1
|
Wang X, Ji Y, Jin X, Zhou M, Wu Y, Xu Y, Liu R, Feng J. Network pharmacology prediction, molecular docking, and molecular dynamics simulation-based strategy to explore the potential mechanism of Huashanshen dripping pill against asthma. J Pharm Pharmacol 2024; 76:1362-1378. [PMID: 39022996 DOI: 10.1093/jpp/rgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES Asthma is a heterogeneous disease characterized by chronic airway inflammation. Huashanshen dripping pills (HSS) are commonly utilized for relieving asthma, relieving cough, and expelling phlegm. At present, the molecular mechanism against airway inflammation remains unclear. METHODS In this study, network pharmacology, molecular docking technology, and molecular dynamic simulation were used to predict the therapeutic pathways of HSS for asthma. The ovalbumin-induced mouse model was used to further validate the prediction by RT-qPCR, western blot, immunofluorescence, and related methods. KEY FINDINGS The findings indicate that HSS improves lung function and relieves lung inflammation by reducing inflammatory cell infiltration around the bronchus and reducing eosinophilic counts in bronchoalveolar lavage fluid (BALF). In addition, it lowers the levels of inflammatory cytokines and the expression levels of interleukin-4, interleukin-5, and interleukin-13 mRNA. HSS also inhibits the phosphorylation and nuclear translocation of NF-κB p65 protein. CONCLUSIONS All results suggested that HSS can decrease airway inflammation in asthmatic mice by inhibiting NF-κB signaling pathway. This finding will shed light on how it can be used to treat asthma.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yansu Ji
- Department of Pharmacy Office, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Dongli District, Tianjin 300162, China
| | - Xin Jin
- Military Medicine Section, Department of Health Services, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309, People's Republic of China
| | - Miaomiao Zhou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yujie Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yanhong Xu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Rui Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Jihong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| |
Collapse
|
2
|
Ji X, Zhou Y, He S, Chen H, Zhang X, Chen Z, Cai J. Bioinformatics analysis of G protein subunit gamma transduction protein 2-autophagy axis in CD11b+ dendritic cells as a potential regulator to skew airway neutrophilic inflammation in asthma endotypes. Immun Inflamm Dis 2024; 12:e70038. [PMID: 39417697 PMCID: PMC11484477 DOI: 10.1002/iid3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Asthma is a heterogeneous inflammatory disease with two main clinical endotypes: type 2 (T2) high and low asthma. The plasticity and autophagy in dendritic cells (DCs) influence T helper (Th)2 or Th17 differentiation to regulate asthma endotypes. Enhanced autophagy in DCs fosters Th2 differentiation in allergic environments, while reduced autophagy favors Th17 cell differentiation in sensitized and infected environments. Autophagy regulation in DCs involves interaction with various pathways like G protein-coupled receptor (GPCR), mammalian target of rapamycin (mTOR), or phosphoinositide 3-kinase (PI3K) pathway. However, specific molecules within DCs influencing asthma endotypes remain unclear. METHODS Gene expression data series (GSE) 64896, 6858, 2276, and 55247 were obtained from gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between CD103+ and CD11b+ DCs after induction by ovalbumin (OVA) and lipopolysaccharide (LPS) were analyzed using GEO2R. DEGs were examined through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analyses. The hub gene network was construct with STRING database and Cytoscape. Autophagy differences in DCs and the selected hub gene in GSE6858, GSE2276, and GSE55247 were evaluated using student t tests. RESULTS Our analysis identified 635 upregulated and 360 downregulated genes in CD11b+ DCs, compared to CD103+ DCs. These DEGs were associated with "PI3K-AKT signaling pathway," "Ras signaling pathway," and so forth. Thirty-five hub genes were identified, in which G protein subunit gamma transduction protein 2 (Gngt2) in CD11b+ DCs exhibited a relatively specific increase in expression associated with autophagy defects under the induction environment similar to T2 low asthma model. No significant difference was found in lung Gngt2 expression between T2 high asthma model and control group. CONCLUSION Our analysis suggested Gngt2 acted as an adapter molecule that inhibited autophagy, promoting Th17-mediated airway inflammation via the GPCR pathway in a T2 low asthma mice model. Targeting this pathway provides new asthma treatment strategies in preclinical research.
