1
|
Wang R, Wang Y, Qin Y, Wei H. Antioxidative effects of ghrelin on human trabecular meshwork cells. J Fr Ophtalmol 2024; 47:103746. [PMID: 37806937 DOI: 10.1016/j.jfo.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 10/10/2023]
Abstract
Glaucoma is a group of neurodegenerative diseases characterized by loss of retinal ganglion cells and visual field defects and is one of the major causes of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is one of the classifications of glaucoma. Oxidative stress in trabecular reticulated cells is one of the possible mechanisms of the development of glaucoma. At present, there is still a lack of effective methods to treat glaucoma. Ghrelin is characterized by its wide distribution and high potency and has anti-inflammatory, antioxidant, and anti-apoptotic effects, which may be beneficial in the treatment of glaucoma. In this study, we investigated whether ghrelin can protect human trabecular meshwork cells (HTMCs) from oxidative damage induced by hydrogen peroxide (H2O2), as well as the possible mechanism of action. CCK8 and flow cytometry results revealed that treatment of HTMCs with ghrelin showed a dose-dependent protective effect against H2O2-induced damage. Ghrelin significantly decreased the rate of apoptosis and levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the level of superoxide dismutase (SOD) and catalase (CAT) in HTMCs. The difference was statistically significant compared with the H2O2 group. Ghrelin activated Nrf2/HO-1/NQO-1 signaling pathways and decreased HIF-1α level in H2O2-injured HTMCs as shown on qPCR and Western blot. In conclusion, ghrelin can protect HTMCs from oxidative damage induced by H2O2 and reduce apoptosis in HTMCs, which can be a new approach to treating POAG. The underlying therapeutic mechanism may be related to Nrf2/HO-1/NQO-1 signaling pathways and HIF-1α.
Collapse
Affiliation(s)
- R Wang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China.
| | - Y Wang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Y Qin
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - H Wei
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China.
| |
Collapse
|
2
|
Wang J, Tan S, Gianotti L, Wu G. Evaluation and management of body composition changes in cancer patients. Nutrition 2023; 114:112132. [PMID: 37441827 DOI: 10.1016/j.nut.2023.112132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023]
Abstract
Wasting in cancer patients has long been recognized as a condition that adversely affects cancer patients' quality of life, treatment tolerance, and oncological outcomes. Historically, this condition was mainly evaluated by changes in body weight. However, this approach is not quite accurate because body weight is the overall change of all body compartments. Conditions such as edema and ascites can mask the severity of muscle and adipose tissue depletion. Changes in body composition assessment in cancer patients have historically been underappreciated because of the limited availability of measurement tools. As more evidence highlighting the importance of body composition has emerged, it is imperative to apply a more precise evaluation of nutritional status and a more targeted approach to provide nutritional support for cancer patients. In this review, we will discuss the modalities for evaluating body composition and how to manage body composition changes in cancer patients.
Collapse
Affiliation(s)
- Junjie Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Luca Gianotti
- School of Medicine and Surgery, University of Milano-Bicocca, and HBP Surgery Unit, and Foundation IRCCS San Gerardo, Monza, Italy.
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Wolf M, Heni M, Hennige AM, Sippel K, Cegan A, Higuita LMS, Martus P, Häring HU, Fritsche A, Peter A. Acylated- and unacylated ghrelin during an oral glucose tolerance test in humans at risk for type 2 diabetes mellitus. Int J Obes (Lond) 2023; 47:825-832. [PMID: 37420007 PMCID: PMC10439001 DOI: 10.1038/s41366-023-01327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/24/2022] [Accepted: 06/01/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND/OBJECTIVES The orexigenic peptide hormone ghrelin has been implicated in the pathophysiology of obesity and type 2 diabetes mellitus through its effects on nutrient homeostasis. Ghrelin is subject to a unique post-translational acyl modification regulating its biochemical activity. SUBJECTS/METHODS In this study we aimed to investigate the relation of acylated (AcG) as well as unacylated ghrelin (UnG) with body weight and insulin resistance in the fasting (n = 545) and post-oral glucose tolerance test (oGTT) state (n = 245) in a metabolically well characterized cohort covering a broad range of BMI (17.95 kg/m²-76.25 kg/m²). RESULTS Fasting AcG (median 94.2 pg/ml) and UnG (median 175.3 pg/ml) were negatively and the AcG/UnG ratio was positively correlated with BMI (all p < 0.0001). Insulin sensitivity (ISI) correlated positively with AcG (p = 0.0014) and UnG (p = 0.0004) but not with the AcG/UnG ratio. In a multivariate analysis, including ISI and BMI, only BMI, but not ISI was independently associated with AcG and UnG concentrations. Significant changes of AcG and UnG concentrations were detectable after oGTT stimulation, with slight decreases after 30 min and increases after 90-120 min. Subject stratification into BMI-divergent groups revealed more pronounced AcG increases in the two groups with BMI < 40 kg/m². CONCLUSION Our data demonstrate lower concentrations for both AcG and UnG with increasing BMI as well as an increased proportion of the biologically active, acylated form of ghrelin giving point to pharmacologic intervention in ghrelin acylation and/or increase in UnG for treatment of obesity despite decreased absolute AcG levels.
