1
|
Basak S, Hridayanka KSN, Duttaroy AK. Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis. Front Immunol 2024; 14:1323233. [PMID: 38235147 PMCID: PMC10792057 DOI: 10.3389/fimmu.2023.1323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bioactives significantly modify and maintain human health. Available data suggest that Bioactives might play a beneficial role in chronic inflammatory diseases. Although promised, defining their mechanisms and opting to weigh their benefits and limitations is imperative. Detailed mechanisms by which critical Bioactives, including probiotics and prebiotics such as dietary lipids (DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide), polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate inflammation and bone metabolism is limited. Certain dietary bioactive significantly impact the gut microbiota, immune system, and pain response via the gut-immune-bone axis. This narrative review highlights a recent update on mechanistic evidence that bioactive is demonstrated demonstrated to reduce osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Manivasakam P, Ravi A, Ramesh J, Bhuvarahamurthy D, Kasirajan K, Vijayapoopathi S, Venugopal B, Fliri AF. Autophagy: An Emerging Target for Developing Effective Analgesics. ACS OMEGA 2023; 8:9445-9453. [PMID: 36936313 PMCID: PMC10018516 DOI: 10.1021/acsomega.2c06949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Inadequate treatment of acute and chronic pain causes depression, anxiety, sleep disturbances, and increased mortality. Abuse and overdose of opioids and the side effects associated with chronic use of NSAID illustrate the need for development of safer and effective pain medication. Working toward this end, an in silico tool based on an emergent intelligence analytical platform that examines interactions between protein networks was used to identify molecular mechanisms involved in regulating the body's response to painful stimuli and drug treatments. Examining interactions between protein networks associated with the expression of over 20 different pain types suggests that the regulation of autophagy plays a central role in modulation of pain symptoms (see Materials and Methods). Using the topology of this regulatory scheme as an in silico screening tool, we identified that combinations of functions targeted by cannabidiol, myo-inositol, and fish oils with varying ratios of eicosapentaenoic and docosahexaenoic acids are projected to produce superior analgesia. For validating this prediction, we administered combinations of cannabidiol, myo-inositol, and fish oils to rats that received formalin injections in hind paws, prior to substance administration, and showed that analgesic effects produced by these combinations were comparable or superior to known NSAID analgesics, which suggests that these combinations have potential in treatment of pain.
Collapse
Affiliation(s)
| | - Atchayaa Ravi
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | - Janani Ramesh
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
- Renal
Division, Brigham and Women’s Hospital,
BWH, Boston, Massachusetts 02115-6195, United
States
| | | | - Kalaiyarasi Kasirajan
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | - Singaravel Vijayapoopathi
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | - Bhuvarahamurthy Venugopal
- Department
of Medical Biochemistry, Dr. A.L.M. Postgraduate
Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil
Nadu, India
| | | |
Collapse
|
3
|
Jiang X, Liu J, Li S, Qiu Y, Wang X, He X, Pedersen TØ, Mustafa K, Xue Y, Mustafa M, Kantarci A, Xing Z. The effect of resolvin D1 on bone regeneration in a rat calvarial defect model. J Tissue Eng Regen Med 2022; 16:987-997. [PMID: 35980287 DOI: 10.1002/term.3345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 01/07/2023]
Abstract
Resolvin D1 (RvD1) is a pro-resolving lipid mediator of inflammation, endogenously synthesized from omega-3 docosahexaenoic acid. The purpose of this study was to investigate the effect of RvD1 on bone regeneration using a rat calvarial defect model. Collagen 3D nanopore scaffold (COL) and Pluronic F127 hydrogel (F127) incorporated with RvD1 (RvD1-COL-F127 group) or COL and F127 (COL-F127 group) were implanted in symmetrical calvarial defects. After implantation, RvD1 was administrated subcutaneously every 7 days for 4 weeks. The rats were sacrificed at weeks 1 and 8 post-implantation. Tissue samples were analyzed by real-time reverse transcriptase-polymerase chain reaction and histology at week 1. Radiographical and histological analyses were done at week 8. At week 1, calvarial defects treated with RvD1 exhibited decreased numbers of inflammatory cells and tartrate-resistant acid phosphatase (TRAP) positive cells, greater numbers of newly formed blood vessels, upregulated gene expression of vascular endothelial growth factor and alkaline phosphatase, and downregulated gene expression of receptor activator of nuclear factor-κB ligand, interleukin-1β and tumor necrosis factor-α. At week 8, the radiographical results showed that osteoid area fraction of the RvD1-COL-F127 group was higher than that of the COL-F127 group, and histological examination exhibited enhanced osteoid formation and newly formed blood vessels in the RvD1-COL-F127 group. In conclusion, this study showed that RvD1 enhanced bone formation and vascularization in rat calvarial defects.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Si Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yingfei Qiu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaoli Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaoli He
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Torbjørn Ø Pedersen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, Massachusetts, USA.,Harvard University, School of Dental Medicine, Boston, Massachusetts, USA
| | - Zhe Xing
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.,Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou, China.,Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Carballo-Casla A, García-Esquinas E, Banegas JR, Rodríguez-Artalejo F, Ortolá R. Fish consumption, omega-3 fatty acid intake, and risk of pain: the Seniors-ENRICA-1 cohort. Clin Nutr 2022; 41:2587-2595. [PMID: 36240701 DOI: 10.1016/j.clnu.2022.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Omega-3 fatty acids have anti-inflammatory and analgesic (anti-nociceptive) actions. However, the relation of habitual omega-3 fatty acid intake and fish consumption - its main food source - with pain remains largely unknown. We examined the association of fish consumption and marine omega-3 fatty acid intake with pain incidence and worsening over 5 years among older adults. METHODS Data were taken from the Seniors - ENRICA-1 cohort, which included 950 individuals aged ≥60 years in Spain. Habitual fish consumption and marine omega-3 fatty acid intake during the previous year were assessed in 2008-2010 and 2012 with a validated diet history. Pain was assessed in 2012 and 2017 with a scale developed from the Survey on Chronic Pain in Europe, ranging from 0 (no pain) to 6 (highest pain), according to its severity, frequency, and number of locations. Analyses on pain incidence were conducted in the 524 participants free of pain at baseline, while those on pain worsening were performed in the overall cohort, and both were adjusted for sociodemographic variables, lifestyle, morbidity, and diet quality. RESULTS Higher oily fish consumption was associated with reduced pain incidence and worsening over 5 years [fully adjusted odds ratios (95% confidence interval) = 0.68 (0.50,0.94) and 0.70 (0.55,0.88) for every 25 g/day increment (1.5 servings/week), respectively]. Total and white fish consumption were not associated with pain. Higher marine omega-3 fatty acid intake was inversely associated with pain worsening [odds ratio (95% confidence interval) per 0.5 g/day increment = 0.83 (0.72,0.96)]. The corresponding associations for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were 0.53 (0.33,0.87) and 0.73 (0.57,0.94). CONCLUSIONS In this cohort of Spanish older adults, increased oily fish consumption was inversely associated with pain incidence and worsening over 5 years, while higher marine omega-3 fatty acid intake (and that of EPA and DHA) was linked to less pain worsening.
