1
|
Alemu BK, Lee MW, Leung MBW, Lee WF, Wang Y, Wang CC, Lau SL. Preventive effect of prenatal maternal oral probiotic supplementation on neonatal jaundice (POPS Study): A protocol for the randomised double-blind placebo-controlled clinical trial. BMJ Open 2024; 14:e083641. [PMID: 38851232 PMCID: PMC11163667 DOI: 10.1136/bmjopen-2023-083641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
INTRODUCTION Neonatal jaundice is a common and life-threatening health problem in neonates due to overaccumulation of circulating unconjugated bilirubin. Gut flora has a potential influence on bilirubin metabolism. The infant gut microbiome is commonly copied from the maternal gut. During pregnancy, due to changes in dietary habits, hormones and body weight, maternal gut dysbiosis is common, which can be stabilised by probiotics supplementation. However, whether probiotic supplements can reach the baby through the mother and reduce the incidence of neonatal jaundice has not been studied yet. Therefore, we aim to evaluate the effect of prenatal maternal probiotic supplementation on the incidence of neonatal jaundice. METHODS AND ANALYSIS This is a randomised double-blind placebo-controlled clinical trial among 94 pregnant women (47 in each group) in a tertiary hospital in Hong Kong. Voluntary eligible participants will be recruited between 28 and 35 weeks of gestation. Computer-generated randomisation and allocation to either the intervention or control group will be carried out. Participants will take either one sachet of Vivomixx (450 billion colony-forming units per sachet) or a placebo per day until 1 week post partum. Neither the study participants nor researchers will know the randomisation and allocation. The intervention will be initiated at 36 weeks of gestation. Neonatal bilirubin level will be measured to determine the primary outcome (hyperbilirubinaemia) while the metagenomic microbiome profile of breast milk and maternal and infant stool samples as well as pregnancy outcomes will be secondary outcomes. Binary logistic and linear regressions will be carried out to assess the association of the microbiome data with different clinical outcomes. ETHICS AND DISSEMINATION Ethics approval is obtained from the Joint CUHK-NTEC Clinical Research Ethics Committee, Hong Kong (CREC Ref: 2023.100-T). Findings will be published in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER NCT06087874.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - May Wing Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Maran Bo Wah Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wing Fong Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Institute of Health Sciences, The Chinese University, Hong Kong, Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, Joint Laboratory for Reproductive Medicine, The Chinese University, Hong Kong, Hong Kong SAR
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
2
|
Sun C, Liu Q, Ye X, Li R, Meng M, Han X. The Role of Probiotics in Managing Glucose Homeostasis in Adults with Prediabetes: A Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:5996218. [PMID: 38529045 PMCID: PMC10963111 DOI: 10.1155/2024/5996218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Methods The Preferred Reporting Items for Systematic Reviews and Analysis checklist was used. A comprehensive literature search of the PubMed, Embase, and Cochrane Library databases was conducted through August 2022 to assess the impact of probiotics on blood glucose, lipid, and inflammatory markers in adults with prediabetes. Data were pooled using a random effects model and were expressed as standardized mean differences (SMDs) and 95% confidence interval (CI). Heterogeneity was evaluated and quantified as I2. Results Seven publications with a total of 550 patients were included in the meta-analysis. Probiotics were found to significantly reduce the levels of glycosylated hemoglobin (HbA1c) (SMD -0.44; 95% CI -0.84, -0.05; p = 0.03; I2 = 76.13%, p < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (SMD -0.27; 95% CI -0.45, -0.09; p < 0.001; I2 = 0.50%, p = 0.36) and improve the levels of high-density lipoprotein cholesterol (HDL) (SMD -8.94; 95% CI -14.91, -2.97; p = 0.003; I2 = 80.24%, p < 0.001), when compared to the placebo group. However, no significant difference was observed in fasting blood glucose, insulin, total cholesterol, triglycerides, low-density lipoprotein cholesterol, interleukin-6, tumor necrosis factor-α, and body mass index. Subgroup analyses showed that probiotics significantly reduced HbA1c in adults with prediabetes in Oceania, intervention duration of ≥3 months, and sample size <30. Conclusions Collectively, our meta-analysis revealed that probiotics had a significant impact on reducing the levels of HbA1c and HOMA-IR and improving the level of HDL in adults with prediabetes, which indicated a potential role in regulating blood glucose homeostasis. However, given the limited number of studies included in this analysis and the potential for bias, further large-scale, higher-quality randomized controlled trials are needed to confirm these findings. This trial is registered with CRD42022358379.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaona Ye
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ronghua Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miaomiao Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingjun Han
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Zhang J, He Z, He Y, Xie J, Yang G, Niu Z, Shen T, Li F. Fecal fermentation behavior and immunomodulatory activity of arabinoxylan from wheat bran. Int J Biol Macromol 2024; 256:128283. [PMID: 38007031 DOI: 10.1016/j.ijbiomac.2023.128283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Arabinoxylan (AX) is the predominant non-starch polysaccharide in wheat bran, known for its significant immunomodulatory activity. However, existing literature lacks comprehensive studies on AX fermentation by gut microbiota and its subsequent immunomodulatory mechanisms. In the present study, we aimed to investigate the effects of AX on the composition of gut microbiota and the characteristics of its immunomodulatory activity. For this purpose, an in vitro fermentation system and a cyclophosphamide-induced immunosuppressed mouse model were established to explore both the in vitro and in vivo effects of AX on gut microbiota and immune modulation. The results demonstrated that AX was metabolized by gut microbes and in turn to promoting the production of short-chain fatty acids (SCFAs), which concurrently led to a significant decrease in pH. Furthermore, AX treatment significantly changed the microbial composition, elevated the relative abundance of Actinobacteria while reducing that of Bacteroidetes. In the immunosuppressed mice, AX administration improved the thymus and spleen indices, mitigated spleen injury, and bolstered overall immunity. Moreover, AX altered the gut microbiota structure, increasing the abundance of Bacteroidetes and decreasing that of Firmicutes. These findings suggest that wheat bran-derived AX can modulate intestinal microbial composition, improve gut microecology, and enhance host immunity by targeting gut microbiota.
