juvenile Asian seabass (Lates calcarifer). A 24-day feeding trial was conducted with a control fishmeal diet and a 50% fishmeal replacement with microbial community-based SCP as an experimental group, in triplicate tanks containing 20 fish each. Both diets met the protein, essential amino acids (except for lysine), and fat requirements for juvenile Asian sea bass. The microbial composition of the SCP was dominated by the genera Acidipropionibacterium and Propioniciclava, which have potential as probiotics and producers of valuable metabolites. The growth performance in terms of percent weight gain, feed conversion ratio (FCR), specific growth rate (SGR), and survival were not significantly different between groups after 24 days. The experimental group had less variability in terms of weight gain and FCR than the control group. Overall, microbial community-based protein produced from soybean processing wastewater has potential as a value-added feed ingredient for sustainable aquaculture feeds.
Collapse
Affiliation(s)
- Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Fanny Yasumaru
- Aquaculture Innovation Centre, Temasek Polytechnic, Singapore, 529757, Singapore
| | - Ramanujam Srinivasan Vethathirri
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Hui Yi Hoon
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Diana Chan Pek Sian
- Aquaculture Innovation Centre, Temasek Polytechnic, Singapore, 529757, Singapore.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
5
|
Minchón-Medina CA, Timaná-Palacios DJ, Alvarez-Risco A, Del-Aguila-Arcentales S, Yáñez JA. Factors associated with citations of articles on circular economy in the Web of Science: modeling for main publishers. Front Artif Intell 2023; 6:1217210. [PMID: 37841231 PMCID: PMC10570727 DOI: 10.3389/frai.2023.1217210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction The publication of articles on the circular economy has different associated factors to explain the citations registered in the Web of Science. Method Articles from the publishers Elsevier, MDPI, Taylor & Francis, Wiley, and Springer Nature were evaluated. Results It was expected that the older the article was, the more citations it had received, but this was not always the case. It was also recognized that there was a lower number of citations if the articles were too large or if they had too many references. Discussion This analysis helps to establish the factors that must be addressed in order to publish in journals that have a high citation rate. Conclusion: Based on speci?c articles and with speci?c references, it will be possible to increase the probability of citations.
Collapse
Affiliation(s)
- Carlos Alberto Minchón-Medina
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemática, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Daphne Jannet Timaná-Palacios
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemática, Universidad Nacional de Trujillo, Trujillo, Perú
| | | | | | - Jaime A. Yáñez
- Vicerrectorado de Investigación, Universidad Norbert Wiener, Lima, Perú
| |
Collapse
|
6
|
Vethathirri RS, Santillan E, Thi SS, Hoon HY, Wuertz S. Microbial community-based production of single cell protein from soybean-processing wastewater of variable chemical composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162241. [PMID: 36804981 DOI: 10.1016/j.scitotenv.2023.162241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The use of food-processing wastewaters to produce microbial biomass-derived single cell protein (SCP) is a sustainable way to meet the global food demand. Microbial community-based approaches to SCP production have the potential benefits of lower costs and greater resource recovery compared to pure cultures, yet they have received scarce attention. Here, SCP production from soybean-processing wastewaters using their existent microbial communities was evaluated. Six sequencing batch reactors of 4.5-L working volume were operated at 30 °C for 34 d in cycles consisting of 3-h anaerobic and 9-h aerobic phases. Four reactors received no microbial inoculum and the remaining two were amended with 1.5 L of a mixed culture from a prior SCP production cycle. Reactors produced more SCP when fed with wastewaters of higher soluble total Kjeldahl nitrogen (sTKN) content. The protein yield in biomass ranged from 0.53 to 3.13 g protein/g sTKN, with a maximum protein content of 50 %. The average removal of soluble chemical oxygen demand (sCOD) and soluble total nitrogen (sTN) was 92 % and 73 %, respectively. Distinct microbial genera were enriched in all six bioreactors, with Azospirillum, Rhodobacter, Lactococcus, and Novosphingobium dominating. The study showed that constituents in soybean wastewater can be converted to SCP and demonstrated the effect of variable influent wastewater composition on SCP production.
Collapse
Affiliation(s)
- Ramanujam Srinivasan Vethathirri
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Hui Yi Hoon
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
7
|
Matassa S, Boeckx P, Boere J, Erisman JW, Guo M, Manzo R, Meerburg F, Papirio S, Pikaar I, Rabaey K, Rousseau D, Schnoor J, Smith P, Smolders E, Wuertz S, Verstraete W. How can we possibly resolve the planet's nitrogen dilemma? Microb Biotechnol 2022; 16:15-27. [PMID: 36378579 PMCID: PMC9803332 DOI: 10.1111/1751-7915.14159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen is the most crucial element in the production of nutritious feeds and foods. The production of reactive nitrogen by means of fossil fuel has thus far been able to guarantee the protein supply for the world population. Yet, the production and massive use of fertilizer nitrogen constitute a major threat in terms of environmental health and sustainability. It is crucial to promote consumer acceptance and awareness towards proteins produced by highly effective microorganisms, and their potential to replace proteins obtained with poor nitrogen efficiencies from plants and animals. The fact that reactive fertilizer nitrogen, produced by the Haber Bosch process, consumes a significant amount of fossil fuel worldwide is of concern. Moreover, recently, the prices of fossil fuels have increased the cost of reactive nitrogen by a factor of 3 to 5 times, while international policies are fostering the transition towards a more sustainable agro-ecology by reducing mineral fertilizers inputs and increasing organic farming. The combination of these pressures and challenges opens opportunities to use the reactive nitrogen nutrient more carefully. Time has come to effectively recover used nitrogen from secondary resources and to upgrade it to a legal status of fertilizer. Organic nitrogen is a slow-release fertilizer, it has a factor of 2.5 or higher economic value per unit nitrogen as fertilizer and thus adequate technologies to produce it, for instance by implementing photobiological processes, are promising. Finally, it appears wise to start the integration in our overall feed and food supply chains of the exceptional potential of biological nitrogen fixation. Nitrogen produced by the nitrogenase enzyme, either in the soil or in novel biotechnology reactor systems, deserves to have a 'renaissance' in the context of planetary governance in general and the increasing number of people who desire to be fed in a sustainable way in particular.
Collapse
Affiliation(s)
- Silvio Matassa
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Jos Boere
- Allied Waters B.V.NieuwegeinThe Netherlands
| | - Jan Willem Erisman
- Institute of Environmental SciencesLeiden UniversityLeidenThe Netherlands
| | - Miao Guo
- Department of Engineering, Faculty of Natural, Mathematical and Engineering SciencesKing's College LondonLondonUK
| | - Raffaele Manzo
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | | | - Stefano Papirio
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | - Ilje Pikaar
- School of Civil EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Diederik Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Jerald Schnoor
- Department of Civil and Environmental EngineeringUniversity of IowaIowa CityIowaUSA
| | - Peter Smith
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Erik Smolders
- Division Soil and Water ManagementKatholieke Universiteit LeuvenLeuvenBelgium
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological UniversitySingaporeSingapore,School of Civil and Environmental Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
8
|
Can closed-loop microbial protein provide sustainable protein security against the hunger pandemic? CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|