Collapse
Affiliation(s)
- Adrián Carballo-Casla
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Esther García-Esquinas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain; National Center of Epidemiology, Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, Hall 12, 28029 Madrid, Spain
| | - José R Banegas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain; IMDEA Food Institute. CEI UAM+CSIC, Carretera de Canto Blanco 8, 28049 Madrid, Spain
| | - Rosario Ortolá
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Pistorius K, Ly L, Souza PR, Gomez EA, Koenis DS, Rodriguez AR, Foster J, Sosabowski J, Hopkinson M, Rajeeve V, Spur BW, Pitsillides A, Pitzalis C, Dalli J. MCTR3 reprograms arthritic monocytes to upregulate Arginase-1 and exert pro-resolving and tissue-protective functions in experimental arthritis. EBioMedicine 2022; 79:103974. [PMID: 35430453 PMCID: PMC9038546 DOI: 10.1016/j.ebiom.2022.103974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a progressive degenerative disorder that leads to joint destruction. Available treatments only target the inflammatory component with minimal impact on joint repair. We recently uncovered a previously unappreciated family of pro-resolving mediators, the maresin conjugate in tissue regeneration (MCTR), that display both immunoregulatory and tissue-protective activities. Thus, we queried whether the production of these autacoids is disrupted in RA patients and whether they can be useful in treating joint inflammation and promoting joint repair. METHODS Using a highly phenotyped RA cohort we evaluated plasma MCTR concentrations and correlated these to clinical markers of disease activity. To evaluate the immunoregulatory and tissue reparative activities we employed both in vivo models of arthritis and organ culture models. FINDINGS Herein, we observed that plasma MCTR3 concentrations were negatively correlated with joint disease activity and severity in RA patients. Evaluation of the mechanisms engaged by this mediator in arthritic mice demonstrated that MCTR3 reprograms monocytes to confer enduring joint protective properties. Single cell transcriptomic profiling and flow cytometric evaluation of macrophages from mice treated with MCTR3-reprogrammed monocytes revealed a role for Arginase-1 (Arg-1) in mediating their joint reparative and pro-resolving activities. Arg-1 inhibition reversed both the anti-arthritic and tissue reparative actions of MCTR3-reprogrammed monocytes. INTERPRETATION Our findings demonstrate that circulating MCTR3 levels are negatively correlated with disease in RA. When administered to mice in vivo, MCTR3 displayed both anti-inflammatory and joint reparative activities, protecting both cartilage and bone in murine arthritis. These activities were, at least in part, mediated via the reprogramming of mononuclear phagocyte responses. FUNDING This work was supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant no: 677542) and the Barts Charity (grant no: MGU0343) to J.D. J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z).
Collapse
Affiliation(s)
- Kimberly Pistorius
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Lucy Ly
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Patricia R Souza
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Esteban A Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Ana R Rodriguez
- Rowan University School of Osteopathic Medicine, Department of Cell Biology & Neuroscience, 2 Medical Centre Drive, Stratford NJ 08084, USA
| | - Julie Foster
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jane Sosabowski
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Vinothini Rajeeve
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Bernd W Spur
- Rowan University School of Osteopathic Medicine, Department of Cell Biology & Neuroscience, 2 Medical Centre Drive, Stratford NJ 08084, USA
| | - Andrew Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Li JS, Su SL, Xu Z, Zhao LH, Fan RY, Guo JM, Qian DW, Duan JA. Potential roles of gut microbiota and microbial metabolites in chronic inflammatory pain and the mechanisms of therapy drugs. Ther Adv Chronic Dis 2022; 13:20406223221091177. [PMID: 35924009 PMCID: PMC9340317 DOI: 10.1177/20406223221091177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/15/2022] [Indexed: 01/21/2023] Open
Abstract
Observational findings achieved that gut microbes mediate human metabolic health
and disease risk. The types of intestinal microorganisms depend on the intake of
food and drugs and are also related to their metabolic level and genetic
factors. Recent studies have shown that chronic inflammatory pain is closely
related to intestinal microbial homeostasis. Compared with the normal intestinal
flora, the composition of intestinal flora in patients with chronic inflammatory
pain had significant changes in Actinomycetes,
Firmicutes, Bacteroidetes, etc. At the
same time, short-chain fatty acids and amino acids, the metabolites of
intestinal microorganisms, can regulate neural signal molecules and signaling
pathways, thus affecting the development trend of chronic inflammatory pain.
Glucocorticoids and non-steroidal anti-inflammatory drugs in the treatment of
chronic inflammatory pain, the main mechanism is to affect the secretion of
inflammatory factors and the abundance of intestinal bacteria. This article
reviews the relationship between intestinal microorganisms and their metabolites
on chronic inflammatory pain and the possible mechanism.