Collapse
Affiliation(s)
- Ji Zhang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Yang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Jing Xie
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Guigui Yang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ting Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Mollazadeh-Narestan Z, Yavarikia P, Homayouni-Rad A, Samadi Kafil H, Mohammad-Alizadeh-Charandabi S, Gholizadeh P, Mirghafourvand M. Comparing the Effect of Probiotic and Fluconazole on Treatment and Recurrence of Vulvovaginal Candidiasis: a Triple-Blinded Randomized Controlled Trial. Probiotics Antimicrob Proteins 2023; 15:1436-1446. [PMID: 36198994 PMCID: PMC9534588 DOI: 10.1007/s12602-022-09997-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Vaginitis is a common problem in women. Candida albicans is responsible for more than 85% of vaginal fungal infections. The aim of this study was to compare the effects of probiotic and fluconazole on the treatment and recurrence of vulvovaginal candidiasis (VVC). This triple-blinded randomized controlled trial was conducted on 80 married women, aged 18-49 years, with VVC, as confirmed by clinical and laboratory diagnosis. The participants were allocated into two groups using blocked randomization method. The fluconazole-treated group received a single dose of fluconazole (150 mg) supplemented with 30 placebo capsules of probiotic, and the probiotic-treated group got 30 probiotic capsules containing 1 × 109 CFU/g LA-5 with 1 fluconazole placebo capsule. The samples were taken from patients to evaluate the vaginal pH and microbiological tests before, 30-35 days, and 60-65 days after starting the treatment. The signs and symptoms were assessed before the intervention and the first and second follow-ups. Chi-square, Fisher's exact, independent t, and ANCOVA tests were then used for data analysis. There was no statistically significant difference between the two groups (p = 0.127) in the frequency of negative culture 30-35 days after starting the treatment, but the frequency of negative culture 60-65 days after starting treatment in the fluconazole group was significantly higher than that of the probiotic group (p = 0.016). The abnormal discharge and vulvovaginal erythema in the first and second follow-ups and also pruritus in the second follow-up in the fluconazole group were significantly lower than those in the probiotic group (p < 0.05). There was, however, no statistically significant difference in burning, frequent urination, dysuria, and dyspareunia between the groups (p > 0.05). Lactobacillus acidophilus supplementation had an effect similar to that of fluconazole in treating most symptoms of VVC, but it was less effective than the latter in preventing recurrence. Trial Registration: Iranian Registry of Clinical Trials (IRCT): IRCT20110826007418N5. Date of registration: 3 March 2021; URL: https://en.irct.ir/trial/50819 ; Date of first registration: 10 March 2021.
Collapse
Affiliation(s)
- Zahra Mollazadeh-Narestan
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Yavarikia
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Nursing and Midwifery Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Dondurey E, Kosenko I, Kostitsyna E, Polkovnikova Y, Shestakova A. The probiotics influence on the acute osmo-secretory diarrhea in children. CHILDREN INFECTIONS 2023. [DOI: 10.22627/2072-8107-2023-22-1-32-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- E. Dondurey
- Scientific Research Institute of Influenza named after A.A. Smorodintsev of the Ministry of Health of the Russian Federation; Children's City Clinical Hospital No. 5 named after N.F. Filatov
| | - I. Kosenko
- Children's City Clinical Hospital No. 5 named after N.F. Filatov; St. Petersburg State Pediatric Medical University of the Ministry of Health of the Russian Federation
| | - E. Kostitsyna
- Children's City Clinical Hospital No. 5 named after N.F. Filatov
| | - Y. Polkovnikova
- Children's City Clinical Hospital No. 5 named after N.F. Filatov
| | - A. Shestakova
- Children's City Clinical Hospital No. 5 named after N.F. Filatov
| |
Collapse
|
6
|
Assad SE, Fragomeno M, Rumbo M, Minnaard J, Pérez PF. The immunomodulating effect of bifidobacteria is modified by the anticoagulant acenocoumarol. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Ahlawat A, Basak S, Ananthanarayan L. Optimization of spray‐dried probiotic buttermilk powder using response surface methodology and evaluation of its shelf stability. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anu Ahlawat
- Department of Food Engineering and Technology Institute of Chemical Technology Matunga, Mumbai – 400 019 India
| | - Somnath Basak
- Department of Food Engineering and Technology Institute of Chemical Technology Matunga, Mumbai – 400 019 India
| | - Laxmi Ananthanarayan
- Department of Food Engineering and Technology Institute of Chemical Technology Matunga, Mumbai – 400 019 India
| |
Collapse
|
8
|
The effect of probiotics on mood and sleep quality in postmenopausal women: A triple-blind randomized controlled trial. Clin Nutr ESPEN 2022; 50:15-23. [DOI: 10.1016/j.clnesp.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
9
|
Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complexity of coronavirus disease 2019 (COVID-19)’s pathophysiology is such that microbial dysbiosis in the lung and gastrointestinal (GI) microbiota may be involved in its pathogenic process. GI microbiota dysbiosis has been associated with respiratory disorders, including COVID-19, as well as sporadic colorectal cancer (CRC) through imbalanced microbiota and compromised immune response. It is pertinent to understand the possible role of probiotics in stabilizing the microbial environment and maintaining the integrity of the respiratory and GI tracts in SARS-CoV-2 induced dysbiosis and colorectal carcinogenesis. The long-term implication of SARS-CoV-2 in GI dysbiosis via microbiota-gut-lung cross-talk could increase the risk of new CRC diagnosis or worsen the condition of previously diagnosed individuals. Recent knowledge shows that the immune-modulatory response to probiotics is shifting the beneficial use of probiotics towards the treatment of various diseases. In this review, we highlight the potential impact of probiotics on SARS-CoV-2 infection associated with CRC through microbiota imbalance in COVID-19 patients.