Collapse
Affiliation(s)
- Magnus Wolf
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Heni
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | | | - Katrin Sippel
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Lina María Serna Higuita
- Institute for Clinical Epidemiology and applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Internal Medicine IV, Division for Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
4
|
Li HZ, Shao XX, Wang YF, Liu YL, Xu ZG, Guo ZY. LEAP2 is a more conserved ligand than ghrelin for fish GHSRs. Biochimie 2023; 209:10-19. [PMID: 36669723 DOI: 10.1016/j.biochi.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Recently, liver-expressed antimicrobial peptide 2 (LEAP2) was identified as an endogenous antagonist and an inverse agonist of the ghrelin receptor GHSR. However, its functions in lower vertebrates are not well understood. Our recent study demonstrated that both LEAP2 and ghrelin are functional towards a fish GHSR from Latimeria chalumnae, an extant coelacanth believed to be one of the closest ancestors of tetrapods. However, amino acid sequence alignment identified that the 6.58 position (Ballesteros-Weinstein numbering system) of most fish GHSRs are not occupied by an aromatic Phe residue, which is absolutely conserved in all known GHSRs from amphibians to mammals, and is responsible for human GHSR binding to its agonist, ghrelin. To test whether these unusual fish receptors are functional, we studied the ligand binding properties of three representative fish GHSRs, two from Danio rerio (zebrafish) and one from Larimichthys crocea (large yellow croaker). After overexpression in human embryonic kidney 293T cells, the three fish GHSRs retained normal binding to all tested LEAP2s, except for a second LEAP2 from L. crocea. However, they displayed almost no binding to all chemically synthesized n-octanoylated ghrelins, despite these ghrelins all retaining normal function towards human and coelacanth GHSRs. Thus, it seems that LEAP2 is a more conserved ligand than ghrelin towards fish GHSRs. Our results not only provided new insights into the interaction mechanism of GHSRs with LEAP2s and ghrelins, but also shed new light on the functions of LEAP2 and ghrelin in different fish species.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Fen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Li HZ, Shao XX, Shou LL, Li N, Liu YL, Xu ZG, Guo ZY. Development of Esterase-Resistant and Highly Active Ghrelin Analogs via Thiol-Ene Click Chemistry. ACS Med Chem Lett 2022; 13:1655-1662. [PMID: 36262400 PMCID: PMC9575166 DOI: 10.1021/acsmedchemlett.2c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
The orexigenic peptide ghrelin exerts important functions in energy metabolism and has therapeutic potential to treat certain diseases. Native ghrelin carries an essential O-fatty acyl moiety; however, this post-translational modification is susceptible to hydrolysis by certain esterases in circulation, representing a major route of its in vivo inactivation. In the present study, we developed a novel approach to prepare various esterase-resistant ghrelin analogs via photoinduced thiol-ene click chemistry. A recombinant unacylated human ghrelin mutant was reacted with commercially available terminal alkenes; thus, various alkyl moieties were introduced to the side chain of its unique Cys3 residue via a thioether bond. Among 11 S-alkylated ghrelin analogs, analog 11, generated by reacting with 2-methyl-1-octene, not only acquired much higher stability in serum but also retained full activity compared with native human ghrelin. Thus, the present study provided an efficient approach to prepare highly stable and highly active ghrelin analogs with therapeutic potential.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine
at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine
at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Li-Li Shou
- Research Center for Translational Medicine
at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ning Li
- Research Center for Translational Medicine
at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ya-Li Liu
- Research Center for Translational Medicine
at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine
at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine
at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Lovell AJ, Hoecht EM, Hucik B, Cervone DT, Dyck DJ. The effects of diet and chronic exercise on skeletal muscle ghrelin response. Metabol Open 2022; 14:100182. [PMID: 35340718 PMCID: PMC8942827 DOI: 10.1016/j.metop.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background Recent findings indicate that ghrelin, particularly the unacylated form (UnAG), acutely stimulates skeletal muscle fatty acid oxidation (FAO) and can preserve insulin signaling and insulin-stimulated glucose uptake in the presence of high concentrations of saturated fatty acids. However, we recently reported that the stimulatory effect of ghrelin on FAO and subsequent ability to protect insulin stimulated glucose uptake was lost following 6-weeks (6w) of chronic high fat feeding. In the current study we examined the effects of both short-term 5 day (5d) and chronic 6w high-fat diet (HFD) on muscle ghrelin response, and whether exercise training could prevent the development of muscle ghrelin resistance with 6w of HFD Methods and Results Soleus muscle strips were isolated from male rats to determine the direct effects of acylated (AG) and UnAG isoforms on FAO and glucose uptake. A 5d HFD did not alter the response of soleus muscle to AG or UnAG. Conversely, 6w of HFD was associated with a loss of ghrelin's ability to stimulate FAO and protect insulin stimulated glucose uptake. Muscle response to UnAG remained intact following the 6w HFD with chronic exercise training. Unexpectedly, muscle response to both AG and UnAG was also lost after 6w of low-fat diet (LFD) consumption. Protein content of the classic ghrelin receptor, GHS-R1a, was not affected by diet or training. Corticotropin-releasing hormone receptor-2 (CRF-2R) content, a putative receptor for ghrelin in muscle, was significantly decreased in soleus from 6w HFD-fed animals and increased following exercise training. This may explain the protection of UnAG response with training in HFD-fed rats but does not explain why ghrelin response was also lost in LFD-fed animals. Conclusions UnAG protects muscle glucose uptake during acute lipid oversupply, likely due to its ability to stimulate FAO. This effect is lost in 6w HFD-fed animals but protected with exercise training. Unexpectedly, ghrelin response was lost in 6w LFD-fed animals. The loss of ghrelin response in muscle with a LFD cannot be explained by a change in putative ghrelin receptor content. We believe that the sedentary nature of the animals is a major factor in the development of muscle ghrelin resistance and warrants further research. Ghrelin stimulates fatty acid oxidation in skeletal muscle. This stimulation is strongly associated with protection from acute fat overload. Prolonged sedentary behaviour and a high fat diet impair ghrelin's ability to stimulate fatty acid oxidation. Exercise training preserves ghrelin's positive effects on skeletal muscle.
Collapse
|
7
|
Song X, Wang M, Jiao H, Zhao J, Wang X, Lin H. Ghrelin is a signal to facilitate the utilization of fatty acids and save glucose by the liver, skeletal muscle, and adipose tissues in chicks. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159081. [PMID: 34856413 DOI: 10.1016/j.bbalip.2021.159081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Ghrelin, classically known as a central appetite-stimulating hormone, has recently been recognized to play an important role in peripheral tissue energy metabolism. In chicken, contrary to mammal, ghrelin acts as an anorexia signal, increased by fasting and further elevated after refed. In the present study, the effect of ghrelin on glucose/lipid utilization by peripheral tissues was investigated. Injection of exogenous acyl ghrelin reduced plasma triglyceride and glucose levels of chickens at both fasting and fed status. In the in vitro cultured chicken primary hepatocytes, adipocytes, and myoblasts, ghrelin suppressed glucose uptake, stimulated fatty acids uptake and oxidation, and decreased TG content. In hepatocyte, ghrelin increased the activities of LPL and HL, and upregulated the expression levels of gene ACC, CPT1, and PPARα. Ghrelin treatment markedly increased the protein level of p-ACC, PPARγ, PGC1α, and CPT1 in hepatocytes, adipocytes and myoblasts. Inhibition of AMPK activity by Compound C had no influence on glucose uptake by hepatocyte, adipocyte, and myoblast, but further amplified the stimulated fatty acid uptake of adipocyte by ghrelin. The present result demonstrates that ghrelin facilitates the uptake and oxidation of fatty acid and cut down the utilization of glucose by the liver, muscle, and adipose tissues. The result suggests that ghrelin functions as a signal of fatty acid oxidation. The study provides a vital framework for understanding the intrinsic role of ghrelin as a crucial factor in the concerted regulation of metabolic substrate of hepatocytes, adipocytes, and myoblasts.