Collapse
Affiliation(s)
- Xiaoying Ji
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyang CityGuizhou ProvinceChina
| | - Yaoliang Zhou
- Emergency and Disaster Medical CenterThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen CityGuangdong ProvinceChina
| | - Shendong He
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Guangxi University of Chinese Medicine, Xianhu DistrictNanningGuangxiChina
| | - Hongda Chen
- Department of Traditional Chinese MedicineThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen CityGuangdong ProvinceChina
| | - Xianming Zhang
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyang CityGuizhou ProvinceChina
| | - Zhifeng Chen
- Department of Respiratory and Critical Care MedicineThe Second Xiangya Hospital, Central South UniversityChangsha CityHunan ProvinceChina
| | - Jinwen Cai
- Department of Respiratory and Critical Care MedicineThe Third Xiangya Hospital of Central South UniversityChangsha CityHunan ProvinceChina
| |
Collapse
|
3
|
Jenei-Lanzl Z, Straub RH. β2-adrenoceptors kick osteoarthritis - Time to rethink prevention and therapy. Osteoarthritis Cartilage 2024:S1063-4584(24)01268-8. [PMID: 38945292 DOI: 10.1016/j.joca.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Although, during the past decades, substantial advances emerged in identifying major local and systemic factors contributing to initiation and progression of osteoarthritis (OA), some neuroendocrine mechanisms are still not understood or even neglected when thinking about novel therapeutic options. One of which is the sympathetic nervous system that exhibits various OA-promoting effects in different tissues of the joint. Interestingly, the β2-adrenoceptor (AR) mediates the majority of these effects as demonstrated by several in vitro, in vivo as well as in clinical studies. This review article does not only summarize studies of the past two decades demonstrating that the β2-AR plays an OA-promoting role in different tissues of the joint but also aims to encourage the reader to think about next-level research to discover novel and innovative preventive and/or therapeutic strategies targeting the β2-AR in OA.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Zhang M, Lan X, Li X, Lu S. Pharmacologically targeting intracellular allosteric sites of GPCRs for drug discovery. Drug Discov Today 2023; 28:103803. [PMID: 37852356 DOI: 10.1016/j.drudis.2023.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
G-protein-coupled receptors (GPCRs) are a family of cell surface proteins that can sense a variety of extracellular stimuli and mediate multiple signaling transduction pathways involved in human physiology. Recent advances in GPCR structural biology have revealed a relatively conserved intracellular allosteric site in multiple GPCRs, which can be utilized to modulate receptors from the inside. This novel intracellular site partially overlaps with the G-protein and β-arrestin coupling sites, providing a novel avenue for biological intervention. Here, we review evidence available for GPCR structures complexed with intracellular small-molecule allosteric modulators, elucidating drug-target interactions and allosteric mechanisms. Moreover, we highlight the potential of intracellular allosteric modulators in achieving biased signaling, which provides insights into biased allosteric mechanisms.
