1
|
Shah SN, Dounavi ME, Malhotra PA, Lawlor B, Naci L, Koychev I, Ritchie CW, Ritchie K, O’Brien JT. Dementia risk and thalamic nuclei volumetry in healthy midlife adults: the PREVENT Dementia study. Brain Commun 2024; 6:fcae046. [PMID: 38444908 PMCID: PMC10914447 DOI: 10.1093/braincomms/fcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
A reduction in the volume of the thalamus and its nuclei has been reported in Alzheimer's disease, mild cognitive impairment and asymptomatic individuals with risk factors for early-onset Alzheimer's disease. Some studies have reported thalamic atrophy to occur prior to hippocampal atrophy, suggesting thalamic pathology may be an early sign of cognitive decline. We aimed to investigate volumetric differences in thalamic nuclei in middle-aged, cognitively unimpaired people with respect to dementia family history and apolipoprotein ε4 allele carriership and the relationship with cognition. Seven hundred participants aged 40-59 years were recruited into the PREVENT Dementia study. Individuals were stratified according to dementia risk (approximately half with and without parental dementia history). The subnuclei of the thalamus of 645 participants were segmented on T1-weighted 3 T MRI scans using FreeSurfer 7.1.0. Thalamic nuclei were grouped into six regions: (i) anterior, (ii) lateral, (iii) ventral, (iv) intralaminar, (v) medial and (vi) posterior. Cognitive performance was evaluated using the computerized assessment of the information-processing battery. Robust linear regression was used to analyse differences in thalamic nuclei volumes and their association with cognitive performance, with age, sex, total intracranial volume and years of education as covariates and false discovery rate correction for multiple comparisons. We did not find significant volumetric differences in the thalamus or its subregions, which survived false discovery rate correction, with respect to first-degree family history of dementia or apolipoprotein ε4 allele status. Greater age was associated with smaller volumes of thalamic subregions, except for the medial thalamus, but only in those without a dementia family history. A larger volume of the mediodorsal medial nucleus (Pfalse discovery rate = 0.019) was associated with a faster processing speed in those without a dementia family history. Larger volumes of the thalamus (P = 0.016) and posterior thalamus (Pfalse discovery rate = 0.022) were associated with significantly worse performance in the immediate recall test in apolipoprotein ε4 allele carriers. We did not find significant volumetric differences in thalamic subregions in relation to dementia risk but did identify an interaction between dementia family history and age. Larger medial thalamic nuclei may exert a protective effect on cognitive performance in individuals without a dementia family history but have little effect on those with a dementia family history. Larger volumes of posterior thalamic nuclei were associated with worse recall in apolipoprotein ε4 carriers. Our results could represent initial dysregulation in the disease process; further study is needed with functional imaging and longitudinal analysis.
Collapse
Affiliation(s)
- Sita N Shah
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Maria-Eleni Dounavi
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London SW7 2AZ, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin D02 PX31, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 X9W9, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin D02 PX31, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 X9W9, Ireland
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen Ritchie
- Institute de Neurosciences de Montpellier, INSERM, Montpellier 34093, France
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| |
Collapse
|
2
|
Polito G, Russo M, Santilli M, Cantarella C, D'Aurizio C, Sensi SL. Role of neurorehabilitation in the recovery of bilateral thalamic stroke related to the artery of Percheron anatomical variant. BMJ Case Rep 2023; 16:e254872. [PMID: 37714557 PMCID: PMC10510918 DOI: 10.1136/bcr-2023-254872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Bilateral thalamic stroke is a rare condition, mostly related to the presence of the artery of Percheron (AoP) variant. The clinical presentation of AoP-related strokes is remarkably heterogeneous and often includes cognitive and behavioural alterations. Our report describes the clinical course of an AoP-related bilateral thalamic stroke and highlights the pivotal role of a tailored rehabilitation programme plays in enhancing recovery. A man in his 40s was admitted to the neurology ward due to the abrupt onset of mental status alterations and weakness in his left limbs. The first brain CT scan and subsequent MRI exam revealed a bilateral thalamic stroke and the presence of an AoP anatomical variant. After the first critical phase, the patient's condition became stable, but he still suffered from severe attention, memory and speech deficits. The patient was then transferred to the rehabilitation unit and was subjected to a tailored neurorehabilitation programme that allowed a complete recovery of the symptoms. Neurorehabilitation plays a pivotal role in the patient's recovery and should always be pursued to minimise the residual deficits and, most importantly, to prevent permanent cognitive deficits.