Collapse
|
10
|
An BC, Yoon YS, Park HJ, Park S, Kim TY, Ahn JY, Kwon D, Choi O, Heo JY, Ryu Y, Kim JH, Eom H, Chung MJ. Toxicological Evaluation of a Probiotic-Based Delivery System for P8 Protein as an Anti-Colorectal Cancer Drug. Drug Des Devel Ther 2021; 15:4761-4793. [PMID: 34866901 PMCID: PMC8637785 DOI: 10.2147/dddt.s319930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/23/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to toxicological evaluate a probiotics-based delivery system for p8 protein as an anti-colorectal cancer drug. Introduction Lactic acid bacteria (LAB) have been widely ingested for many years and are regarded as very safe. Recently, a Pediococcus pentosaceus SL4 (PP) strain that secretes the probiotic-derived anti-cancer protein P8 (PP-P8) has been developed as an anti-colorectal cancer (CRC) biologic by Cell Biotech. We initially identified a Lactobacillus rhamnosus (LR)-derived anti-cancer protein, P8, that suppresses CRC growth. We also showed that P8 penetrates specifically into CRC cells (DLD-1 cells) through endocytosis. We then confirmed the efficacy of PP-P8, showing that oral administration of this agent significantly decreased tumor mass (~42%) relative to controls in a mouse CRC xenograft model. In terms of molecular mechanism, PP-P8 induces cell-cycle arrest in G2 phase through down-regulation of Cyclin B1 and Cdk1. In this study, we performed in vivo toxicology profiling to obtain evidence that PP-P8 is safe, with the goal of receiving approval for an investigational new drug application (IND). Methods Based on gene therapy guidelines of the Ministry of Food and Drug Safety (MFDS) of Korea, the potential undesirable effects of PP-P8 had to be investigated in intact small rodent or marmoset models prior to first-in-human (FIH) administration. The estimated doses of PP-P8 for FIH are 1.0×1010 – 1.0×1011 CFU/person (60 kg). Therefore, to perform toxicological investigations in non-clinical animal models, we orally administered PP-P8 at doses of 3.375 × 1011, 6.75 × 1011, and 13.5×1011 CFU/kg/day; thus the maximum dose was 800–8000-fold higher than the estimated dose for FIH. Results In our animal models, we observed no adverse effects of PP-P8 on clinicopathologic findings, relative organ weight, or tissue pathology. In addition, we observed no inflammation or ulceration during pathological necropsy. Conclusion These non-clinical toxicology studies could be used to furnish valuable data for the safety certification of PP-P8.
Collapse
Affiliation(s)
- Byung Chull An
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Yeo-Sang Yoon
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Ho Jin Park
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Sangkyun Park
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Tai Yeub Kim
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Jun Young Ahn
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Daebeom Kwon
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Oksik Choi
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Jin Young Heo
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| | - Joong-Hyun Kim
- Laboratory Animal Center, Osong Medical Innovation Foundation, Chungbuk, Cheongju, 28160, Korea
| | - Heejong Eom
- Laboratory Animal Center, Osong Medical Innovation Foundation, Chungbuk, Cheongju, 28160, Korea
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd., Gimpo-si, Gyeonggi-do, Korea
| |
Collapse
|
11
|
Compare D, Sgamato C, Nardone OM, Rocco A, Coccoli P, Laurenza C, Nardone G. Probiotics in Gastrointestinal Diseases: All that Glitters Is Not Gold. Dig Dis 2021; 40:123-132. [PMID: 33752212 DOI: 10.1159/000516023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Multiple lines of evidence now support the notion that gut microbiota can contribute to digestive and extra-digestive diseases. The emergence of these observations enabled to postulate a bacteria-centric paradigm to rethink the treatment of many diseases. The goal of therapy should not be to eradicate the flora but to modify it in a way that leads to symptomatic improvement; thus, the interest in the use of probiotics to modulate microbiota composition has increased worldwide in both community and healthcare settings. SUMMARY The results of published studies are conflicting for most probiotic strains and formulations, and clinicians and consumers need a better understanding of probiotic risks and benefits. Currently, clear guidelines on when to use probiotics and the most effective probiotic for different gastrointestinal conditions are still lacking. Here, we reviewed the studies on the use of probiotics in some diseases of relevant interest to gastroenterologists, such as Helicobacter pylori infection, irritable bowel syndrome, and inflammatory bowel disease. Key Message: Although the evidence is relevant and promising for probiotics in general, and for specific strains and combinations of strains, it is not yet sufficient to draw unequivocal conclusions and clear recommendations.
Collapse
Affiliation(s)
- Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Costantino Sgamato
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Olga Maria Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Pietro Coccoli
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Carmen Laurenza
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| |
Collapse
|
12
|
Szutowska J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03425-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
An BC, Ryu Y, Yoon YS, Choi O, Park HJ, Kim TY, Kim SI, Kim BK, Chung MJ. Colorectal Cancer Therapy Using a Pediococcus pentosaceus SL4 Drug Delivery System Secreting Lactic Acid Bacteria-Derived Protein p8. Mol Cells 2019; 42:755-762. [PMID: 31707776 PMCID: PMC6883978 DOI: 10.14348/molcells.2019.0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Despite decades of research into colorectal cancer (CRC), there is an ongoing need for treatments that are more effective and safer than those currently available. Lactic acid bacteria (LAB) show beneficial effects in the context of several diseases, including CRC, and are generally regarded as safe. Here, we isolated a Lactobacillus rhamnosus (LR)-derived therapeutic protein, p8, which suppressed CRC proliferation. We found that p8 translocated specifically to the cytosol of DLD-1 cells. Moreover, p8 down-regulated expression of Cyclin B1 and Cdk1, both of which are required for cell cycle progression. We confirmed that p8 exerted strong anti-proliferative activity in a mouse CRC xenograft model. Intraperitoneal injection of recombinant p8 (r-p8) led to a significant reduction (up to 59%) in tumor mass when compared with controls. In recent years, bacterial drug delivery systems (DDSs) have proven to be effective therapeutic agents for acute colitis. Therefore, we aimed to use such systems, particularly LAB, to generate the valuable therapeutic proteins to treat CRC. To this end, we developed a gene expression cassette capable of inducing secretion of large amounts of p8 protein from Pediococcus pentosaceus SL4 (PP). We then confirmed that this protein (PP-p8) exerted anti-proliferative activity in a mouse CRC xenograft model. Oral administration of PP-p8 DDS led to a marked reduction in tumor mass (up to 64%) compared with controls. The PP-p8 DDS using LAB described herein has advantages over other therapeutics; these advantages include improved safety (the protein is a probiotic), cost-free purification, and specific targeting of CRC cells.