Collapse
Affiliation(s)
- Mingyang Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Matera MG, Rinaldi B, Ambrosio C, Cazzola M. Is it preferable to administer a bronchodilator once- or twice-daily when treating COPD? Respir Med 2023; 219:107439. [PMID: 37879449 DOI: 10.1016/j.rmed.2023.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Nocturnal and early morning symptoms are common and uncomfortable in many patients with COPD, and are likely to affect their long-term outcomes. However, it is still debated whether it is better to give long-acting bronchodilators once- or twice-daily to symptomatic COPD patients. The functional link between circadian rhythms of autonomic tone and airway calibre explains why the timing of administration of bronchodilators in chronic airway diseases can induce different effects when taken at different biological (circadian) times. However, the timing also depends on the pharmacological characteristics of the bronchodilator to be used. Because the profile of bronchodilation produced by once-daily vs. twice-daily long-acting bronchodilators differs throughout 24 h, selecting long-acting bronchodilators may be customized to specific patient preferences based on the need for further bronchodilation in the evening. This is especially helpful for people who experience respiratory symptoms at night or early morning. Compared to placebo, evening bronchodilator administration is consistently linked with persistent overnight improvements in dynamic respiratory mechanics and inspiratory neural drive. The current evidence indicates that nocturnal and early morning symptoms control is best handled by a LAMA taken in the evening. In contrast, it seems preferable to use a LABA for daytime symptoms. Therefore, it can be speculated that combining a LAMA with a LABA can improve bronchodilation and control symptoms better. Both LAMA and LABA must be rapid in their onset of action. Aclidinium/formoterol, a twice-daily combination, is the most studies of the available LAMA/LABA combinations in terms of impact on daytime and nocturnal symptoms.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Concetta Ambrosio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
6
|
Matera MG, Rinaldi B, Calzetta L, Rogliani P, Cazzola M. Advances in adrenergic receptors for the treatment of chronic obstructive pulmonary disease: 2023 update. Expert Opin Pharmacother 2023; 24:2133-2142. [PMID: 37955136 DOI: 10.1080/14656566.2023.2282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Strong scientific evidence and large experience support the use of β2-agonists for the symptomatic alleviation of COPD. Therefore, there is considerable effort in discovering highly potent and selective β2-agonists. AREAS COVERED Recent research on novel β2-agonists for the treatment of COPD. A detailed literature search was performed in two major databases (PubMed/MEDLINE and Scopus) up to September 2023." EXPERT OPINION Compounds that preferentially activate a Gs- or β-arrestin-mediated signaling pathway via β- adrenoceptors (ARs) are more innovative. Pepducins, which target the intracellular region of β2-AR to modulate receptor signaling output, have the most interesting profile from a pharmacological point of view. They stabilize the conformation of the β2-AR and influence its signaling by interacting with the intracellular receptor-G protein interface. New bifunctional drugs called muscarinic antagonist-β2 agonist (MABA), which have both muscarinic receptor (mAChR) antagonism and β2-agonist activity in the same molecule, are a new opportunity. However, all tested compounds have been shown to act predominantly as mAChR antagonists or β2-agonists. An intriguing idea is to utilize allosteric modulators that bind to β2-ARs at sites different than those bound by orthosteric ligands to augment or reduce the signaling transduced by the orthosteric ligand.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
7
|
Zhang H, Wang J, Wang C. Multi-target bioactive compound screening from the infructescence of Platycarya strobilacea Sieb. et Zucc. by affinity chromatography using immobilized β 2 -adrenoceptor and muscarinic-3 acetylcholine receptor as the stationary phase. J Sep Sci 2023; 46:e2300129. [PMID: 37339788 DOI: 10.1002/jssc.202300129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
As a main source for the recognition and identification of lead compounds, traditional Chinese medicine plays a pivotal role in preventing diseases for years. However, screening bioactive compounds from traditional Chinese medicine remains challenging because of the complexity of the systems and the occurrence of the synergic effect of the compounds. The infructescence of Platycarya strobilacea Sieb. et Zucc is prescribed for allergic rhinitis treatment with unknown bioactive compounds and unclear mechanisms. Herein, we immobilized the β2 -adrenoceptor and muscarine-3 acetylcholine receptor onto the silica gel surface to prepare the stationary phase in a covalent bond through one step. The feasibility of the columns was investigated by the chromatographic method. Ellagic acid and catechin were identified as the bioactive compounds targeting the receptors. The binding constants of ellagic acid were calculated to be (1.56 ± 0.23)×107 M-1 for muscarine-3 acetylcholine receptor and (2.93 ± 0.15)×107 M-1 for β2 -adrenoceptor by frontal analysis. While catechin can bind with muscarine-3 acetylcholine receptor with an affinity of (3.21 ± 0.05)×105 M-1 . Hydrogen bonds and van der Waals' force were the main driving forces for the two compounds with the receptors. The established method provides an alternative for multi-target bioactive compound screening in complex matrices.
