1
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
2
|
Hockley JRF, Smith ESJ, Bulmer DC. Human visceral nociception: findings from translational studies in human tissue. Am J Physiol Gastrointest Liver Physiol 2018; 315:G464-G472. [PMID: 29848022 DOI: 10.1152/ajpgi.00398.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peripheral sensitization of nociceptors during disease has long been recognized as a leading cause of inflammatory pain. However, a growing body of data generated over the last decade has led to the increased understanding that peripheral sensitization is also an important mechanism driving abdominal pain in highly prevalent functional bowel disorders, in particular, irritable bowel syndrome (IBS). As such, the development of drugs that target pain-sensing nerves innervating the bowel has the potential to be a successful analgesic strategy for the treatment of abdominal pain in both organic and functional gastrointestinal diseases. Despite the success of recent peripherally restricted approaches for the treatment of IBS, not all drugs that have shown efficacy in animal models of visceral pain have reduced pain end points in clinical trials of IBS patients, suggesting innate differences in the mechanisms of pain processing between rodents and humans and, in particular, how we model disease states. To address this gap in our understanding of peripheral nociception from the viscera and the body in general, several groups have developed experimental systems to study nociception in isolated human tissue and neurons, the findings of which we discuss in this review. Studies of human tissue identify a repertoire of human primary afferent subtypes comparable to rodent models including a nociceptor population, the targeting of which will shape future analgesic development efforts. Detailed mechanistic studies in human sensory neurons combined with unbiased RNA-sequencing approaches have revealed fundamental differences in not only receptor/channel expression but also peripheral pain pathways.
Collapse
Affiliation(s)
- James R F Hockley
- Department of Pharmacology, University of Cambridge , Cambridge , United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge , Cambridge , United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
3
|
Foadi N. Modulation of sodium channels as pharmacological tool for pain therapy-highlights and gaps. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:481-488. [PMID: 29572558 DOI: 10.1007/s00210-018-1487-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Voltage-gated sodium channels are crucially involved in the transduction and transmission of nociceptive signals and pathological pain states. In the past decades, a lot of effort has been spent examining and characterizing biophysical properties of the different sodium channels and their role in signaling pathways. Several gains of function mutations of the sodium channels Nav1.7, Nav1.8, and Nav1.9 are associated with pain disorders. Due to their critical role in nociceptive pathways voltage-gated sodium channels are regarded interesting targets for pharmacological pain treatment. However we still need to fill the gap that exists in the translation of efficacy in preclinical in vitro experiments and in models of pain into the clinic. This review summarizes biological and electrophysiological properties of voltage-gated sodium channels and aims to discuss limitations and promising pharmacological strategies in sodium channel research in the context of pain therapy.
Collapse
Affiliation(s)
- Nilufar Foadi
- Clinic for Anaesthesia and Critical Care Medicine, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
4
|
McGuire C, Boundouki G, Hockley JRF, Reed D, Cibert-Goton V, Peiris M, Kung V, Broad J, Aziz Q, Chan C, Ahmed S, Thaha MA, Sanger GJ, Blackshaw LA, Knowles CH, Bulmer DC. Ex vivo study of human visceral nociceptors. Gut 2018; 67:86-96. [PMID: 27654583 PMCID: PMC5754853 DOI: 10.1136/gutjnl-2016-311629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The development of effective visceral analgesics free of deleterious gut-specific side effects is a priority. We aimed to develop a reproducible methodology to study visceral nociception in human tissue that could aid future target identification and drug evaluation. DESIGN Electrophysiological (single unit) responses of visceral afferents to mechanical (von Frey hair (VFH) and stretch) and chemical (bradykinin and ATP) stimuli were examined. Thus, serosal afferents (putative nociceptors) were used to investigate the effect of tegaserod, and transient receptor potential channel, vanilloid 4 (TRPV4) modulation on mechanical responses. RESULTS Two distinct afferent fibre populations, serosal (n=23) and muscular (n=21), were distinguished based on their differences in sensitivity to VFH probing and tissue stretch. Serosal units displayed sensitivity to key algesic mediators, bradykinin (6/14 units tested) and ATP (4/10), consistent with a role as polymodal nociceptors, while muscular afferents are largely insensitive to bradykinin (0/11) and ATP (1/10). Serosal nociceptor mechanosensitivity was attenuated by tegaserod (-20.8±6.9%, n=6, p<0.05), a treatment for IBS, or application of HC067047 (-34.9±10.0%, n=7, p<0.05), a TRPV4 antagonist, highlighting the utility of the preparation to examine the mechanistic action of existing drugs or novel analgesics. Repeated application of bradykinin or ATP produced consistent afferent responses following desensitisation to the first application, demonstrating their utility as test stimuli to evaluate analgesic activity. CONCLUSIONS Functionally distinct subpopulations of human visceral afferents can be demonstrated and could provide a platform technology to further study nociception in human tissue.