Collapse
Affiliation(s)
- Jia-Shang Li
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | | | - Zhuo Xu
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Li-Hui Zhao
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Ruo-Ying Fan
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| |
Collapse
|
7
|
Ahn H, Roh JS, Lee S, Beon J, Lee B, Sohn DH, Kim S. Myeloid IPMK promotes the resolution of serum transfer-induced arthritis in mice. Anim Cells Syst (Seoul) 2021; 25:219-226. [PMID: 34408810 PMCID: PMC8366620 DOI: 10.1080/19768354.2021.1952305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by widespread joint inflammation, which leads to joint damage, disability, and mortality. Among the several types of immune cells, myeloid cells such as macrophages are critical for controlling the pathogenesis of RA. Inositol phosphates are water-soluble signaling molecules, which are synthesized by a series of enzymes including inositol phosphate kinases. Previous studies revealed actions of inositol phosphates and their metabolic enzymes in the modulation of inflammation such as Toll-like receptor-triggered innate immunity. However, the physiological roles of inositol polyphosphate (IP) metabolism in the regulation of RA remain largely uncharacterized. Therefore, our study sought to determine the role of inositol polyphosphate multikinase (IPMK), a key enzyme for IP metabolism and various cellular signaling control mechanisms, in mediating RA. Using myeloid cell-specific IPMK knockout (KO) mice, arthritis was induced via intraperitoneal K/BxN serum injection, after which disease severity was evaluated. Both wild-type and IPMK KO mice developed similar RA phenotypes; however, conditional deletion of IPMK in myeloid cells led to elevated arthritis scores during the resolution phase, suggesting that IPMK deficiency in myeloid cells impairs the resolution of inflammation. Bone marrow-derived IPMK KO macrophages exhibited no apparent defects in immunoglobulin Fc receptor (FcR) activation, osteoclast differentiation, or resolvin signaling. Taken together, our findings suggest that myeloid IPMK is a key determinant of RA resolution.
Collapse
Affiliation(s)
- Hyoungjoon Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jiyoon Beon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,KAIST Institute for the BioCentury, KAIST, Daejeon, Korea
| |
Collapse
|
8
|
Qin X, He L, Fan D, Liang W, Wang Q, Fang J. Targeting the resolution pathway of inflammation using Ac2-26 peptide-loaded PEGylated lipid nanoparticles for the remission of rheumatoid arthritis. Asian J Pharm Sci 2021; 16:483-493. [PMID: 34703497 PMCID: PMC8520054 DOI: 10.1016/j.ajps.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by joint inflammation and immune dysfunction. Although various therapeutic approaches have been utilized for the treatment of RA in clinical applications, the low responsiveness of RA patients and undesired systemic toxicity are still unresolved problems. Targeting the resolution pathway of inflammation with pro-resolving mediators would evoke the protective actions of patient for combating the inflammation. Ac2-26, a 25-amino acid peptide derived from Annexin A (a pro-resolving mediator), has shown good efficacy in the treatment of inflammatory disorders. However, the low bioavailability of Ac2-26 peptides hinders their efficacy in vivo. In this paper, we formed PEGylated lipid nanoparticles (LDNPs) by the co-assembly of l-ascorbyl palmitate (L-AP) and N-(carbonyl methoxypolyethylene glycol-2000)-1,2-distearoyl-sn‑glycero-3-phosphoethanolamine (DSPE-PEG2k) to encapsulate and deliver Ac2-26 peptides to the arthritic rats. They showed good stability and biocompatibility. After being intravenously administrated, Ac2-26 peptide-loaded PEGylated lipid nanoparticles (ADNPs) showed the prolonged in vivo circulation time and enhanced accumulation in inflamed sites. In vivo therapeutic evaluations revealed that ADNPs could attenuate synovial inflammation and improve joint pathology. Therefore, the pro-resolving therapeutic strategy using ADNPs is effective in RA treatment.
Collapse
Affiliation(s)
- Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Florida 32816, United State
| |
Collapse
|
9
|
Gallotti FC, Serafini MR, Thomazzi SM. Scenario of the Treatment of Arthritis with Natural Products. ACTA ACUST UNITED AC 2021; 14:95-105. [DOI: 10.2174/1872213x14666200228103001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/22/2022]
Abstract
Background:
Conventional treatments of arthritis use toxic and poorly tolerated drugs.
Therefore, natural products are an alternative because they are important sources of bioactive substances
with therapeutic potential.
Objective:
To perform synthesis of patent applications associated with the use of natural products
in the technological development of the invention for use in treating arthritis.
Methods:
The search for patents was conducted using the following databases of World Intellectual
Property Organization (WIPO), European Patent Office (EPO, Espacenet), United States Patents
and Trademark Office (USPTO) and National Institute of Intellectual Property (INPI) using as keywords
- arthritis, treatment and the International Patent Classification (IPC) A61K36 / 00.
Results:
A total of 617 patents related to the subject were registered in the period available in patents
databases during the study period from the years 2005 to 2017, of which 44 were analyzed
based on the established inclusion criteria. The most important countries for protecting these inventions
were China, followed by the United States of America, the Republic of Korea and Japan. As
for the typology of depositors, that were identified by Educational Institutions and Public Institutes
of Research (IEIPP) and Companies and Private Research Institutes (EIPP).
Conclusion:
The analysis of patents made it possible to characterize the natural products used in
the treatment of arthritis, with emphasis on botanical extracts (71%), as a single component, as
well as in association with other botanical extracts, isolated compounds and minerals.
