1
|
Moon SJ, Hu Y, Dzieciatkowska M, Kim AR, Chen PL, Asara JM, D’Alessandro A, Perrimon N. Identification of high sugar diet-induced dysregulated metabolic pathways in muscle using tissue-specific metabolic models in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591006. [PMID: 38712132 PMCID: PMC11071505 DOI: 10.1101/2024.04.24.591006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Individual tissues perform highly specialized metabolic functions to maintain whole-body homeostasis. Although Drosophila serves as a powerful model for studying human metabolic diseases, a lack of tissue-specific metabolic models makes it challenging to quantitatively assess the metabolic processes of individual tissues and disease models in this organism. To address this issue, we reconstructed 32 tissue-specific genome-scale metabolic models (GEMs) using pseudo-bulk single cell transcriptomics data, revealing distinct metabolic network structures across tissues. Leveraging enzyme kinetics and flux analyses, we predicted tissue-dependent metabolic pathway activities, recapitulating known tissue functions and identifying tissue-specific metabolic signatures, as supported by metabolite profiling. Moreover, to demonstrate the utility of tissue-specific GEMs in a disease context, we examined the effect of a high sugar diet (HSD) on muscle metabolism. Together with 13C-glucose isotopic tracer studies, we identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a rate-limiting enzyme in response to HSD. Mechanistically, the decreased GAPDH activity was linked to elevated NADH/NAD+ ratio, caused by disturbed NAD+ regeneration rates, and oxidation of GAPDH. Furthermore, we introduced a pathway flux index to predict and validate additionally perturbed pathways, including fructose and butanoate metabolism. Altogether, our results represent a significant advance in generating quantitative tissue-specific GEMs and flux analyses in Drosophila, highlighting their use for identifying dysregulated metabolic pathways and their regulation in a human disease model.
Collapse
Affiliation(s)
- Sun Jin Moon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Po-Lin Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
2
|
Noble J, Macek Jilkova Z, Aspord C, Malvezzi P, Fribourg M, Riella LV, Cravedi P. Harnessing Immune Cell Metabolism to Modulate Alloresponse in Transplantation. Transpl Int 2024; 37:12330. [PMID: 38567143 PMCID: PMC10985621 DOI: 10.3389/ti.2024.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.
Collapse
Affiliation(s)
- Johan Noble
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
| | - Zuzana Macek Jilkova
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Grenoble, Grenoble, France
| | - Caroline Aspord
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Établissement Français du Sang Auvergne-Rhône-Alpes, R&D-Laboratory, Grenoble, France
| | - Paolo Malvezzi
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
| | - Miguel Fribourg
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| |
Collapse
|
3
|
Zhang J, Keibler MA, Dong W, Ghelfi J, Cordes T, Kanashova T, Pailot A, Linster CL, Dittmar G, Metallo CM, Lautenschlaeger T, Hiller K, Stephanopoulos G. Stable Isotope-Assisted Untargeted Metabolomics Identifies ALDH1A1-Driven Erythronate Accumulation in Lung Cancer Cells. Biomedicines 2023; 11:2842. [PMID: 37893215 PMCID: PMC10604529 DOI: 10.3390/biomedicines11102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Using an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Biomia Aps, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Mark A. Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Alnylam Pharmaceuticals, Cambridge, MA 02139, USA
| | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Department of Chemical Engineering, Department of Genetics, Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Thekla Cordes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Arnaud Pailot
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Christian M. Metallo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim Lautenschlaeger
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43221, USA
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
| |
Collapse
|
4
|
Woodall B, Fozo EM, Campagna SR. Dual stable isotopes enhance lipidomic studies in bacterial model organism Enterococcus faecalis. Anal Bioanal Chem 2023; 415:3593-3605. [PMID: 37204445 DOI: 10.1007/s00216-023-04750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Dual stable isotope probes of deuterium oxide and 13C fatty acid were demonstrated to probe the lipid biosynthesis cycle of a Gram-positive bacterium Enterococcus faecalis. As external nutrients and carbon sources often interact with metabolic processes, the use of dual-labeled isotope pools allowed for the simultaneous investigation of both exogenous nutrient incorporation or modification and de novo biosynthesis. Deuterium was utilized to trace de novo fatty acid biosynthesis through solvent-mediated proton transfer during elongation of the carbon chain while 13C-fatty acids were utilized to trace exogenous nutrient metabolism and modification through lipid synthesis. Ultra-high-performance liquid chromatography high-resolution mass spectrometry identified 30 lipid species which incorporated deuterium and/or 13C fatty acid into the membrane. Additionally, MS2 fragments of isolated lipids identified acyl tail position confirming enzymatic activity of PlsY in the incorporation of the 13C fatty acid into membrane lipids.