Collapse
Affiliation(s)
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd., Gimpo 10003,
Korea
| | - Yeo-Sang Yoon
- R&D Center, Cell Biotech, Co., Ltd., Gimpo 10003,
Korea
| | - Oksik Choi
- R&D Center, Cell Biotech, Co., Ltd., Gimpo 10003,
Korea
| | - Ho Jin Park
- R&D Center, Cell Biotech, Co., Ltd., Gimpo 10003,
Korea
| | - Tai Yeub Kim
- R&D Center, Cell Biotech, Co., Ltd., Gimpo 10003,
Korea
| | - Song-In Kim
- R&D Center, Cell Biotech, Co., Ltd., Gimpo 10003,
Korea
| | - Bong-Kyu Kim
- R&D Center, Cell Biotech, Co., Ltd., Gimpo 10003,
Korea
| | | |
Collapse
|
14
|
An BC, Hong S, Park HJ, Kim BK, Ahn JY, Ryu Y, An JH, Chung MJ. Anti-Colorectal Cancer Effects of Probiotic-Derived p8 Protein. Genes (Basel) 2019; 10:E624. [PMID: 31430963 PMCID: PMC6723380 DOI: 10.3390/genes10080624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
Recently, we reported a novel therapeutic probiotic-derived protein, p8, which has anti-colorectal cancer (anti-CRC) properties. In vitro experiments using a CRC cell line (DLD-1), anti-proliferation activity (about 20%) did not improve after increasing the dose of recombinant-p8 (r-p8) to >10 μM. Here, we show that this was due to the low penetrative efficiency of r-p8 exogenous treatment. Furthermore, we found that r-p8 entered the cytosol through endocytosis, which might be a reason for the low penetration efficiency. Therefore, to improve the therapeutic efficacy of p8, we tried to improve delivery to CRC cells. This resulted in endogenous expression of p8 and increased the anti-proliferative effects by up to 2-fold compared with the exogenous treatment (40 μM). Anti-migration activity also increased markedly. Furthermore, we found that the anti-proliferation activity of p8 was mediated by inhibition of the p53-p21-Cyclin B1/Cdk1 signal pathway, resulting in growth arrest at the G2 phase of the cell cycle. Taken together, these results suggest that p8 is toxic to cancer cells, shows stable expression within cells, and shows strong cancer suppressive activity by inducing cell cycle arrest. Therefore, p8 is a strong candidate for gene therapy if it can be loaded onto cancer-specific viruses.
Collapse
Affiliation(s)
- Byung Chull An
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Sunwoong Hong
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Ho Jin Park
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Bong-Kyu Kim
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Jun Young Ahn
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Jae Hyung An
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd, 50, Aegibong-ro 409 beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do 10003, Korea.
| |
Collapse
|
15
|
Abstract
Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) (ME/CFS) is a disabling and debilitating disease of unknown aetiology. It is a heterogeneous disease characterized by various inflammatory, immune, viral, neurological and endocrine symptoms. Several microbiome studies have described alterations in the bacterial component of the microbiome (dysbiosis) consistent with a possible role in disease development. However, in focusing on the bacterial components of the microbiome, these studies have neglected the viral constituent known as the virome. Viruses, particularly those infecting bacteria (bacteriophages), have the potential to alter the function and structure of the microbiome via gene transfer and host lysis. Viral-induced microbiome changes can directly and indirectly influence host health and disease. The contribution of viruses towards disease pathogenesis is therefore an important area for research in ME/CFS. Recent advancements in sequencing technology and bioinformatics now allow more comprehensive and inclusive investigations of human microbiomes. However, as the number of microbiome studies increases, the need for greater consistency in study design and analysis also increases. Comparisons between different ME/CFS microbiome studies are difficult because of differences in patient selection and diagnosis criteria, sample processing, genome sequencing and downstream bioinformatics analysis. It is therefore important that microbiome studies adopt robust, reproducible and consistent study design to enable more reliable and valid comparisons and conclusions to be made between studies. This article provides a comprehensive review of the current evidence supporting microbiome alterations in ME/CFS patients. Additionally, the pitfalls and challenges associated with microbiome studies are discussed.
