1
|
Zhao Y, Park I, Rubakhin SS, Bashir R, Vlasov Y, Sweedler JV. 1-Octanol-assisted ultra-small volume droplet microfluidics with nanoelectrospray ionization mass spectrometry. Anal Chim Acta 2024; 1321:342998. [PMID: 39155094 PMCID: PMC11413884 DOI: 10.1016/j.aca.2024.342998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time-dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes. RESULTS We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R2 = 0.99) between 0.4 μM and 25 μM with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF. SIGNIFICANCE The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.
Collapse
Affiliation(s)
- Yaoyao Zhao
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Insu Park
- Holonyak Micro & Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yurii Vlasov
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Park J, Kadam PS, Atiyas Y, Chhay B, Tsourkas A, Eberwine JH, Issadore DA. High-Throughput Single-Cell, Single-Mitochondrial DNA Assay Using Hydrogel Droplet Microfluidics. Angew Chem Int Ed Engl 2024; 63:e202401544. [PMID: 38470412 DOI: 10.1002/anie.202401544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
There is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95 % mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single-mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Bonirath Chhay
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - James H Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David A Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
3
|
Park I, Kim S, Brenden CK, Shi W, Iyer H, Bashir R, Vlasov Y. Highly Localized Chemical Sampling at Subsecond Temporal Resolution Enabled with a Silicon Nanodialysis Platform at Nanoliter per Minute Flows. ACS NANO 2024; 18:6963-6974. [PMID: 38378186 PMCID: PMC10919076 DOI: 10.1021/acsnano.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Microdialysis (MD) is a versatile and powerful technique for chemical profiling of biological tissues and is widely used for quantification of neurotransmitters, neuropeptides, metabolites, biomarkers, and drugs in the central nervous system as well as in dermatology, ophthalmology, and pain research. However, MD performance is severely limited by fundamental tradeoffs between chemical sensitivity, spatial resolution, and temporal response. Here, by using wafer-scale silicon microfabrication, we develop and demonstrate a nanodialysis (ND) sampling probe that enables highly localized chemical sampling with 100 μm spatial resolution and subsecond temporal resolution at high recovery rates. These performance metrics, which are 100-1000× superior to existing MD approaches, are enabled by a 100× reduction of the microfluidic channel cross-section, a corresponding drastic 100× reduction of flow rates to exceedingly slow few nL/min flows, and integration of a nanometer-thin nanoporous membrane with high transport flux into the probe sampling area. Miniaturized ND probes may allow for the minimally invasive and highly localized sampling and chemical profiling in live biological tissues with high spatiotemporal resolution for clinical, biomedical, and pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | - Weihua Shi
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Hrishikesh Iyer
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Rashid Bashir
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Yurii Vlasov
- University of Illinois at
Urbana−Champaign, Urbana, Illinois 61820, United States
| |
Collapse
|
4
|
Kurdadze T, Lamadie F, Nehme KA, Teychené S, Biscans B, Rodriguez-Ruiz I. On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale. SENSORS (BASEL, SWITZERLAND) 2024; 24:1529. [PMID: 38475065 DOI: 10.3390/s24051529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.
Collapse
Affiliation(s)
- Tamar Kurdadze
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Karen A Nehme
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Béatrice Biscans
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
5
|
Hu H, Singh AN, Lehnherr D, Mdluli V, Chun SW, Makarewicz AM, Gouker JR, Ukaegbu O, Li S, Wen X, McLaren DG, Velasquez JE, Moore JC, Galanie S, Appiah-Amponsah E, Regalado EL. Accelerating Pharmaceutical Process Development with an Acoustic Droplet Ejection-Multiple Reaction Monitoring-Mass Spectrometry Workflow. Anal Chem 2024; 96:1138-1146. [PMID: 38165811 DOI: 10.1021/acs.analchem.3c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Fast-paced pharmaceutical process developments (e.g., high-throughput experimentation, directed evolution, and machine learning) involve the introduction of fast, sensitive, and accurate analytical assays using limited sample volumes. In recent years, acoustic droplet ejection (ADE) coupled with an open port interface has been invented as a sampling technology for mass spectrometry, providing high-throughput nanoliter analytical measurements directly from the standard microplates. Herein, we introduce an ADE-multiple reaction monitoring-mass spectrometry (ADE-MRM-MS) workflow to accelerate pharmaceutical process research and development (PR&D). This systematic workflow outlines the selection of MRM transitions and optimization of assay parameters in a data-driven manner using rapid measurements (1 sample/s). The synergy between ADE sampling and MRM analysis enables analytical assays with excellent sensitivity, selectivity, and speed for PR&D reaction screenings. This workflow was utilized to develop new ADE-MRM-MS assays guiding a variety of industrial processes, including (1) screening of Ni-based catalysts for C-N cross-coupling reaction at 1 Hz and (2) high-throughput regioisomer analysis-enabled enzyme library screening for peptide ligation reaction. ADE-MRM-MS assays were demonstrated to deliver accurate results that are comparable to conventional liquid chromatography (LC) experiments while providing >100-fold throughput enhancement.
Collapse
Affiliation(s)
- Hang Hu
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Andrew N Singh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Velabo Mdluli
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephanie W Chun
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Amanda M Makarewicz
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Joseph R Gouker
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ophelia Ukaegbu
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Shasha Li
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Xiujuan Wen
- Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David G McLaren
- Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Juan E Velasquez
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jeffrey C Moore
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephanie Galanie
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Erik L Regalado
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|