Collapse
Affiliation(s)
| | | | - Sara M. Thomazzi
- Department of Physiology, University of Sergipe, Sao Cristovao, Brazil
| |
Collapse
|
10
|
The Preventive Effects of Greenshell Mussel ( Perna canaliculus) on Early-Stage Metabolic Osteoarthritis in Rats with Diet-Induced Obesity. Nutrients 2019; 11:nu11071601. [PMID: 31311115 PMCID: PMC6683089 DOI: 10.3390/nu11071601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/23/2022] Open
Abstract
The prevalence of osteoarthritis (OA) is rising worldwide, with the most pronounced increase being in the category of metabolic-associated osteoarthritis (MetOA). This is predicted to worsen with the global rise in aging societies and obesity. To address this health burden, research is being conducted to identify foods that can reduce the incidence or severity of MetOA. Oil from the Greenshell mussel (Perna canaliculus) (GSM), a native New Zealand shellfish, has been successfully used to reduce OA symptoms. The current study assessed the effect of including flash-dried powder from whole GSM meat as part of a normal (control) versus high-fat/high-sugar (HFHS) diet for 13 weeks on the development of MetOA in rats. Rats fed a HFHS diet developed metabolic dysregulation and obesity with elevated plasma leptin and HbA1C concentrations. Visible damage to knee joint cartilage was minimal, but plasma levels of C telopeptide of type II collagen (CTX-II), a biomarker of cartilage degradation, were markedly higher in HFHS-fed rats compared to control-fed rats. However, rats fed the HFHS diet containing GSM had significantly reduced serum CTX-II. Inclusion of GSM in rats fed the control diet also lowered CTX-II. These findings suggest that dietary GSM can reduce the incidence or slow the progression of early MetOA.
Collapse
|
11
|
Chiang N, Barnaeva E, Hu X, Marugan J, Southall N, Ferrer M, Serhan CN. Identification of Chemotype Agonists for Human Resolvin D1 Receptor DRV1 with Pro-Resolving Functions. Cell Chem Biol 2018; 26:244-254.e4. [PMID: 30554914 DOI: 10.1016/j.chembiol.2018.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
Resolution of acute inflammation is governed, in part, by specialized pro-resolving mediators, including lipoxins, resolvins, protectins, and maresins. Among them, resolvin D1 (RvD1) exhibits potent pro-resolving functions via activating human resolvin D1 receptor (DRV1/GPR32). RvD1 is a complex molecule that requires challenging organic synthesis, diminishing its potential as a therapeutic. Therefore, we implemented a high-throughput screening of small-molecule libraries and identified several chemotypes that activated recombinant DRV1, represented by NCGC00120943 (C1A), NCGC00135472 (C2A), pMPPF, and pMPPI. These chemotypes also elicited rapid impedance changes in cells overexpressing recombinant DRV1. With human macrophages, they each stimulated phagocytosis of serum-treated zymosan at concentrations comparable with that of RvD1, the endogenous DRV1 ligand. In addition, macrophage phagocytosis of live E. coli was significantly increased by these chemotypes in DRV1-transfected macrophages, compared with mock-transfected cells. Taken together, these chemotypes identified by unbiased screens act as RvD1 mimetics, exhibiting pro-resolving functions via interacting with human DRV1.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64:1-17. [PMID: 28802833 PMCID: PMC5832503 DOI: 10.1016/j.mam.2017.08.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
While protective, the acute inflammatory response when uncontrolled can lead to further tissue damage and chronic inflammation that is now widely recognized to play important roles in many commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, metabolic syndrome, and many other diseases of significant public health concern. The ideal response to initial challenges of the host is complete resolution of the acute inflammatory response, which is now recognized to be a biosynthetically active process governed by specialized pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and complete stereochemical assignments of the major SPM are established, and new profiling procedures have recently been introduced to document the activation of these pathways in vivo with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, where we've recently identified new molecules that communicate during resolution of inflammation to activate tissue regeneration in model organisms. This review presents an update on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration (RCTR), are reviewed here. The identification, structural elucidation and the pathways and biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue regeneration via endogenous pathways and molecules in the resolution metabolome.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Sharanova NE, Vasil'ev AV. Postgenomic Properties of Natural Micronutrients. Bull Exp Biol Med 2018; 166:107-117. [PMID: 30450516 DOI: 10.1007/s10517-018-4298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Modern medical approaches to the therapy of various diseases, including cancer, are based on the use of toxic drugs. The unfavorable side effects of traditional medicine could be counterbalanced by addition of natural bioactive substances to conventional therapy due to their mild action on cells combined with the multitargeted effects. To elucidate the real mechanisms of their biological activity, versatile approaches including a number of "omics" such as genomics, transcriptomics, proteomics, and metabolomics are used. This review highlights inclusion of bioactive natural compounds into the therapy of chronic diseases from the viewpoint of modern omics-based nutritional biochemistry. The recently accumulated data argue for necessity to employ nutrigenetic and nutrimetabolomic analyses to prevent or diminish the risk of chronic diseases.