Collapse
Affiliation(s)
- Cian McGuire
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - George Boundouki
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James R F Hockley
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Reed
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vincent Cibert-Goton
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Victor Kung
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John Broad
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christopher Chan
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shafi Ahmed
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohamed A Thaha
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth J Sanger
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charles H Knowles
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David C Bulmer
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Nullens S, Deiteren A, Jiang W, Keating C, Ceuleers H, Francque S, Grundy D, De Man JG, De Winter BY. In Vitro Recording of Mesenteric Afferent Nerve Activity in Mouse Jejunal and Colonic Segments. J Vis Exp 2016. [PMID: 27805592 DOI: 10.3791/54576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent nerves not only convey information concerning normal physiology, but also signal disturbed homeostasis and pathophysiological processes of the different organ systems from the periphery towards the central nervous system. As such, the increased activity or 'sensitization' of mesenteric afferent nerves has been allocated an important role in the pathophysiology of visceral hypersensitivity and abdominal pain syndromes. Mesenteric afferent nerve activity can be measured in vitro in an isolated intestinal segment that is mounted in a purpose-built organ bath and from which the splanchnic nerve is isolated, allowing researchers to directly assess nerve activity adjacent to the gastrointestinal segment. Activity can be recorded at baseline in standardized conditions, during distension of the segment or following the addition of pharmacological compounds delivered intraluminally or serosally. This technique allows the researcher to easily study the effect of drugs targeting the peripheral nervous system in control specimens; besides, it provides crucial information on how neuronal activity is altered during disease. It should be noted however that measuring afferent neuronal firing activity only constitutes one relay station in the complex neuronal signaling cascade, and researchers should bear in mind not to overlook neuronal activity at other levels (e.g., dorsal root ganglia, spinal cord or central nervous system) in order to fully elucidate the complex neuronal physiology in health and disease. Commonly used applications include the study of neuronal activity in response to the administration of lipopolysaccharide, and the study of afferent nerve activity in animal models of irritable bowel syndrome. In a more translational approach, the isolated mouse intestinal segment can be exposed to colonic supernatants from IBS patients. Furthermore, a modification of this technique has been recently shown to be applicable in human colonic specimens.
Collapse
Affiliation(s)
- Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Annemie Deiteren
- Visceral Pain Group, Discipline of Medicine, University of Adelaide
| | - Wen Jiang
- Department of Biomedical Sciences, University of Sheffield
| | - Christopher Keating
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp;
| |
Collapse
|
6
|
Hockley JRF, Winchester WJ, Bulmer DC. The voltage-gated sodium channel NaV 1.9 in visceral pain. Neurogastroenterol Motil 2016; 28:316-26. [PMID: 26462871 DOI: 10.1111/nmo.12698] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Visceral pain is a common symptom for patients with gastrointestinal (GI) disease. It is unpleasant, debilitating, and represents a large unmet medical need for effective clinical treatments. Recent studies have identified NaV 1.9 as an important regulator of afferent sensitivity in visceral pain pathways to mechanical and inflammatory stimuli, suggesting that NaV 1.9 could represent an important therapeutic target for the treatment of visceral pain. This potential has been highlighted by the identification of patients who have an insensitivity to pain or painful neuropathies associated with mutations in SCN11A, the gene encoding voltage-gated sodium channel subtype 1.9 (NaV 1.9). PURPOSE Here, we address the role of NaV 1.9 in visceral pain and what known human NaV 1.9 mutants can tell us about NaV 1.9 function in gut physiology and pathophysiology.