Collapse
Affiliation(s)
- HaoSen Zhang
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an, China
| | - Chaozhan Wang
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
8
|
What Makes GPCRs from Different Families Bind to the Same Ligand? Biomolecules 2022; 12:biom12070863. [PMID: 35883418 PMCID: PMC9313020 DOI: 10.3390/biom12070863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, computational prediction of GPCR ligand binding becomes a convincing option to high throughput screening and other experimental approaches during the beginning phases of ligand discovery. In this work, we set out to computationally uncover and understand the binding of a single ligand to GPCRs from several different families. Three-dimensional structural comparisons of the GPCRs that bind to the same ligand revealed local 3D structural similarities and often these regions overlap with locations of binding pockets. These pockets were found to be similar (based on backbone geometry and side-chain orientation using APoc), and they correlate positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the more likely a ligand binding to the pockets will interact with similar residues, have similar conformations, and produce similar binding affinities across the pockets. These findings can be exploited to improve protein function inference, drug repurposing and drug toxicity prediction, and accelerate the development of new drugs.
Collapse
|
9
|
OZMEN R, DEĞER N, KARABULUT D. Evaluation of the cytoprotective effects of thymoquinone on isoproterenol-induced rat aorta. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.995777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
11
|
Meurer F, Schulte-Michels J, Häberlein H, Franken S. Ivy leaves dry extract EA 575® mediates biased β 2-adrenergic receptor signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153645. [PMID: 34280828 DOI: 10.1016/j.phymed.2021.153645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND β2-adrenergic receptor (β2-AR) stimulation activates the G protein/cAMP pathway, which is opposed by the GRK2/β-arrestin 2 pathway. The latter is undesirable in the treatment of respiratory diseases. HYPOTHESIS/PURPOSE EA 575® is capable of mediating a biased β2-adrenergic signaling pathway. METHODS The impact of the ivy leaves dry extract EA 575® on β2-adrenergic signaling was tested in a dynamic mass redistribution assay in HEK wild-type and in HEK β-arrestin knock-out cells. cAMP formation and recruitment of β-arrestin 2 were investigated using GloSensor™ and PathHunter® assays, respectively. NFκB transcriptional activity was determined in both HEK wild-type as well as HEK β-arrestin knock-out cells. RESULTS EA 575® inhibits the recruitment of β-arrestin 2 and thereby enhances G protein/cAMP signaling under β2-stimulating conditions, as evidenced by a corresponding increase in cAMP formation. While β2-AR-mediated inhibition of NFκB transcriptional activity is β-arrestin-dependent, EA 575® leads to significant inhibition of NFκB transcriptional activity in β-arrestin knock-out cells and thus via a β-arrestin-independent signaling pathway. CONCLUSION EA 575® is the first active phytopharmaceutical ingredient for which biased β2-adrenergic activation has been described. This shift towards G protein/cAMP signaling provides the molecular basis for the clinically proven efficacy of EA 575® in the treatment of lower respiratory tract diseases. In this light, EA 575® could potentially reduce β-arrestin-mediated adverse effects in new combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Fabio Meurer
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janka Schulte-Michels
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Ma W, Yang L, Liu Y, Lei P, Zhang Y. β 2-adrenergic receptor affinity chromatography with an interaction force analysis model: A method for analysis of active compounds targeting β 2-adrenergic receptor. J Chromatogr A 2021; 1652:462371. [PMID: 34242937 DOI: 10.1016/j.chroma.2021.462371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Asthma is one of the most prevalent diseases worldwide, and β2-adrenergic receptor (β2AR) agonists have been reported to be highly effective bronchodilators against this disease. In this study, we successfully constructed a novel CHO-β2AR affinity chromatography (CHO-β2AR/AC), which was evaluated by infrared spectroscopic and scanning electron microscope (SEM) analysis. In addition, CHO-β2AR/AC model exhibited good selectivity and reliability with the relative standard deviation smaller than 5.6% after 30 days. Furthermore, an interaction force analysis model was developed based on CHO-β2AR/AC. The results showed that the interaction force analysis model (Φ•E•pKa) exhibited a strong correlation with equilibrium dissociation constant (KD) (r2=0.9284, p=0.002) and a good correlation with logarithm of half-maximum effective concentration (pEC50) values (r2=0.7135, p=0.034). In addition, a pool of clinically approved drugs was screened by this CHO-β2AR/AC model. Codeine wasfound to bind to and activate β2AR with KD value of 4.10 × 10-7 M, leading to increased cyclic adenosine monophosphate (cAMP) production with EC50 of 6.49 × 10-7 M and reduction of intracellular Ca2+ concentration, which in turn relaxes bronchial contraction with EC50 of 2.62 × 10-6 M. Furthermore, the KD value and pEC50 of codeine were within the 95% prediction range of the interaction force analysis model. The results indicate that the CHO-β2AR/AC with interaction force analysis model constructed in this study can be used to effectively and rapidly screen active compounds targeting β2AR.