Collapse
Affiliation(s)
- N E Sharanova
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - A V Vasil'ev
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| |
Collapse
|
14
|
Chen Y, Zhang D, Ho KW, Lin S, Suen WCW, Zhang H, Zha Z, Li G, Leung PS. GPR120 is an important inflammatory regulator in the development of osteoarthritis. Arthritis Res Ther 2018; 20:163. [PMID: 30075737 PMCID: PMC6091098 DOI: 10.1186/s13075-018-1660-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to investigate the regulatory role of G-protein coupled receptor 120 (GPR120) in the development and progression of osteoarthritis (OA). Methods GPR120 knockout (KO) and wild-type (WT) mice were used to create an animal model of OA by means of anterior cruciate ligament transection (ACLT) surgery. The severity of OA was staged and evaluated by histological examination, microcomputed tomography scan and enzyme-linked immunosorbent assay (ELISA). The anti-inflammatory effects of the GPR120 agonist docosahexaenoic acid (DHA) on human chondrocytes were further evaluated by specific inflammatory markers. In addition, the healing progression of a skin defect model was determined with histological assays. Results The GPR120-KO mice displayed an accelerated development of OA after ACLT. The secondary inflammation, cartilage degeneration, and subchondral bone aberrant changes were significantly elevated in the early phase of OA in KO mice relative to those in WT mice. In addition, we found that GPR120 levels were downregulated in OA patients compared with control subjects, whereas GPR120 activation with DHA exhibited anti-inflammatory effects in primary human chondrocytes in vitro. Moreover, results from the skin defect model showed that GPR120 agonism with DHA enhanced wound repair in mice, as shown by the downregulation of the number of CD68+ cells. Conclusions Our study suggests that GPR120 is an important inflammatory mediator during the development of OA, and that it is a potential marker for the diagnosis of high-risk patients with OA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1660-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanfeng Chen
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Dan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ki Wai Ho
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Wade Chun-Wai Suen
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.,Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Huantian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Zhengang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
15
|
El Kholy K, Freire M, Chen T, Van Dyke TE. Resolvin E1 Promotes Bone Preservation Under Inflammatory Conditions. Front Immunol 2018; 9:1300. [PMID: 29946319 PMCID: PMC6005849 DOI: 10.3389/fimmu.2018.01300] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
Resolvins are endogenous lipid mediators derived from omega-3 fatty acids. Resolvin E1 (RvE1), derived from eicosapentaenoic acid (EPA), modulates osteoclasts and immune cells in periodontal disease models. The direct role of RvE1 in bone remodeling is not well understood. The objective of this study was to determine the impact of RvE1 on bone remodeling under inflammatory conditions. Our working hypothesis is that RvE1 downregulates bone resorption through direct actions on both osteoblast and osteoclast function in inflammatory osteoclastogenesis. A tumor necrosis factor-α induced local calvarial osteolysis model with or without the systemic administration of RvE1 was used. To evaluate osteoclastogenesis and NFκB signaling pathway activity, murine bone tissue was evaluated by Micro CT (μCT) analysis, TRAP staining, and immunofluorescence analysis. Mechanistically, to evaluate the direct role of RvE1 impacting bone cells, primary calvarial mouse osteoblasts were stimulated with interleukin (IL)-6 (10 ng/ml) and IL-6 receptor (10 ng/ml) and simultaneously incubated with or without RvE1 (100 nM). Expression of receptor activator of NFκB ligand (RANKL) and osteoprotegerin (OPG) was measured by ELISA. RNA sequencing (RNA-Seq) and differential expression analysis was performed to determine signaling pathways impacted by RvE1. The systemic administration of RvE1 reduced calvarial bone resorption as determined by µCT. Histologic analysis of calvaria revealed that osteoclastogenesis was reduced as determined by number and size of osteoclasts in TRAP-stained sections (p < 0.05). Immunofluorescence staining of calvarial sections revealed that RvE1 reduced RANKL secretion by 25% (p < 0.05). Stimulation of osteoblasts with IL-6 increased RANKL production by 30% changing the RANKL/OPG to favor osteoclast activation and bone resorption. The ratio changes were reversed by 100 nM RvE1. RvE1 decreased the production of RANKL maintaining an RANKL/OPG more favorable for bone formation. RNA-Seq and transcriptomic pipeline analysis revealed that RvE1 significantly downregulates osteoclast differentiation mediated by differential regulation of NFκB and PI3K-AKT pathways. RvE1 reduces inflammatory bone resorption. This action is mediated, at least in part, by direct actions on bone cells promoting a favorable RANKL/OPG ratio. Mediators of resolution in innate immunity also directly regulate bone cell gene expression that is modulated by RvE1 through at least 14 specific genes in this mouse model.
Collapse
Affiliation(s)
- Karim El Kholy
- The Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Cambridge, MA, United States
- School of Dental Medicine, University of Bern, Bern, Switzerland
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | | | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- The Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Cambridge, MA, United States
| |
Collapse
|
16
|
Dawczynski C, Dittrich M, Neumann T, Goetze K, Welzel A, Oelzner P, Völker S, Schaible A, Troisi F, Thomas L, Pace S, Koeberle A, Werz O, Schlattmann P, Lorkowski S, Jahreis G. Docosahexaenoic acid in the treatment of rheumatoid arthritis: A double-blind, placebo-controlled, randomized cross-over study with microalgae vs . sunflower oil. Clin Nutr 2018; 37:494-504. [DOI: 10.1016/j.clnu.2017.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/01/2022]
|
17
|
Baker LA, Martin NRW, Kimber MC, Pritchard GJ, Lindley MR, Lewis MP. Resolvin E1 (R
v
E
1
) attenuates LPS induced inflammation and subsequent atrophy in C2C12 myotubes. J Cell Biochem 2018; 119:6094-6103. [DOI: 10.1002/jcb.26807] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Luke A. Baker
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| | - Neil R. W. Martin
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| | - Marc C. Kimber
- Translational Chemical Biology Research GroupDepartment of Chemistry, School of ScienceLoughborough UniversityLoughboroughUnited Kingdom
| | - Gareth J. Pritchard
- Translational Chemical Biology Research GroupDepartment of Chemistry, School of ScienceLoughborough UniversityLoughboroughUnited Kingdom
| | - Martin R. Lindley
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| | - Mark P. Lewis
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| |
Collapse
|
18
|
Abstract
The role of the gut microbiome in models of inflammatory and autoimmune disease is now well characterized. Renewed interest in the human microbiome and its metabolites, as well as notable advances in host mucosal immunology, has opened multiple avenues of research to potentially modulate inflammatory responses. The complexity and interdependence of these diet-microbe-metabolite-host interactions are rapidly being unraveled. Importantly, most of the progress in the field comes from new knowledge about the functional properties of these microorganisms in physiology and their effect in mucosal immunity and distal inflammation. This review summarizes the preclinical and clinical evidence on how dietary, probiotic, prebiotic, and microbiome based therapeutics affect our understanding of wellness and disease, particularly in autoimmunity.