Collapse
|
16
|
Kashyap PC, Quigley EMM. Therapeutic implications of the gastrointestinal microbiome. Curr Opin Pharmacol 2018; 38:90-96. [DOI: 10.1016/j.coph.2018.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
|
17
|
|
18
|
Chen Z, Zhang L, Zeng L, Yang X, Jiang L, Gui G, Zhang Z. Probiotics Supplementation Therapy for Pathological Neonatal Jaundice: A Systematic Review and Meta-Analysis. Front Pharmacol 2017; 8:432. [PMID: 28713275 PMCID: PMC5491971 DOI: 10.3389/fphar.2017.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Neonatal jaundice is a relatively prevalent disease and affects approximately 2.4-15% newborns. Probiotics supplementation therapy could assist to improve the recovery of neonatal jaundice, through enhancing immunity mainly by regulating bacterial colonies. However, there is limited evidence regarding the effect of probiotics on bilirubin level in neonates. Therefore, this study aims at systematically evaluating the efficacy and safety of probiotics supplement therapy for pathological neonatal jaundice. Methods: Databases including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wan Fang Database (Wan Fang), Chinese Biomedical Literature Database (CBM), VIP Database for Chinese Technical Periodicals (VIP) were searched and the deadline is December 2016. Randomized controlled trials (RCTs) of probiotics supplementation for pathological neonatal jaundice in publications were extracted by two reviewers. The cochrane tool was applied to assessing the risk of bias of the trials. The extracted information of RCTs should include efficacy rate, serum total bilirubin level, time of jaundice fading, duration of phototherapy, duration of hospitalization, adverse reactions. The main outcomes of the trials were analyzed by Review Manager 5.3 software. The relative risks (RR) or mean difference (MD) with a 95% confidence interval (CI) was used to measure the effect. Results: 13 RCTs involving 1067 neonatal with jaundice were included in the meta-analysis. Probiotics supplementation treatment showed efficacy [RR: 1.19, 95% CI (1.12, 1.26), P < 0.00001] in neonatal jaundice. It not only decreased the total serum bilirubin level after 3day [MD: -18.05, 95% CI (-25.51, -10.58), P < 0.00001], 5day [MD: -23.49, 95% CI (-32.80, -14.18), P < 0.00001], 7day [MD: -33.01, 95% CI (-37.31, -28.70), P < 0.00001] treatment, but also decreased time of jaundice fading [MD: -1.91, 95% CI (-2.06, -1.75), P < 0.00001], as well as the duration of phototherapy [MD: -0.64, 95% CI (-0.84, -0.44), P < 0.00001] and hospitalization [MD: -2.68, 95% CI (-3.18, -2.17), P < 0.00001], when compared with the control group. Additionally, no serious adverse reaction was reported. Conclusion: This meta-analysis shows that probiotics supplementation therapy is an effective and safe treatment for pathological neonatal jaundice.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Pharmacy, West China Second University Hospital, Sichuan UniversityChengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan UniversityChengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan UniversityChengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan UniversityChengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan UniversityChengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan UniversityChengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, China
| | - Xiaoyan Yang
- Department of Neonatology, West China Second University Hospital, Sichuan UniversityChengdu, China
| | - Lucan Jiang
- Department of Pharmacy, West China Second University Hospital, Sichuan UniversityChengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan UniversityChengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, China
- West China School of Pharmacy, Sichuan UniversityChengdu, China
| | - Ge Gui
- Department of Pharmacy, West China Second University Hospital, Sichuan UniversityChengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan UniversityChengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, China
- West China School of Pharmacy, Sichuan UniversityChengdu, China
| | - Zuojie Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan UniversityChengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan UniversityChengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationChengdu, China
- West China School of Pharmacy, Sichuan UniversityChengdu, China
| |
Collapse
|
19
|
Dahiya DK, Renuka, Puniya M, Shandilya UK, Dhewa T, Kumar N, Kumar S, Puniya AK, Shukla P. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol 2017; 8:563. [PMID: 28421057 PMCID: PMC5378938 DOI: 10.3389/fmicb.2017.00563] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed.
Collapse
Affiliation(s)
- Dinesh K Dahiya
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research - Rajasthan University of Veterinary and Animal Sciences at BikanerJaipur, India
| | - Renuka
- Department of Biochemistry, Basic Medical Science, South Campus, Panjab UniversityChandigarh, India
| | - Monica Puniya
- Food Safety Management System Division, Food Safety and Standards Authority of IndiaNew Delhi, India
| | - Umesh K Shandilya
- Animal Biotechnology Division, National Bureau of Animal Genetic ResourcesKarnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of HaryanaMahendergarh, India
| | - Nikhil Kumar
- Department of Life Sciences, Shri Venkateshwara UniversityJP Nagar, India
| | - Sanjeev Kumar
- Department of Life Science, Central Assam UniversitySilchar, India
| | - Anil K Puniya
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India.,Dairy Microbiology Division, ICAR-National Dairy Research InstituteKarnal, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
20
|
Shadnoush M, Hosseini RS, Khalilnezhad A, Navai L, Goudarzi H, Vaezjalali M. Effects of Probiotics on Gut Microbiota in Patients with Inflammatory Bowel Disease: A Double-blind, Placebo-controlled Clinical Trial. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 65:215-21. [PMID: 25896155 DOI: 10.4166/kjg.2015.65.4.215] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Several clinical trials have revealed various advantages for probiotics in inflammatory bowel disease (IBD). The aim of this study was to further investigate the effects of probiotic yogurt consumption on gut microbiota in patients with this disease. METHODS A total of 305 participants were divided into three groups; group A (IBD patients receiving probiotic yogurt; n=105), group B (IBD patients receiving placebo; n=105), and control group (healthy individuals receiving probiotic yogurt; n=95). Stool samples were collected both before and after 8 weeks of intervention; and population of Lactobacillus, Bifidobacterium and Bacteroides in the stool specimens was measured by Taqman real-time PCR method. RESULTS By the end of the intervention, no significant variations in the mean weight and body mass index were observed between three groups (p>0.05). However, the mean numbers of Lactobacillus, Bifidobacterium, and Bacteroides in group A were significantly increased compared to group B (p<0.001, p<0.001, and p< 0.01, respectively). There were also significant differences in the mean numbers of either of three bacteria between group A and the healthy control group; however, these differences between two groups were observed both at baseline and the end of the intervention. CONCLUSIONS Consumption of probiotic yogurt by patients with IBD may help to improve intestinal function by increasing the number of probiotic bacteria in the intestine and colon. However, many more studies are required in order to prove the concept.
Collapse
|
21
|
Ruiz-González R, Setaro F, Gulías Ò, Agut M, Hahn U, Torres T, Nonell S. Cationic phthalocyanine dendrimers as potential antimicrobial photosensitisers. Org Biomol Chem 2017; 15:9008-9017. [DOI: 10.1039/c7ob02270k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis, photophysical properties and photoantimicrobial efficiency of cationic Zn(ii) and Ru(ii) dendrimeric phthalocyanines.