Collapse
Affiliation(s)
- Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, P.R. China
| | - Liu Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, P.R. China; Xi'an Mental Health Center, Xi'an Key Laboratory of Pharmacy (Mental Health), Xi'an 710100, P.R. China
| | - Yanhong Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, P.R. China
| | - Panpan Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, P.R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, P.R. China.
| |
Collapse
|
13
|
Huang Q, Ford NC, Gao X, Chen Z, Guo R, Raja SN, Guan Y, He S. Ubiquitin-mediated receptor degradation contributes to development of tolerance to MrgC agonist-induced pain inhibition in neuropathic rats. Pain 2021; 162:1082-1094. [PMID: 33110031 PMCID: PMC7969388 DOI: 10.1097/j.pain.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Agonists to subtype C of the Mas-related G-protein-coupled receptors (MrgC) induce pain inhibition after intrathecal (i.t.) administration in rodent models of nerve injury. Here, we investigated whether tolerance develops after repeated MrgC agonist treatments and examined the underlying mechanisms. In animal behavior studies conducted in male rats at 4 to 5 weeks after an L5 spinal nerve ligation (SNL), the ability of dipeptide MrgC agonist JHU58 (0.1 mM, 10 μL, i.t.) to inhibit mechanical and heat hypersensitivity decreased after 3 days of treatment with a tolerance-inducing dose (0.5 mM, 10 μL, i.t., twice/day). In HEK293T cells, acute treatment with JHU58 or BAM8-22 (a large peptide MrgC agonist) led to MrgC endocytosis from the cell membrane and later sorting to the membrane for reinsertion. However, chronic exposure to JHU58 increased the coupling of MrgC to β-arrestin-2 and led to the ubiquitination and degradation of MrgC. Importantly, pretreatment with TAK-243 (0.2 mM, 5 μL, i.t.), a small-molecule inhibitor of the ubiquitin-activating enzyme, during tolerance induction attenuated the development of tolerance to JHU58-induced inhibition of mechanical and heat hypersensitivity in SNL rats. Interestingly, morphine analgesia was also decreased in SNL rats that had become tolerant to JHU58, suggesting a cross-tolerance. Furthermore, i.t. pretreatment with TAK-243, which reduced JHU58 tolerance, also attenuated the cross-tolerance to morphine analgesia. These findings suggest that tolerance can develop to MrgC agonist-induced pain inhibition after repeated i.t. administrations. This tolerance development to JHU58 may involve increased coupling of MrgC to β-arrestin-2 and ubiquitin-mediated receptor degradation.