Collapse
Affiliation(s)
- Gaetano Polito
- Department of Neuroscience, Imaging and Clinical Science, Università degli Studi Gabriele d'Annunzio Chieti Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Matteo Santilli
- Department of Neuroscience, Imaging and Clinical Science, Università degli Studi Gabriele d'Annunzio Chieti Pescara, Chieti, Italy
| | | | | | - Stefano L Sensi
- CeSI-MeT, Center for Excellence on Aging and Translational Medicine, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
3
|
Verhulst MMLH, Glimmerveen AB, van Heugten CM, Helmich RCG, Hofmeijer J. MRI factors associated with cognitive functioning after acute onset brain injury: Systematic review and meta-analysis. Neuroimage Clin 2023; 38:103415. [PMID: 37119695 PMCID: PMC10165272 DOI: 10.1016/j.nicl.2023.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Impairments of memory, attention, and executive functioning are frequently reported after acute onset brain injury. MRI markers hold potential to contribute to identification of patients at risk for cognitive impairments and clarification of mechanisms. The aim of this systematic review was to summarize and value the evidence on MRI markers of memory, attention, and executive functioning after acute onset brain injury. We included ninety-eight studies, on six classes of MRI factors (location and severity of damage (n = 15), volume/atrophy (n = 36), signs of small vessel disease (n = 15), diffusion-weighted imaging measures (n = 36), resting-state functional MRI measures (n = 13), and arterial spin labeling measures (n = 1)). Three measures showed consistent results regarding their association with cognition. Smaller hippocampal volume was associated with worse memory in fourteen studies (pooled correlation 0.58 [95% CI: 0.46-0.68] for whole, 0.11 [95% CI: 0.04-0.19] for left, and 0.34 [95% CI: 0.17-0.49] for right hippocampus). Lower fractional anisotropy in cingulum and fornix was associated with worse memory in six and five studies (pooled correlation 0.20 [95% CI: 0.08-0.32] and 0.29 [95% CI: 0.20-0.37], respectively). Lower functional connectivity within the default-mode network was associated with worse cognition in four studies. In conclusion, hippocampal volume, fractional anisotropy in cingulum and fornix, and functional connectivity within the default-mode network showed consistent associations with cognitive performance in all types of acute onset brain injury. External validation and cut off values for predicting cognitive impairments are needed for clinical implementation.
Collapse
Affiliation(s)
- Marlous M L H Verhulst
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands.
| | - Astrid B Glimmerveen
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Caroline M van Heugten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Limburg Brain Injury Center, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rick C G Helmich
- Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
4
|
Williams B, Roesch E, Christakou A. Systematic validation of an automated thalamic parcellation technique using anatomical data at 3T. Neuroimage 2022; 258:119340. [DOI: 10.1016/j.neuroimage.2022.119340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
|
5
|
Scharf AC, Gronewold J, Todica O, Moenninghoff C, Doeppner TR, de Haan B, Bassetti CLA, Hermann DM. Evolution of Neuropsychological Deficits in First-Ever Isolated Ischemic Thalamic Stroke and Their Association With Stroke Topography: A Case-Control Study. Stroke 2022; 53:1904-1914. [PMID: 35259928 PMCID: PMC9126267 DOI: 10.1161/strokeaha.121.037750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The thalamus plays an essential role in cognition. Cognitive deficits have to date mostly been studied retrospectively in chronic thalamic stroke in small cohorts. Studies prospectively evaluating the evolution of cognitive deficits and their association with thalamic stroke topography are lacking. This knowledge is relevant for targeted patient diagnostics and rehabilitation.
Collapse
Affiliation(s)
- Anne-Carina Scharf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| | - Janine Gronewold
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| | - Olga Todica
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| | - Christoph Moenninghoff
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Germany. (C.M.)
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Germany (T.R.D.)
| | - Bianca de Haan
- Division of Psychology, Department of Life Sciences, Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom (B.d.H.)
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| |
Collapse
|
6
|
Hwang K, Shine JM, Bruss J, Tranel D, Boes A. Neuropsychological evidence of multi-domain network hubs in the human thalamus. eLife 2021; 10:69480. [PMID: 34622776 PMCID: PMC8526062 DOI: 10.7554/elife.69480] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Hubs in the human brain support behaviors that arise from brain network interactions. Previous studies have identified hub regions in the human thalamus that are connected with multiple functional networks. However, the behavioral significance of thalamic hubs has yet to be established. Our framework predicts that thalamic subregions with strong hub properties are broadly involved in functions across multiple cognitive domains. To test this prediction, we studied human patients with focal thalamic lesions in conjunction with network analyses of the human thalamocortical functional connectome. In support of our prediction, lesions to thalamic subregions with stronger hub properties were associated with widespread deficits in executive, language, and memory functions, whereas lesions to thalamic subregions with weaker hub properties were associated with more limited deficits. These results highlight how a large-scale network model can broaden our understanding of thalamic function for human cognition.