Collapse
Affiliation(s)
| | - Francesca Setaro
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Òscar Gulías
- Institut Químic de Sarriá
- Universitat Ramon Llull
- Barcelona
- Spain
| | - Montserrat Agut
- Institut Químic de Sarriá
- Universitat Ramon Llull
- Barcelona
- Spain
| | - Uwe Hahn
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Laboratoire de Chimie des Matériaux Moléculaires
| | - Tomás Torres
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- IMDEA-Nanociencia
| | - Santi Nonell
- Institut Químic de Sarriá
- Universitat Ramon Llull
- Barcelona
- Spain
| |
Collapse
|
22
|
García-Hernández Y, Pérez-Sánchez T, Boucourt R, Balcázar JL, Nicoli JR, Moreira-Silva J, Rodríguez Z, Fuertes H, Nuñez O, Albelo N, Halaihel N. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res Vet Sci 2016; 108:125-32. [PMID: 27663381 DOI: 10.1016/j.rvsc.2016.08.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 11/27/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) are the most common microorganisms used as probiotics. For such use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. In the present study, LAB were isolated from broiler excreta, where a fermentation process was used. Nine among sixteen isolates were identified by biochemical and molecular (sequencing of the 16S rRNA gene) methods as Lactobacillus crispatus (n=1), Lactobacillus pentosus (n=1), Weissella cibaria (n=1), Pediococcus pentosaceus (n=2) and Enterococcus hirae (n=4). Subsequently, these bacteria were characterized for their growth capabilities, lactic acid production, acidic pH and bile salts tolerance, cell surface hydrophobicity, antimicrobial susceptibility and antagonistic activity. Lactobacillus pentosus strain LB-31, which showed the best characteristics, was selected for further analysis. This strain was administered to broilers and showed the ability of modulating the immune response and producing beneficial effects on morpho-physiological, productive and health indicators of the animals.
Collapse
Affiliation(s)
| | | | | | - José L Balcázar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Jacques R Nicoli
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Moreira-Silva
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Héctor Fuertes
- Faculty of Veterinary, Universidad Zaragoza, Zaragoza, Spain
| | | | | | - Nabil Halaihel
- Faculty of Veterinary, Universidad Zaragoza, Zaragoza, Spain
| |
Collapse
|
23
|
Élie Metchnikoff (1845-1916): celebrating 100 years of cellular immunology and beyond. Nat Rev Immunol 2016; 16:651-6. [PMID: 27477126 DOI: 10.1038/nri.2016.89] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The year 2016 marks 100 years since the death of Élie Metchnikoff (1845-1916), the Russian zoologist who pioneered the study of cellular immunology and who is widely credited with the discovery of phagocytosis, for which he was jointly awarded the Nobel Prize in Physiology or Medicine in 1908. However, his long scientific career spanned many disciplines and has had far-reaching effects on modern immunology beyond the study of phagocytosis. In this Viewpoint article, five leading immunologists from the fields of phagocytosis, macrophage biology, leukocyte migration, the microbiota and intravital imaging tell Nature Reviews Immunology how Metchnikoff's work has influenced past, present and future research in their respective fields.
Collapse
|
24
|
Navaneetharaja N, Griffiths V, Wileman T, Carding SR. A Role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)? J Clin Med 2016; 5:E55. [PMID: 27275835 PMCID: PMC4929410 DOI: 10.3390/jcm5060055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous disorder of significant societal impact that is proposed to involve both host and environmentally derived aetiologies that may be autoimmune in nature. Immune-related symptoms of at least moderate severity persisting for prolonged periods of time are common in ME/CFS patients and B cell depletion therapy is of significant therapeutic benefit. The origin of these symptoms and whether it is infectious or inflammatory in nature is not clear, with seeking evidence of acute or chronic virus infections contributing to the induction of autoimmune processes in ME/CFS being an area of recent interest. This article provides a comprehensive review of the current evidence supporting an infectious aetiology for ME/CFS leading us to propose the novel concept that the intestinal microbiota and in particular members of the virome are a source of the "infectious" trigger of the disease. Such an approach has the potential to identify disease biomarkers and influence therapeutics, providing much-needed approaches in preventing and managing a disease desperately in need of confronting.
Collapse
Affiliation(s)
- Navena Navaneetharaja
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Verity Griffiths
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Tom Wileman
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Simon R Carding
- The Gut Health and Food Safety Research Programme, The Institute of Food Research, University of East Anglia, Norwich NR4 7UA, UK.
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
25
|
Serra J. [Intestinal microbiota]. Aten Primaria 2016; 48:345-6. [PMID: 27174738 PMCID: PMC6877872 DOI: 10.1016/j.aprim.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/25/2022] Open
Affiliation(s)
- Jordi Serra
- Servicio de Aparato Digestivo, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, España.
| |
Collapse
|
26
|
Park KY, Kim B, Hyun CK. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice. J Clin Biochem Nutr 2015; 56:240-6. [PMID: 26060355 PMCID: PMC4454087 DOI: 10.3164/jcbn.14-116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/28/2014] [Indexed: 02/06/2023] Open
Abstract
Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 10(8) CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kun-Young Park
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Korea
| | - Bobae Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Korea
| | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Korea
| |
Collapse
|
27
|
Nyangale EP, Farmer S, Keller D, Chernoff D, Gibson GR. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086. Anaerobe 2014; 30:75-81. [DOI: 10.1016/j.anaerobe.2014.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022]
|
28
|
Mahasneh A, Abbas M. Probiotics: The possible alternative to disease chemotherapy. Microb Biotechnol 2014. [DOI: 10.1201/b17587-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
van Zanten GC, Krych L, Röytiö H, Forssten S, Lahtinen SJ, Abu Al-Soud W, Sørensen S, Svensson B, Jespersen L, Jakobsen M. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial. FEMS Microbiol Ecol 2014; 90:225-36. [PMID: 25098489 DOI: 10.1111/1574-6941.12397] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022] Open
Abstract
Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected.