Collapse
Affiliation(s)
- Xixi Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China; School of Sport Social Science, Shandong Sport University, No. 10600 Shiji Street, Jinan 250100, China
| | - Minghui Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Hongchao Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China.
| |
Collapse
|
8
|
Li HZ, Shou LL, Shao XX, Li N, Liu YL, Xu ZG, Guo ZY. LEAP2 has antagonized the ghrelin receptor GHSR1a since its emergence in ancient fish. Amino Acids 2021; 53:939-949. [PMID: 33966114 DOI: 10.1007/s00726-021-02998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have demonstrated that liver-expressed antimicrobial peptide 2 (LEAP2) antagonizes the ghrelin receptor GHSR1a in mammals. However, its antagonistic function in lower vertebrates has not yet been tested. LEAP2 orthologs have been identified from a variety of fish species; however, previous studies all focused on their antimicrobial activity. To test whether LEAP2 functions as a GHSR1a antagonist in the lowest vertebrates, we studied the antagonism of a fish LEAP2 from Latimeria chalumnae, an extant coelacanth that is one of the closest living fish relatives of tetrapods. Using binding assays, we demonstrated that the coelacanth LEAP2 and ghrelin bound to the coelacanth GHSR1a with IC50 values in the nanomolar range. Using activation assays, we demonstrated that the coelacanth ghrelin activated the coelacanth GHSR1a with an EC50 value in the nanomolar range, and this activation effect was efficiently antagonized by a nanomolar range of the coelacanth LEAP2. In addition, we also showed that the human LEAP2 and ghrelin were as effective as their coelacanth orthologs towards the coelacanth GHSR1a; however, the coelacanth peptides had moderately lower activity towards the human GHSR1a. Thus, LEAP2 serves as an endogenous antagonist of the ghrelin receptor GHSR1a in coelacanth and the ghrelin-LEAP2-GHSR1a system has evolved slowly since its emergence in ancient fish.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ning Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Li HZ, Shao XX, Shou LL, Li N, Liu YL, Xu ZG, Guo ZY. Unusual orthologs shed new light on the binding mechanism of ghrelin to its receptor GHSR1a. Arch Biochem Biophys 2021; 704:108872. [PMID: 33857472 DOI: 10.1016/j.abb.2021.108872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The gastric peptide ghrelin has important functions in energy metabolism and cellular homeostasis by activating growth hormone secretagogue receptor type 1a (GHSR1a). The N-terminal residues of ghrelin orthologs from all vertebrates are quite conserved; however, in orthologs from Cavia porcellus and Phyllostomus discolor, Ser2 and Leu5 are replaced by a smaller Ala and a positively charged Arg, respectively. In the present study, we first demonstrated that the hydrophobic Leu5 is essential for the function of human ghrelin, because Ala replacement caused an approximately 100-fold decrease in activity. However, replacement of Leu5 by an Arg residue caused much less disruption; further replacement of Ser2 by Ala almost restored full activity, although the [S2A] mutation itself showed slight detriments, implying that the positively charged Arg5 in the [S2A,L5R] mutant might form alternative interactions with certain receptor residues to compensate for the loss of the essential Leu5. To identify the responsible receptor residues, we screened GHSR1a mutants in which all conserved negatively charged residues in the extracellular regions and all aromatic residues in the ligand-binding pocket were mutated separately. According to the decrease in selectivity of the mutant receptors towards [S2A,L5R]ghrelin, we deduced that the positively charged Arg5 of the ghrelin mutant primarily interacts with the essential aromatic Phe286 at the extracellular end of the sixth transmembrane domain of GHSR1a by forming cation-π and π-π interactions. The present study provided new insights into the binding mechanism of ghrelin with its receptor, and thus would facilitate the design of novel ligands for GHSR1a.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ning Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Mutch DM, Dyck DJ. Editorial overview: Musculoskeletal 2020 – adipokines. Curr Opin Pharmacol 2020; 52:iii-v. [DOI: 10.1016/j.coph.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|