Collapse
Affiliation(s)
- Kai Hwang
- Department of Psychological and Brain Sciences, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Cognitive Control Collaborative, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Psychiatry, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Joel Bruss
- Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Neurology, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Pediatrics, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Neurology, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| | - Aaron Boes
- Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Psychiatry, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Neurology, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Pediatrics, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| |
Collapse
|
7
|
Stockert A, Schwartze M, Poeppel D, Anwander A, Kotz SA. Temporo-cerebellar connectivity underlies timing constraints in audition. eLife 2021; 10:67303. [PMID: 34542407 PMCID: PMC8480974 DOI: 10.7554/elife.67303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here, we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion-guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.
Collapse
Affiliation(s)
- Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, Leipzig University Hospital, Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Schwartze
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Poeppel
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Psychology, New York University, New York, United States
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Phillips JM, Kambi NA, Redinbaugh MJ, Mohanta S, Saalmann YB. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci Biobehav Rev 2021; 128:487-510. [PMID: 34216654 DOI: 10.1016/j.neubiorev.2021.06.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The prefrontal cortex (PFC) has a complex relationship with the thalamus, involving many nuclei which occupy predominantly medial zones along its anterior-to-posterior extent. Thalamocortical neurons in most of these nuclei are modulated by the affective and cognitive signals which funnel through the basal ganglia. We review how PFC-connected thalamic nuclei likely contribute to all aspects of cognitive control: from the processing of information on internal states and goals, facilitating its interactions with mnemonic information and learned values of stimuli and actions, to their influence on high-level cognitive processes, attentional allocation and goal-directed behavior. This includes contributions to transformations such as rule-to-choice (parvocellular mediodorsal nucleus), value-to-choice (magnocellular mediodorsal nucleus), mnemonic-to-choice (anteromedial nucleus) and sensory-to-choice (medial pulvinar). Common mechanisms appear to be thalamic modulation of cortical gain and cortico-cortical functional connectivity. The anatomy also implies a unique role for medial PFC in modulating processing in thalamocortical circuits involving other orbital and lateral PFC regions. We further discuss how cortico-basal ganglia circuits may provide a mechanism through which PFC controls cortico-cortical functional connectivity.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States.
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Michelle J Redinbaugh
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1202 Capitol Ct., Madison, WI 53715, United States.
| |
Collapse
|
9
|
Tiedt HO, Ehlen F, Wyrobnik M, Klostermann F. Thalamic but Not Subthalamic Neuromodulation Simplifies Word Use in Spontaneous Language. Front Hum Neurosci 2021; 15:656188. [PMID: 34093151 PMCID: PMC8173144 DOI: 10.3389/fnhum.2021.656188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
Several investigations have shown language impairments following electrode implantation surgery for Deep Brain Stimulation (DBS) in movement disorders. The impact of the actual stimulation, however, differs between DBS targets with further deterioration in formal language tests induced by thalamic DBS in contrast to subtle improvement observed in subthalamic DBS. Here, we studied speech samples from interviews with participants treated with DBS of the thalamic ventral intermediate nucleus (VIM) for essential tremor (ET), or the subthalamic nucleus (STN) for Parkinson’s disease (PD), and healthy volunteers (each n = 13). We analyzed word frequency and the use of open and closed class words. Active DBS increased word frequency in case of VIM, but not STN stimulation. Further, relative to controls, both DBS groups produced fewer open class words. Whereas VIM DBS further decreased the proportion of open class words, it was increased by STN DBS. Thus, VIM DBS favors the use of relatively common words in spontaneous language, compatible with the idea of lexical simplification under thalamic stimulation. The absence or even partial reversal of these effects in patients receiving STN DBS is of interest with respect to biolinguistic concepts suggesting dichotomous thalamic vs. basal ganglia roles in language processing.
Collapse
Affiliation(s)
- Hannes Ole Tiedt
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychiatry, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Michelle Wyrobnik
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Lugtmeijer S, Lammers NA, de Haan EHF, de Leeuw FE, Kessels RPC. Post-Stroke Working Memory Dysfunction: A Meta-Analysis and Systematic Review. Neuropsychol Rev 2020; 31:202-219. [PMID: 33230717 PMCID: PMC7889582 DOI: 10.1007/s11065-020-09462-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
This review investigates the severity and nature of post-stroke working memory deficits with reference to the multi-component model of working memory. We conducted a systematic search in PubMed up to March 2019 with search terms for stroke and memory. Studies on adult stroke patients, that included a control group, and assessed working memory function, were selected. Effect sizes (Hedges' g) were extracted from 50 studies (in total 3,084 stroke patients) based on the sample size, mean and standard deviation of patients and controls. Performance of stroke patients was compared to healthy controls on low-load (i.e. capacity) and high-load (executively demanding) working memory tasks, grouped by modality (verbal, non-verbal). A separate analysis compared patients in the sub-acute and the chronic stage. Longitudinal studies and effects of lesion location were systematically reviewed. Stroke patients demonstrated significant deficits in working memory with a moderate effect size for both low-load (Hedges' g = -.58 [-.82 to -.43]) and high-load (Hedges' g = -.59 [-.73 to -.45]) tasks. The effect sizes were comparable for verbal and non-verbal material. Systematically reviewing the literature showed that working memory deficits remain prominent in the chronic stage of stroke. Lesions in a widespread fronto-parietal network are associated with working memory deficits. Stroke patients show decrements of moderate magnitude in all subsystems of working memory. This review clearly demonstrates the global nature of the impairment in working memory post-stroke.