Collapse
Affiliation(s)
- Jose C Clemente
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Manasson
- Department of Medicine, Division of Rheumatology, New York University School of Medicine and Hospital for Joint Diseases, New York, NY 10003, USA
| | - Jose U Scher
- Department of Medicine, Division of Rheumatology, New York University School of Medicine and Hospital for Joint Diseases, New York, NY 10003, USA
| |
Collapse
|
19
|
Obrosov A, Coppey LJ, Shevalye H, Yorek MA. Effect of Fish Oil vs. Resolvin D1, E1, Methyl Esters of Resolvins D1 or D2 on Diabetic Peripheral Neuropathy. ACTA ACUST UNITED AC 2017; 8. [PMID: 29423332 PMCID: PMC5800519 DOI: 10.4172/2155-9562.1000453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective Fish oil is enriched in omega-3 polyunsaturated fatty acids primarily eicosapentaenoic and docosahexaenoic fatty acids. Metabolites of these two polyunsaturated fatty acids include the E and D series resolvins. Omega-3 polyunsaturated fatty acids and resolvins have been reported to have anti-inflammatory and neuroprotective properties. The objective of this study was to evaluate the efficacy of menhaden oil, a fish oil derived from the menhaden, resolvins D1 and E1 and the methyl esters of resolvins D1 and D2 on diabetic peripheral neuropathy. Hypothesis being examined was that the methyl esters of resolvins D1 and D2 would be move efficacious than resolvins D1 or E1 due to an extended half-life. Methods A model of type 2 diabetes in C57BL/6J mice was created through a combination of a high fat diet followed 8 weeks later with treatment of low dosage of streptozotocin. After 8 weeks of untreated hyperglycemia type 2 diabetic mice were treated for 8 weeks with menhaden oil in the diet or daily injections of 1 ng/g body weight resolvins D1, E1 or methyl esters of resolvins D1 or D2. Afterwards, multiple neurological endpoints were examined. Results Menhaden oil or resolvins did not improve hyperglycemia. Untreated diabetic mice were thermal hypoalgesic, had mechanical allodynia, reduced motor and sensory nerve conduction velocities and decreased innervation of the cornea and skin. These endpoints were significantly improved with menhaden oil or resolvin treatment. However, the methyl esters of resolvins D1 or D2, contrary to our hypothesis, were generally less potent than menhaden oil or resolvins D1 or E1. Conclusion These studies further support omega-3 polyunsaturated fatty acids derived from fish oil via in part due to their metabolites could be an effective treatment for diabetic neuropathy.
Collapse
Affiliation(s)
| | | | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, USA
| | - Mark A Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, USA.,Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, USA
| |
Collapse
|
20
|
Sadeghi O, Djafarian K, Ghorabi S, Khodadost M, Nasiri M, Shab-Bidar S. Dietary intake of fish, n-3 polyunsaturated fatty acids and risk of hip fracture: A systematic review and meta-analysis on observational studies. Crit Rev Food Sci Nutr 2017; 59:1320-1333. [DOI: 10.1080/10408398.2017.1405908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Omid Sadeghi
- Larestan University of Medical Sciences, Larestan, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Ghorabi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center of Oils and Fats, Food and Drug administration, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoud Khodadost
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Nasiri
- Department of Operating Room Technology, School of Paramedicine, Qom University of Medical Sciences, Qom, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Hamilton JA, Hasturk H, Kantarci A, Serhan CN, Van Dyke T. Atherosclerosis, Periodontal Disease, and Treatment with Resolvins. Curr Atheroscler Rep 2017; 19:57. [PMID: 29110146 DOI: 10.1007/s11883-017-0696-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss the existing evidence on the link between atherosclerosis and periodontitis by particularly presenting new findings that link the pathology and therapy of these diseases. Acute vascular ischemic events that can lead to stroke or myocardial infarction are initiated by inflammatory processes leading to rupture or erosion of plaques susceptible to thrombosis ("high risk" or "vulnerable"). These are highly inflamed plaques residing in the media and adventitia that may not be detected by angiography measurments of luminal narrowing. Statistically significant excess risk for atherosclerotic cardiovascular disease has been reported in persons with periodontitis independent of established risk factors. We hypothesized that the systemic pathologic links also represent potential therapeutic links. RECENT FINDINGS We recently demonstrated that periodontal inflammation promotes atherosclerotic plaque inflammation and destabilization. As discrete pathological regions, these plaques with a high susceptibility to rupture can be imaged and differentiated from lower risk plaques. In cholesterol-fed rabbits with periodontal disease, circulating inflammatory mediators were also significantly elevated thereby contributing to "vulnerable blood," a systemic characteristic of high risk for cardiovascular events. New studies show that certain lipid mediators, including lipoxins and resolvins, are potent in preventing and possibly treating a number of inflammation-associated diseases, including periodontitis and vascular inflammation. The concept of the vulnerable patient and the pro-resolving approach open new terrain for discovery of paradigm-changing therapies for the prevention and treatment of two of the most common diseases of man. Importantly, lipoxins and resolvins are natural receptor agonists that do not exhibit the same pro-atherogenic side effects attributed to anti-inflammatory medications (e.g., NSAIDs) but rather coordinate resolution of inflammation and a return to homeostasis.
Collapse
Affiliation(s)
- James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W302, Boston, MA, 02118-2526, USA.
| | - Hatice Hasturk
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA
| |
Collapse
|
22
|
Murakami K. Potential of specialized pro-resolving lipid mediators against rheumatic diseases. ACTA ACUST UNITED AC 2017; 39:155-63. [PMID: 27320930 DOI: 10.2177/jsci.39.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While arachidonic acid (AA), which is classified into n-6 polyunsaturated fatty acid (PUFA), has been mainly recognized as a substrate of pro-inflammatory mediators, eicosapentaenoic acid or docosahexaenoic acid, which are classified into n-3 PUFA, is currently identified as substrates of mediators inducing resolution of inflammation, namely pro-resolving mediators (SPM). As with any other pathological conditions, it is gradually elucidated that SPMs contributes a certain effect on joint inflammation. In osteoarthritis (OA), Lipid fractions extracted from adipocytes, especially in infrapatellar fat pad rather than subcutaneous tissue induce T cell skewing for producing IFN-γ or decrease the production of IL-12p40 from macrophages. In synovial tissues form OA, there are some of known receptors for SPM. In the synovial fluid from rheumatoid arthritis (RA), it could be identified and quantified a certain kind of SPMs such as maresin 1, lipoxin A4 and resolvin D5. In murine models of arthritis, some of SPMs are found to have some functions to reduce tissue damage. Correctively, SPMs might have some potential to a novel therapeutic target for arthritis or any other rheumatic diseases.