Collapse
Affiliation(s)
- J R F Hockley
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - D C Bulmer
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Valentin N, Acosta A, Camilleri M. Early investigational therapeutics for gastrointestinal motility disorders: from animal studies to Phase II trials. Expert Opin Investig Drugs 2016; 24:769-79. [PMID: 25971881 DOI: 10.1517/13543784.2015.1025132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The most common gastrointestinal disorders that include evidence of dysmotility include: gastroparesis, the lower functional gastrointestinal disorders associated with altered bowel function (such as chronic [functional] diarrhea, chronic idiopathic constipation) and opioid-induced constipation. These conditions, which are grouped as gastrointestinal motility and functional disorders, are characterized by abnormal motor, sensory or secretory functions that alter bowel function and result in a significant disease burden, since currently available treatments do not completely alleviate symptoms. New drugs are being developed for these disorders, targeting mechanisms involved in the pathophysiology of these diseases, specifically, motor function, intestinal secretion and bile acid modulation. AREAS COVERED The article provides a brief overview of motility disorders and the drugs approved and currently available for these indications. It also provides an evaluation of the efficacy, safety and possible mechanisms of the drugs currently under investigation for the treatment of gastroparesis, chronic diarrhea, chronic idiopathic constipation and opioid-induced constipation, based on animal to Phase II studies. Medications with complete Phase III trials are excluded from this discussion. EXPERT OPINION Treatment of gastrointestinal motility disorders requires the understanding of the pathophysiological mechanisms, biomarkers to identify subgroups of these disorders and robust pharmacological studies from animal to Phase II studies. These are prerequisites for the development of efficacious medications and individualizing therapy in order to enhance the treatment of these patients.
Collapse
Affiliation(s)
- Nelson Valentin
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic , 200 First St. S.W., Charlton Bldg, Rm. 8-110, Rochester, MN 55905 , USA +1 507 266 2305 ;
| | | | | |
Collapse
|
8
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|
9
|
Currò D. K+ channels as potential targets for the treatment of gastrointestinal motor disorders. Eur J Pharmacol 2014; 733:97-101. [PMID: 24726846 DOI: 10.1016/j.ejphar.2014.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
K(+) channels play important functional roles in excitable cells, as neurons and muscle cells. The activation or inhibition of K(+) channels hyperpolarizes or depolarizes the cell membrane, respectively. These effects determine in the smooth muscle decrease or increase in Ca(2+) influx through voltage-gated Ca(2+) (CaV1.2) channels and relaxation or contraction, respectively. Recent studies highlight the importance of voltage-dependent type 7 K(+) (KV7 or KCNQ) channels in regulating muscle tone and contractility in stomach and colon. KV7 channels, that include 5 subtypes (KV7.1-7.5), are activated at relatively negative potential values, close to those of the resting membrane potential for the smooth muscle cells of some segments of the gastrointestinal tract. Thus, they contribute to set the resting membrane potential and their blockade induces increase in smooth muscle contractility in stomach and colon. In addition, KV7 channel activation produces profound relaxations of gastric and colonic smooth muscle. Therefore, KV7 channel activators could be used to relax the smooth muscle and relieve symptoms in diseases such as functional dyspepsia and irritable bowel syndrome with prevalent diarrhea. The discovery of activators selective for the channel subtypes present in the smooth muscle, mainly KV7.4 and 7.5, would allow avoiding adverse cardiac and nervous system effects. A further step forward would be characterizing putative differences among the KV7 channel subtypes expressed in the various smooth muscles and synthesizing molecules specific for the gastrointestinal smooth muscle.