Collapse
Affiliation(s)
- Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinyan Gao
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
14
|
Wang Y, Yu Z, Xiao W, Lu S, Zhang J. Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today 2020; 26:690-703. [PMID: 33301977 DOI: 10.1016/j.drudis.2020.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
As a superfamily of membrane receptors, G-protein-coupled receptors (GPCRs) have significant roles in human physiological processes, including cell proliferation, metabolism, and neuromodulation. GPCRs are vital targets of therapeutic drugs, and their allosteric regulation represents a novel direction for drug discovery. Given the numerous breakthroughs in structural biology, diverse allosteric sites on GPCRs have been identified within the extracellular and intracellular loops, and the seven core transmembrane helices. However, a unique type of allosteric site has also been discovered at the interface of the receptor-lipid bilayer, similar to the β2-adrenergic receptor. Here, we review recent identifications of these allosteric sites and the detailed modulator-target interactions within the interface for each modulator to highlight the role of lipids in GPCR allosteric drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Zhengtian Yu
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Wen Xiao
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
15
|
Wieduwild E, Girard-Madoux MJ, Quatrini L, Laprie C, Chasson L, Rossignol R, Bernat C, Guia S, Ugolini S. β2-adrenergic signals downregulate the innate immune response and reduce host resistance to viral infection. J Exp Med 2020; 217:133716. [PMID: 32045472 PMCID: PMC7144531 DOI: 10.1084/jem.20190554] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
In humans, psychological stress has been associated with a higher risk of infectious illness. However, the mechanisms by which the stress pathway interferes with host response to pathogens remain unclear. We demonstrate here a role for the β2-adrenergic receptor (β2-AR), which binds the stress mediators adrenaline and noradrenaline, in modulating host response to mouse cytomegalovirus (MCMV) infection. Mice treated with a β2-AR agonist were more susceptible to MCMV infection. By contrast, β2-AR deficiency resulted in a better clearance of the virus, less tissue damage, and greater resistance to MCMV. Mechanistically, we found a correlation between higher levels of IFN-γ production by liver natural killer (NK) cells and stronger resistance to MCMV. However, the control of NK cell IFN-γ production was not cell intrinsic, revealing a cell-extrinsic downregulation of the antiviral NK cell response by adrenergic neuroendocrine signals. This pathway reduces host immune defense, suggesting that the blockade of the β2-AR signaling could be used to increase resistance to infectious diseases.
Collapse
Affiliation(s)
- Elisabeth Wieduwild
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Mathilde J Girard-Madoux
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Linda Quatrini
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,Department of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Caroline Laprie
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lionel Chasson
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rafaëlle Rossignol
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Claire Bernat
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Guia
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
16
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
17
|
Albertson TE, Pugashetti JV, Chau-Etchepare F, Chenoweth JA, Murin S. Pharmacotherapeutic management of asthma in the elderly patient. Expert Opin Pharmacother 2020; 21:1991-2010. [PMID: 32686969 DOI: 10.1080/14656566.2020.1795131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous syndrome with variable phenotypes. Reversible airway obstruction and airway hyper-responsiveness often with an atopic or eosinophilic component is common in the elderly asthmatic. Asthma chronic obstructive pulmonary disease overlap syndrome (ACOS), a combination of atopy-mediated airway hyper-responsiveness and a history of smoking or other environmental noxious exposures, can lead to some fixed airway obstruction and is also common in elderly patients. Little specific data exist for the treating the elderly asthmatic, thus requiring the clinician to extrapolate from general adult data and asthma treatment guidelines. AREAS COVERED A stepwise approach to pharmacotherapy of the elderly patient with asthma and ACOS is offered and the literature supporting the use of each class of drugs reviewed. EXPERT OPINION Inhaled, long-acting bronchodilators in combination with inhaled corticosteroids represent the backbone of treatment for the elderly patient with asthma or ACOS . Beyond these medications used as direct bronchodilators and topical anti-inflammatory agents, a stepwise approach to escalation of therapy includes multiple options such as oral leukotriene receptor antagonist or 5-lipoxygense inhibitor therapy, oral phosphodiesterase inhibitors, systemic corticosteroids, oral macrolide antibiotics and if evidence of eosinophilic/atopic component disease exists then modifying monoclonal antibody therapies.