Collapse
Affiliation(s)
- Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Hospital
| |
Collapse
|
23
|
Wu CL, Kimmerling KA, Little D, Guilak F. Serum and synovial fluid lipidomic profiles predict obesity-associated osteoarthritis, synovitis, and wound repair. Sci Rep 2017; 7:44315. [PMID: 28317846 PMCID: PMC5357837 DOI: 10.1038/srep44315] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/03/2017] [Indexed: 01/10/2023] Open
Abstract
High-fat diet-induced obesity is a major risk factor for osteoarthritis (OA) and diminished wound healing. The objective of this study was to determine the associations among serum and synovial fluid lipid levels with OA, synovitis, adipokine levels, and wound healing in a pre-clinical obese mouse model of OA. Male C57BL/6 J mice were fed either a low-fat (10% kcal) or one of three high-fat (HF, 60% kcal) diets rich in saturated fatty acids (SFAs), ω-6 or ω-3 polyunsaturated FAs (PUFAs). OA was induced by destabilization of the medial meniscus. Mice also received an ear punch for evaluating wound healing. Serum and synovial fluid were collected for lipidomic and adipokine analyses. We demonstrated that the serum levels of ω-3 PUFAs were negatively correlated with OA and wound size, but positively correlated with adiponectin levels. In contrast, most ω-6 PUFAs exhibited positive correlations with OA, impaired healing, and inflammatory adipokines. Interestingly, levels of pentadecylic acid (C15:0, an odd-chain SFA) and palmitoleic acid were inversely correlated with joint degradation. This study extends our understanding of the links of FAs with OA, synovitis and wound healing, and reports newly identified serum and synovial fluid FAs as predictive biomarkers of OA in obesity.
Collapse
Affiliation(s)
- Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis MO, 63110, USA
| | - Kelly A Kimmerling
- Department of Orthopaedic Surgery, Washington University, St. Louis MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis MO, 63110, USA
| | - Dianne Little
- Departments of Basic Medical Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis MO, 63110, USA
| |
Collapse
|
24
|
The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol 2016; 12:446-55. [PMID: 27256713 DOI: 10.1038/nrrheum.2016.68] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of the gut microbiome in animal models of inflammatory and autoimmune disease is now well established. The human gut microbiome is currently being studied as a potential modulator of the immune response in rheumatic disorders. However, the vastness and complexity of this host-microorganism interaction is likely to go well beyond taxonomic, correlative observations. In fact, most advances in the field relate to the functional and metabolic capabilities of these microorganisms and their influence on mucosal immunity and systemic inflammation. An intricate relationship between the microbiome and the diet of the host is now fully recognized, with the microbiota having an important role in the degradation of polysaccharides into active metabolites. This Review summarizes the current knowledge on the metabolic role of the microbiota in health and rheumatic disease, including the advances in pharmacomicrobiomics and its potential use in diagnostics, therapeutics and personalized medicine.
Collapse
|
25
|
Benabdoune H, Rondon EP, Shi Q, Fernandes J, Ranger P, Fahmi H, Benderdour M. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. Inflamm Res 2016; 65:635-45. [PMID: 27056390 DOI: 10.1007/s00011-016-0946-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE AND DESIGN Resolvin D1 (RvD1), an omega-3 fatty acid derivative, has shown remarkable properties in resolving inflammation, promoting tissue repair and preserving tissue integrity. In this study, we investigated RvD1 effects on major processes involved in osteoarthritis (OA) pathophysiology. MATERIALS AND METHODS Human OA chondrocytes were treated with either 1 ng/ml interleukin-1β (IL-1β) or 20 μM 4-hydroxynonenal (HNE), then treated or not with increased concentrations of RvD1 (0-10 μM). RvD1 levels were measured by enzyme immunoassay in synovial fluids from experimental dog model of OA and sham operated dogs obtained from our previous study. Cell viability was evaluated by 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-SH-tetrazolium bromide assay. Parameters related to inflammation, catabolism and apoptosis were determined by enzyme-linked immunosorbent assay, Western blotting, and quantitative polymerase chain reaction. Glutathione (GSH) was assessed by commercial kit. The activation of mitogen-activated protein kinases and nuclear factor-kappaB (NF-κB) pathways was evaluated by Western blot. RESULTS We showed that RvD1 levels were higher in synovial fluids from OA joint compared to controls. In OA human chondrocytes, we demonstrated that RvD1 was not toxic up to 10 μM and stifled IL-1β-induced cyclooxygenase 2, prostaglandin E2, inducible nitric oxide synthase, nitric oxide, and matrix metalloproteinase-13. Our study of signalling pathways revealed that RvD1 suppressed IL-1β-induced activation of NF-κB/p65, p38/MAPK and JNK(1/2). Moreover, RvD1 prevented HNE-induced cell apoptosis and oxidative stress, as indicated by inactivation of caspases, inhibition of lactate dehydrogenase release, and increased levels of Bcl2 and AKT, as well as GSH. CONCLUSION This is the first in vitro study demonstrating the beneficial effect of RvD1 in OA. That RvD1 abolishing a number of factors known to be involved in OA pathogenesis renders it a clinically valuable agent in prevention of the disease.