Collapse
Affiliation(s)
- Brittni Woodall
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
5
|
Fasimoye R, Dong W, Nirujogi RS, Rawat ES, Iguchi M, Nyame K, Phung TK, Bagnoli E, Prescott AR, Alessi DR, Abu-Remaileh M. Golgi-IP, a tool for multimodal analysis of Golgi molecular content. Proc Natl Acad Sci U S A 2023; 120:e2219953120. [PMID: 37155866 PMCID: PMC10193996 DOI: 10.1073/pnas.2219953120] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signaling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid Golgi immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi-resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome, and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified proteins not previously associated with the Golgi. Metabolite profiling established the human Golgi metabolome and revealed the enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol, and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease.
Collapse
Affiliation(s)
- Rotimi Fasimoye
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Wentao Dong
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Raja S. Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Eshaan S. Rawat
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Miharu Iguchi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Kwamina Nyame
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Toan K. Phung
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Monther Abu-Remaileh
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| |
Collapse
|
6
|
Scharenberg SG, Dong W, Ghoochani A, Nyame K, Levin-Konigsberg R, Krishnan AR, Rawat ES, Spees K, Bassik MC, Abu-Remaileh M. An SPNS1-dependent lysosomal lipid transport pathway that enables cell survival under choline limitation. SCIENCE ADVANCES 2023; 9:eadf8966. [PMID: 37075117 PMCID: PMC10115416 DOI: 10.1126/sciadv.adf8966] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Lysosomes degrade macromolecules and recycle their nutrient content to support cell function and survival. However, the machineries involved in lysosomal recycling of many nutrients remain to be discovered, with a notable example being choline, an essential metabolite liberated via lipid degradation. Here, we engineered metabolic dependency on lysosome-derived choline in pancreatic cancer cells to perform an endolysosome-focused CRISPR-Cas9 screen for genes mediating lysosomal choline recycling. We identified the orphan lysosomal transmembrane protein SPNS1 as critical for cell survival under choline limitation. SPNS1 loss leads to intralysosomal accumulation of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Mechanistically, we reveal that SPNS1 is a proton gradient-dependent transporter of LPC species from the lysosome for their re-esterification into phosphatidylcholine in the cytosol. Last, we establish that LPC efflux by SPNS1 is required for cell survival under choline limitation. Collectively, our work defines a lysosomal phospholipid salvage pathway that is essential under nutrient limitation and, more broadly, provides a robust platform to deorphan lysosomal gene function.
Collapse
Affiliation(s)
- Samantha G. Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Ali Ghoochani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Aswini R. Krishnan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA
| | - Eshaan S. Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C. Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Graphene quantum dots disturbed the energy homeostasis by influencing lipid metabolism of macrophages. Toxicology 2023; 484:153389. [PMID: 36481571 DOI: 10.1016/j.tox.2022.153389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
To investigate the potential factors of graphene quantum dots (GQDs), the assessment impact on the innate immune system is one of the most important. As the innate immune cell, macrophages possess phagocytosis activity and affect immunomodulation. Higher oxygen consumption rates (OCR) are used to gain insight into GQDs' effects on macrophages. Metabolomics profiling also revealed that GQDs exposure provoked an increase in phosphoglycerides, sphingolipids, and oxidized lipids in macrophages. The molecular pathways disrupted by GQDs were associated with lipid and energy metabolisms. Metabolite flux analysis was used to evaluate changes in the lipid metabolism of macrophages exposed to 100 µg mL-1 GQDs for 24 and 48 h. A combination of 13C-flux analysis and metabolomics revealed the regulation of lipid biosynthesis influenced the balance of energy metabolism. Integrated proteomics and metabolomics analyses showed that nicotinic acid adenine dinucleotide and coenzyme Q10 were significantly increased under GQDs treatment, alongside upregulated protein activity (e.g., Cox5b and Cd36). The experimental evidences were expected to be provided in this study to reveal the potential harmful effect from exposure to GQDs.
Collapse
|
8
|
Xu P, Zhou K. Editorial overview: Analytical biotechnology for healthcare, strain engineering, biosensing and synthetic biology. Curr Opin Biotechnol 2022; 77:102765. [PMID: 35988531 DOI: 10.1016/j.copbio.2022.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Xu
- Department of Chemical Engineering, Guangdong - Technion, Israel Institute of Technology, Shantou 515063, China.
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|