Collapse
Affiliation(s)
- Timothy E Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, U. C. Davis , Sacramento, CA, USA.,Department of Emergency Medicine, School of Medicine, U. C. Davis , Sacramento, CA, USA.,Department of Medicine, Veterans Administration Northern California Health Care System , Mather, CA, USA
| | - Janelle V Pugashetti
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, U. C. Davis , Sacramento, CA, USA.,Department of Medicine, Veterans Administration Northern California Health Care System , Mather, CA, USA
| | - Florence Chau-Etchepare
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, U. C. Davis , Sacramento, CA, USA.,Department of Medicine, Veterans Administration Northern California Health Care System , Mather, CA, USA
| | - James A Chenoweth
- Department of Emergency Medicine, School of Medicine, U. C. Davis , Sacramento, CA, USA.,Department of Medicine, Veterans Administration Northern California Health Care System , Mather, CA, USA
| | - Susan Murin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, U. C. Davis , Sacramento, CA, USA.,Department of Medicine, Veterans Administration Northern California Health Care System , Mather, CA, USA
| |
Collapse
|
18
|
Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28:28/154/190095. [PMID: 31871127 DOI: 10.1183/16000617.0095-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes.At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.It is likely that if developed, these new classes may be a useful addition to, rather than a substitution of, the bronchodilator therapy currently used, in order to achieve further optimisation of bronchodilation.
Collapse
Affiliation(s)
- Mario Cazzola
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
19
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Shen A, Chen D, Kaur M, Bartels P, Xu B, Shi Q, Martinez JM, Man KNM, Nieves-Cintron M, Hell JW, Navedo MF, Yu XY, Xiang YK. β-blockers augment L-type Ca 2+ channel activity by targeting spatially restricted β 2AR signaling in neurons. eLife 2019; 8:49464. [PMID: 31609201 PMCID: PMC6813027 DOI: 10.7554/elife.49464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/13/2019] [Indexed: 01/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) transduce pleiotropic intracellular signals in mammalian cells. Here, we report neuronal excitability of β-blockers carvedilol and alprenolol at clinically relevant nanomolar concentrations. Carvedilol and alprenolol activate β2AR, which promote G protein signaling and cAMP/PKA activities without action of G protein receptor kinases (GRKs). The cAMP/PKA activities are restricted within the immediate vicinity of activated β2AR, leading to selectively enhance PKA-dependent phosphorylation and stimulation of endogenous L-type calcium channel (LTCC) but not AMPA receptor in rat hippocampal neurons. Moreover, we have engineered a mutant β2AR that lacks the catecholamine binding pocket. This mutant is preferentially activated by carvedilol but not the orthosteric agonist isoproterenol. Carvedilol activates the mutant β2AR in mouse hippocampal neurons augmenting LTCC activity through cAMP/PKA signaling. Together, our study identifies a mechanism by which β-blocker-dependent activation of GPCRs promotes spatially restricted cAMP/PKA signaling to selectively target membrane downstream effectors such as LTCC in neurons.
Collapse
Affiliation(s)
- Ao Shen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacology, University of California Davis, Davis, United States
| | - Dana Chen
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Manpreet Kaur
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Peter Bartels
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Bing Xu
- Department of Pharmacology, University of California Davis, Davis, United States.,VA Northern California Health Care System, Mather, United States
| | - Qian Shi
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Joseph M Martinez
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Kwun-Nok Mimi Man
- Department of Pharmacology, University of California Davis, Davis, United States
| | | | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, Davis, United States
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang K Xiang
- Department of Pharmacology, University of California Davis, Davis, United States.,VA Northern California Health Care System, Mather, United States
| |
Collapse
|
21
|
Abstract
Pompe disease is a multisystemic metabolic disorder caused by a deficiency of lysosomal acid alpha-glucosidase (GAA) leading to progressive accumulation of lysosomal glycogen, lysosomal swelling and rupture in all tissues of the human body. Furthermore, autophagic buildup, organelle abnormalities, and energy deficit are regularly observed. Enzyme replacement therapy has been available for patients living with Pompe disease for more than 15 years. Although our disease knowledge has grown enormously, we still have multiple challenges to overcome. Here, I will discuss unmet clinical needs, neglected or overlooked aspects of the pathophysiology, and issues related to future therapies.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|