Collapse
Affiliation(s)
- Gabriella C van Zanten
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Copenhagen, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Kolářová M, Sládková P, Sládek Z, Rožnovská D, Komprda T. The effect of prebiotics and synbiotics on Clostridium and Escherichia coli counts in human intestinal tract. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2013. [DOI: 10.11118/actaun201260030077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Rajpal DK, Brown JR. The Microbiome as a Therapeutic Target for Metabolic Diseases. Drug Dev Res 2013. [DOI: 10.1002/ddr.21088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepak K. Rajpal
- Computational Biology; GlaxoSmithKline; Research Triangle Park; NC; 27709; USA
| | - James R. Brown
- Computational Biology; GlaxoSmithKline; Collegeville; PA; 19426-0989; USA
| |
Collapse
|
33
|
Fructo-oligosaccharide attenuates the production of pro-inflammatory cytokines and the activation of JNK/Jun pathway in the lungs of d-galactose-treated Balb/cJ mice. Eur J Nutr 2013; 53:449-56. [DOI: 10.1007/s00394-013-0545-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
34
|
Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, Purama RK, Dave J, Vyas B. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 2013; 4:181-92. [PMID: 23511582 PMCID: PMC3669163 DOI: 10.4161/gmic.23919] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality and is the fourth most common malignant neoplasm in USA. Escaping apoptosis and cell mutation are the prime hallmarks of cancer. It is apparent that balancing the network between DNA damage and DNA repair is critical in preventing carcinogenesis. One-third of cancers might be prevented by nutritious healthy diet, maintaining healthy weight and physical activity. In this review, an attempt is made to abridge the role of carcinogen in colorectal cancer establishment and prognosis, where special attention has been paid to food-borne mutagens and functional role of beneficial human gut microbiome in evading cancer. Further the significance of tailor-made prebiotics, probiotics and synbiotics in cancer management by bio-antimutagenic and desmutagenic activity has been elaborated. Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host. Prebiotics are a selectively fermentable non-digestible oligosaccharide or ingredient that brings specific changes, both in the composition and/or activity of the gastrointestinal microflora, conferring health benefits. Synbiotics are a combination of probiotic bacteria and the growth promoting prebiotic ingredients that purport "synergism."
Collapse
Affiliation(s)
- Maya Raman
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences and Bioengineering; Indian Institute of Technology; Chennai, India
| | - Padma Ambalam
- Department of Biotechnology; Christ College; Rajkot, India,Correspondence to: Padma Ambalam,
| | | | - Sheetal Pithva
- Department of Biosciences; Saurashtra University; Rajkot, India
| | - Charmy Kothari
- Department of Biotechnology; Christ College; Rajkot, India
| | - Arti T. Patel
- SMC College of Dairy Science; Anand Agricultural University; Anand, India
| | | | | | - B.R.M. Vyas
- Department of Biosciences; Saurashtra University; Rajkot, India
| |
Collapse
|
35
|
Hoobin P, Burgar I, Zhu S, Ying D, Sanguansri L, Augustin MA. Water sorption properties, molecular mobility and probiotic survival in freeze dried protein–carbohydrate matrices. Food Funct 2013; 4:1376-86. [DOI: 10.1039/c3fo60112a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Abstract
The human body is actually a vast and changing ecosystem comprised of billions of microbial organisms, known collectively as the microbiome. Within the last few years, the study of the microbiome and its impact on human health has been a rapidly growing area of biomedical science. The gut intestinal tract microbiome has been a particular focus of research given its potential role in many inflammatory and metabolic diseases as well as drug metabolism. Although a nascent field, the potential for modulating the gut microbiome or human host interactions associated with these microbes offers new therapeutic strategies for many chronic diseases, in particular obesity, diabetes and inflammatory bowel diseases. Here we provide an overview of present knowledge about the gut microbiome, its putative role in metabolic diseases and the potential for microbiome focused treatments from the drug development perspective.
Collapse
Affiliation(s)
- Deepak K. Rajpal
- Computational Biology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - James R. Brown
- Computational Biology, GlaxoSmithKline, UP1345, PO Box 5089, Collegeville, PA 19426-0989, USA
| |
Collapse
|
37
|
Aziz Q, Doré J, Emmanuel A, Guarner F, Quigley EMM. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil 2013; 25:4-15. [PMID: 23279728 DOI: 10.1111/nmo.12046] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The microbial community of the human gut - the enteric microbiota - plays a critical role in functions that sustain health and is a positive asset in host defenses. In recent years, our understanding of this so-called human 'super organism' has advanced, following characterization of fecal metagenomes which identified three core bacterial enterotypes, and based on basic and clinical research into the impact and consequences of microbiota biodiversity and change on gastrointestinal disorders and diseases. PURPOSE This article considers current knowledge and future perspectives on the make-up and function of human gut microbiota, with a particular focus on altered microbiota and gastrointestinal disorders, nutritional influences on the gut microbiota, and the consequences for gastrointestinal health, as well as improved understanding of gut-microbiota-brain communication.