Collapse
Affiliation(s)
- Houda Benabdoune
- Department of Pharmacology, Université de Montréal, Montreal, QC, Canada.,Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Elsa-Patricia Rondon
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Qin Shi
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Julio Fernandes
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Pierre Ranger
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Mohamed Benderdour
- Department of Pharmacology, Université de Montréal, Montreal, QC, Canada. .,Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
26
|
Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: Role in disease and pharmacological perspectives. Pharmacol Res 2016; 112:84-98. [PMID: 26826283 DOI: 10.1016/j.phrs.2016.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
Abstract
The inflammatory response in the joint can induce an intense accumulation of leukocytes in the tissue that frequently results in severe local damage and loss of function. Neutrophils are essential cells to combat many pathogens, but their arsenal can contribute or aggravate articular inflammation. Here we summarized some aspects of neutrophil biology, their role in inflammation and indicated how the modulation of neutrophil functions could be useful for the treatment of different forms of arthritis.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Flavio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
27
|
Easley JT, Nelson JW, Mellas RE, Sommakia S, Wu C, Trump B, Baker OJ. Aspirin-Triggered Resolvin D1 Versus Dexamethasone in the Treatment of Sjögren's Syndrome-Like NOD/ShiLtJ Mice - A Pilot Study. ACTA ACUST UNITED AC 2015; 1. [PMID: 27110599 DOI: 10.23937/2469-5726/1510027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resolvin D1 (RvD1) and its aspirin-triggered epimeric form (AT-RvD1) are endogenous lipid mediators (derived from docosahexaenoic acid, DHA) that control the duration and magnitude of inflammation in models of complex diseases. Our previous studies demonstrated that RvD1-mediated signaling pathways are expressed and active in salivary glands from rodents and humans. Furthermore, treatment of salivary cells with RvD1 blocked TNF-α-mediated inflammatory signals and improved epithelial integrity. The purpose of this pilot study was to determine the feasibility of treatment with AT-RvD1 versus dexamethasone (DEX) on inflammation (i.e., lymphocytic infiltration, cytokine expression and apoptosis) observed in submandibular glands (SMG) from the NOD/ShiLtJ Sjögren's syndrome (SS) mouse model before experimenting with a larger population. NOD/ShiLtJ mice were treated intravenously with NaCl (0.9%, negative control), AT-RvD1 (0.01-0.1 mg/kg) or DEX (4.125-8.25 mg/kg) twice a week for 14 weeks beginning at 4 weeks of age. At 18 weeks of age, SMG were collected for pathological analysis and detection of SS-associated inflammatory genes. The AT-RvD1 treatment alone did not affect lymphocytic infiltration seen in NOD/ShiLtJ mice while DEX partially prevented lymphocytic infiltration. Interestingly, both AT-RvD1 and DEX caused downregulation of SS-associated inflammatory genes and reduction of apoptosis. Results from this pilot study suggest that a systemic treatment with AT-RvD1 and DEX alone attenuated inflammatory responses observed in the NOD/ShiLtJ mice; therefore, they may be considered as potential therapeutic tools in treating SS patients when used alone or in combination.
Collapse
Affiliation(s)
- Justin T Easley
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Joel W Nelson
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Rachel E Mellas
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Salah Sommakia
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Chunhua Wu
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Bryan Trump
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| |
Collapse
|
28
|
Kholy KE, Genco RJ, Van Dyke TE. Oral infections and cardiovascular disease. Trends Endocrinol Metab 2015; 26:315-21. [PMID: 25892452 DOI: 10.1016/j.tem.2015.03.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 01/22/2023]
Abstract
Oral infections are the most common diseases of mankind. Numerous reports have implicated oral infections, particularly periodontitis, as a risk factor for atherosclerotic cardiovascular disease (CVD). In this review we examine the epidemiology and biologic plausibility of this association with an emphasis on oral bacteria and inflammation. Longitudinal studies of incident cardiovascular events clearly show excess risk for CVD in individuals with periodontitis. It is likely that systemic exposure to oral bacteria impacts upon the initiation and progression of CVD through triggering of inflammatory processes. Given the high prevalence of periodontitis, any risk attributable to future CVD is important to public health. Unraveling the role of the oral microbiome in CVD will lead to new preventive and treatment approaches.
Collapse
Affiliation(s)
- Karim El Kholy
- Forsyth Institute, Cambridge, MA 02142, USA; Harvard University, Cambridge, MA 02138, USA
| | - Robert J Genco
- State University of New York at Buffalo, Buffalo, NY 14226, USA
| | | |
Collapse
|
29
|
Shevalye H, Yorek MS, Coppey LJ, Holmes A, Harper MM, Kardon RH, Yorek MA. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. J Neurophysiol 2015; 114:199-208. [PMID: 25925322 DOI: 10.1152/jn.00224.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to determine the effect of supplementing the diet of a mouse model of type 2 diabetes with menhaden (fish) oil or daily treatment with resolvin D1 on diabetic neuropathy. The end points evaluated included motor and sensory nerve conduction velocity, thermal sensitivity, innervation of sensory nerves in the cornea and skin, and the retinal ganglion cell complex thickness. Menhaden oil is a natural source for n-3 polyunsaturated fatty acids, which have been shown to have beneficial effects in other diseases. Resolvin D1 is a metabolite of docosahexaenoic acid and is known to have anti-inflammatory and neuroprotective properties. To model type 2 diabetes, mice were fed a high-fat diet for 8 wk followed by a low dosage of streptozotocin. After 8 wk of hyperglycemia, mice in experimental groups were treated for 6 wk with menhaden oil in the diet or daily injections of 1 ng/g body wt resolvin D1. Our findings show that menhaden oil or resolvin D1 did not improve elevated blood glucose, HbA1C, or glucose utilization. Untreated diabetic mice were thermal hypoalgesic, had reduced motor and sensory nerve conduction velocities, had decreased innervation of the cornea and skin, and had thinner retinal ganglion cell complex. These end points were significantly improved with menhaden oil or resolvin D1 treatment. Exogenously, resolvin D1 stimulated neurite outgrowth from primary cultures of dorsal root ganglion neurons from normal mice. These studies suggest that n-3 polyunsaturated fatty acids derived from fish oil could be an effective treatment for diabetic neuropathy.
Collapse
Affiliation(s)
- Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Matthew S Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa; and
| | - Lawrence J Coppey
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Amey Holmes
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa
| | - Matthew M Harper
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa; and
| | - Randy H Kardon
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa; and
| | - Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, Iowa; Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa; and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|