Collapse
Affiliation(s)
- Diego Currò
- Institute of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, L.go F. Vito 1, 00168 Rome, Italy.
| |
Collapse
|
10
|
Vermeulen W, Man JGD, Pelckmans PA, Winter BYD. Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol 2014; 20:1005-1020. [PMID: 24574773 PMCID: PMC3921524 DOI: 10.3748/wjg.v20.i4.1005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/18/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic abdominal pain accompanying intestinal inflammation emerges from the hyperresponsiveness of neuronal, immune and endocrine signaling pathways within the intestines, the peripheral and the central nervous system. In this article we review how the sensory nerve information from the healthy and the hypersensitive bowel is encoded and conveyed to the brain. The gut milieu is continuously monitored by intrinsic enteric afferents, and an extrinsic nervous network comprising vagal, pelvic and splanchnic afferents. The extrinsic afferents convey gut stimuli to second order neurons within the superficial spinal cord layers. These neurons cross the white commissure and ascend in the anterolateral quadrant and in the ipsilateral dorsal column of the dorsal horn to higher brain centers, mostly subserving regulatory functions. Within the supraspinal regions and the brainstem, pathways descend to modulate the sensory input. Because of this multiple level control, only a small proportion of gut signals actually reaches the level of consciousness to induce sensation or pain. In inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients, however, long-term neuroplastic changes have occurred in the brain-gut axis which results in chronic abdominal pain. This sensitization may be driven on the one hand by peripheral mechanisms within the intestinal wall which encompasses an interplay between immunocytes, enterochromaffin cells, resident macrophages, neurons and smooth muscles. On the other hand, neuronal synaptic changes along with increased neurotransmitter release in the spinal cord and brain leads to a state of central wind-up. Also life factors such as but not limited to inflammation and stress contribute to hypersensitivity. All together, the degree to which each of these mechanisms contribute to hypersensitivity in IBD and IBS might be disease- and even patient-dependent. Mapping of sensitization throughout animal and human studies may significantly improve our understanding of sensitization in IBD and IBS. On the long run, this knowledge can be put forward in potential therapeutic targets for abdominal pain in these conditions.
Collapse
|
11
|
De Ponti F. Drug development for the irritable bowel syndrome: current challenges and future perspectives. Front Pharmacol 2013; 4:7. [PMID: 23378837 PMCID: PMC3561631 DOI: 10.3389/fphar.2013.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/10/2013] [Indexed: 12/15/2022] Open
Abstract
Medications are frequently used for the treatment of patients with the irritable bowel syndrome (IBS), although their actual benefit is often debated. In fact, the recent progress in our understanding of the pathophysiology of IBS, accompanied by a large number of preclinical and clinical studies of new drugs, has not been matched by a significant improvement of the armamentarium of medications available to treat IBS. The aim of this review is to outline the current challenges in drug development for IBS, taking advantage of what we have learnt through the Rome process (Rome I, Rome II, and Rome III). The key questions that will be addressed are: (a) do we still believe in the "magic bullet," i.e., a very selective drug displaying a single receptor mechanism capable of controlling IBS symptoms? (b) IBS is a "functional disorder" where complex neuroimmune and brain-gut interactions occur and minimal inflammation is often documented: do we need to target gut motility, visceral sensitivity, or minimal inflammation? (c) are there validated biomarkers (accepted by regulatory agencies) for studies of sensation and motility with experimental medications in humans? (d) do animal models have predictive and translational value? (e) in the era of personalized medicine, does pharmacogenomics applied to these medications already play a role? Finally, this review will briefly outline medications currently used or in development for IBS. It is anticipated that a more focused interaction between basic science investigators, pharmacologists, and clinicians will lead to better treatment of IBS.