Collapse
Affiliation(s)
- Q Aziz
- Centre for Digestive Diseases, Blizard Institute of Cell & Molecular Science, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
| | | | | | | | | |
Collapse
|
38
|
Vernocchi P, Vannini L, Gottardi D, Del Chierico F, Serrazanetti DI, Ndagijimana M, Guerzoni ME. Integration of datasets from different analytical techniques to assess the impact of nutrition on human metabolome. Front Cell Infect Microbiol 2012; 2:156. [PMID: 23248777 PMCID: PMC3518793 DOI: 10.3389/fcimb.2012.00156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 11/25/2012] [Indexed: 12/14/2022] Open
Abstract
Bacteria colonizing the human intestinal tract exhibit a high phylogenetic diversity that reflects their immense metabolic potentials. The catalytic activity of gut microbes has an important impact on gastrointestinal (GI) functions and host health. The microbial conversion of carbohydrates and other food components leads to the formation of a large number of compounds that affect the host metabolome and have beneficial or adverse effects on human health. Metabolomics is a metabolic-biology system approach focused on the metabolic responses understanding of living systems to physio-pathological stimuli by using multivariate statistical data on human body fluids obtained by different instrumental techniques. A metabolomic approach based on an analytical platform could be able to separate, detect, characterize and quantify a wide range of metabolites and its metabolic pathways. This approach has been recently applied to study the metabolic changes triggered in the gut microbiota by specific diet components and diet variations, specific diseases, probiotic and synbiotic food intake. This review describes the metabolomic data obtained by analyzing human fluids by using different techniques and particularly Gas Chromatography Mass Spectrometry Solid-phase Micro Extraction (GC-MS/SPME), Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopy. This instrumental approach has a good potential in the identification and detection of specific food intake and diseases biomarkers.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna Bologna, Italy ; Parasitology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Min YW, Park SU, Jang YS, Kim YH, Rhee PL, Ko SH, Joo N, Kim SI, Kim CH, Chang DK. Effect of composite yogurt enriched with acacia fiber and Bifidobacterium lactis. World J Gastroenterol 2012; 18:4563-9. [PMID: 22969230 PMCID: PMC3435782 DOI: 10.3748/wjg.v18.i33.4563] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/26/2012] [Accepted: 05/06/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether composite yogurt with acacia dietary fiber and Bifidobacterium lactis (B. lactis) has additive effects in irritable bowel syndrome (IBS).
METHODS: A total of 130 patients were randomly allocated to consume, twice daily for 8 wk, either the composite yogurt or the control product. The composite yogurt contained acacia dietary fiber and high-dose B. lactis together with two classic yogurt starter cultures. Patients were evaluated using the visual analog scale via a structured questionnaire administered at baseline and after treatment.
RESULTS: Improvements in bowel habit satisfaction and overall IBS symptoms from baseline were significantly higher in the test group than in the control group (27.16 vs 15.51, P = 0.010, 64.2 ± 17.0 vs 50.4 ± 20.5, P < 0.001; respectively). In constipation-predominant IBS, improvement in overall IBS symptoms was significantly higher in the test group than in the control group (72.4 ± 18.4 vs 50.0 ± 21.8, P < 0.001). In patients with diarrhea-predominant IBS, improvement in bowel habit satisfaction from baseline was significantly higher in the test group than in the control group (32.90 vs 7.81, P = 0.006).
CONCLUSION: Our data suggest that composite yogurt enriched with acacia fiber and B. lactis has greater therapeutic effects in patients with IBS than standard yogurt.
Collapse
|
40
|
Jonkers D, Penders J, Masclee A, Pierik M. Probiotics in the management of inflammatory bowel disease: a systematic review of intervention studies in adult patients. Drugs 2012; 72:803-23. [PMID: 22512365 DOI: 10.2165/11632710-000000000-00000] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mounting evidence suggests an important role for the intestinal microbiota in the chronic mucosal inflammation that occurs in inflammatory bowel disease (IBD), and novel molecular approaches have further identified a dysbiosis in these patients. Several mechanisms of action of probiotic products that may interfere with possible aetiological factors in IBD have been postulated. OBJECTIVE Our objective was to discuss the rationale for probiotics in IBD and to systematically review clinical intervention studies with probiotics in the management of IBD in adults. METHODS A systematic search was performed in PubMed up to 1 October 2011, using defined keywords. Only full-text papers in the English language addressing clinical outcomes in adult patients were included. The 41 eligible studies were categorized on disease type (ulcerative colitis [UC] with/without an ileo-anal pouch and Crohn's disease [CD]) and disease activity. Pooled odds ratios were only calculated per probiotic for a specific patient group when more than one randomized controlled trial was available. RESULTS Well designed randomized controlled trials supporting the application of probiotics in the management of IBD are still limited. Meta-analyses could only be performed for a limited number of studies revealing overall risk ratios of 2.70 (95% CI 0.47, 15.33) for inducing remission in active UC with Bifido-fermented milk versus placebo or no additive treatment (n = 2); 1.88 (95% CI 0.96, 3.67) for inducing remission in active UC with VSL#3 versus placebo (n = 2); 1.08 (95% CI 0.86, 1.37) for preventing relapses in inactive UC with Escherichia coli Nissle 1917 versus standard treatment (n = 3); 0.17 (95% CI 0.09, 0.33) for preventing relapses in inactive UC/ileo-anal pouch anastomosis (IPAA) patients with VSL#3 versus placebo; 1.21 (95% CI 0.57, 2.57) for preventing endoscopic recurrences in inactive CD with Lactobacillus rhamnosus GG versus placebo (n = 2); and 0.93 (95% CI 0.63, 1.38) for preventing endoscopic recurrences in inactive CD with Lactobacillus johnsonii versus placebo (n = 2). CONCLUSION Further well designed studies based on intention-to-treat analyses by several independent research groups are still warranted to support the promising results for E. coli Nissle in inactive UC and the multispecies product VSL#3 in active UC and inactive pouch patients. So far, no evidence is available to support the use of probiotics in CD. Future studies should focus on specific disease subtypes and disease location. Further insight into the aetiology of IBD and the mechanisms of probiotic strains will aid in selecting probiotic strains for specific disease entities and disease locations.
Collapse
Affiliation(s)
- Daisy Jonkers
- Division of Gastroenterology-Hepatology, Research School Nutrim, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | | | | | | |
Collapse
|
41
|
Aldhous MC. Gene-environment interactions in inflammatory bowel disease: microbiota and genes. Frontline Gastroenterol 2012; 3:180-186. [PMID: 28839661 PMCID: PMC5517276 DOI: 10.1136/flgastro-2011-100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/10/2012] [Indexed: 02/04/2023] Open
Abstract
A recent research workshop gave an update on the genetics of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. This mini-review summarises the updates of the gene-environmental interactions, especially those outlining the contribution of the gut microbiota to the pathogenesis of IBD.
Collapse
|
42
|
Collison M, Hirt RP, Wipat A, Nakjang S, Sanseau P, Brown JR. Data mining the human gut microbiota for therapeutic targets. Brief Bioinform 2012; 13:751-68. [DOI: 10.1093/bib/bbs002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|