Collapse
Affiliation(s)
- Fabrizio De Ponti
- Department of Medical and Surgical Sciences, University of BolognaBologna, Italy
| |
Collapse
|
12
|
Banasiewicz T, Krokowicz Ł, Stojcev Z, Kaczmarek BF, Kaczmarek E, Maik J, Marciniak R, Krokowicz P, Walkowiak J, Drews M. Microencapsulated sodium butyrate reduces the frequency of abdominal pain in patients with irritable bowel syndrome. Colorectal Dis 2013; 15:204-9. [PMID: 22738315 DOI: 10.1111/j.1463-1318.2012.03152.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Abdominal pain, defaecation disorder and change of bowel habit are the commonest symptoms of irritable bowel syndrome (IBS). The effect of microencapsulated sodium butyrate (MSB) was assessed on the severity of symptoms in patients with IBS. METHOD Sixty-six patients treated with one of the standard pharmacological therapies for at least 3 months were included in the study. They were randomized to receive MSB as a supplemental treatment to standard therapy or to receiving a placebo. Previous pharmacological therapy was continued throughout the study in both arms. Clinical evaluation was performed at baseline, 4 and 12 weeks. Each assessment was documented by a validated visual analogue score questionnaire measuring the severity of selected clinical symptoms, a closed-end questionnaire measuring the frequency of selected clinical symptoms and a single closed-end question measuring the subjective improvement of symptoms. RESULTS After 4 weeks there was a significant decrease of pain during defaecation in the MSB group which extended to improvement of urgency and bowel habit at 12 weeks. Reduction of abdominal pain, flatulence and disordered defaecation was not statistically significant. CONCLUSIONS MSB as a supplemental therapy can reduce the frequency of selected clinical symptoms in patients with IBS, without significant influence on reducing symptom severity.
Collapse
Affiliation(s)
- T Banasiewicz
- Department of General Surgery, Oncologic Gastroenterologic Surgery and Plastic Surgery, Poznań University of Medical Sciences, Poznań, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mao J. Current challenges in translational pain research. Trends Pharmacol Sci 2012; 33:568-73. [PMID: 22959652 PMCID: PMC3482290 DOI: 10.1016/j.tips.2012.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022]
Abstract
The current gap between basic science research and the development of new analgesics presents a serious challenge for the future of pain medicine. This challenge is particularly difficult in the search for better treatment for comorbid chronic pain conditions because: (i) animal 'pain' models do not simulate multidimensional clinical pain conditions; (ii) animal behavioral testing does not assess subjective pain experience; (iii) preclinical data provide little assurance regarding the direction of new analgesic development; and (iv) clinical trials routinely use over-sanitized study populations and fail to capture the multidisciplinary consequences of comorbid chronic pain. Therefore, a paradigm shift in translational pain research is necessary to transform the current strategy from focusing on molecular switches of nociception to studying pain as a system-based integral response that includes psychosocial comorbidities. Several key issues of translational pain research are discussed in this review.
Collapse
Affiliation(s)
- Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Abstract
Visceral pain is studied at the level of the primary afferent fiber, spinal cord, subcortical, and cortical levels electrophysiologically and using brain imaging, which provides an objective measure of excitation at each level. However, correlation of these with actual perception of pain in conscious animal models has been problematic, and we rely on indirect measures in most preclinical research. The main method is electromyographic recording of abdominal muscle contractions in response to colorectal distension (CRD), which may reflect reflexes set up at several levels of the above pathway. Several experimental treatments for visceral pain have failed in clinical trials, possibly because of failure to translate from preclinical observations on CRD responses in animals to perception of spontaneous events in patients. Therefore, we need more objective outcomes. In this NGM issue, Hultin et al. show feasibility of routine recordings of cortical evoked electrical potentials (CEP) using implanted cranial electrodes in response to graded CRD in rats. CEP comprised three temporal components with latencies of approximately 20-50 ms, 90-180 ms, and 300 ms, which were reproducible and graded in intensity and latency with distension pressure. From this basic study it is clear that colorectal evoked potentials can be recorded reliably in awake rats and may serve as an objective marker for centrally projecting visceral sensory signals in rodents. It remains to be seen how these responses are affected by drugs under development for clinical management of visceral pain, and if there is improved translation.
Collapse
Affiliation(s)
- L A Blackshaw
- Wingate Institute for Neurogastroenterology, Centre for Digestive Diseases, Institute of Cell and Molecular Science, Barts, and The London School of Medicine and Dentistry, Queen Mary University of London, UK.
| |
Collapse
|