Collapse
Affiliation(s)
- Selma Lugtmeijer
- University of Amsterdam, Amsterdam, the Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | | | | | - Frank-Erik de Leeuw
- Radboud University Medical Center, Department of Neurology, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Rivella C, Viterbori P. [Formula: see text] Executive function following pediatric stroke. A systematic review. Child Neuropsychol 2020; 27:209-231. [PMID: 32969322 DOI: 10.1080/09297049.2020.1820472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Pediatric strokes are rare events that can lead to neuropsychological impairment or disability. While motor deficits are relatively easy to identify and investigate, cognitive outcomes after stroke are more complex to define. Many studies have focused on global cognitive outcomes, while only a few recent studies have focused on specific cognitive processes. The aims of the present review were to provide an overview of the effects of pediatric strokes on executive function and to investigate the relations between executive functioning and clinical factors. METHOD Studies concerning executive functioning after pediatric stroke were identified using PsycInfo, PsycArticles and PubMed. A total of 142 studies were identified, and 22 met the inclusion criteria. RESULTS The review of the 22 studies included clearly indicates that childhood and perinatal strokes can affect executive function, and in particular inhibition. In contrast, the results concerning clinical factors related to EF outcomes are inconsistent. DISCUSSION Our results highlight the importance to assess EF following pediatric stroke. Early identification of difficulties in EF is crucial to provide adequate training to the children and to prevent the development of other correlated difficulties, such as behavioral problems or learning difficulties. Methodological issues regarding the heterogeneity of samples and measurement difficulties limit the conclusions that can be made about the clinical predictors of the outcomes. Studies are needed to better understand this aspect and to develop adequate EF interventions for children following stroke.
Collapse
Affiliation(s)
- Carlotta Rivella
- Department of Educational Science, University of Genoa , Genoa, Italy
| | - Paola Viterbori
- Department of Educational Science, University of Genoa , Genoa, Italy
| |
Collapse
|
12
|
Hwang K, Bruss J, Tranel D, Boes AD. Network Localization of Executive Function Deficits in Patients with Focal Thalamic Lesions. J Cogn Neurosci 2020; 32:2303-2319. [PMID: 32902335 DOI: 10.1162/jocn_a_01628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.
Collapse
Affiliation(s)
- Kai Hwang
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Joel Bruss
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Daniel Tranel
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Aaron D Boes
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| |
Collapse
|
13
|
Thalamic GABA may modulate cognitive control in restless legs syndrome. Neurosci Lett 2019; 712:134494. [DOI: 10.1016/j.neulet.2019.134494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022]
|
14
|
Ilyas A, Pizarro D, Romeo AK, Riley KO, Pati S. The centromedian nucleus: Anatomy, physiology, and clinical implications. J Clin Neurosci 2019; 63:1-7. [PMID: 30827880 DOI: 10.1016/j.jocn.2019.01.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 02/02/2023]
Abstract
Of all the truncothalamic nuclei, the centromedian-parafascicular nuclei complex (CM-Pf) is the largest and is considered the prototypic thalamic projection system. Located among the caudal intralaminar thalamic nuclei, the CM-Pf been described by Jones as "the forgotten components of the great loop of connections joining the cerebral cortex via the basal ganglia". The CM, located lateral relative to the Pf, is a major source of direct input to the striatum and also has connections to other, distinct region of the basal ganglia as well as the brainstem and cortex. Functionally, the CM participates in sensorimotor coordination, cognition (e.g. attention, arousal), and pain processing. The role of CM as 'gate control' function by propagating only salient stimuli during attention-demanding tasks has been proposed. Given its rich connectivity and diverse physiologic role, recent studies have explored the CM as potential target for neuromodulation therapy for Tourette syndrome, Parkinson's disease, generalized epilepsy, intractable neuropathic pain, and in restoring consciousness. This comprehensive review summarizes the structural and functional anatomy of the CM and its physiologic role with a focus on clinical implications.
Collapse
Affiliation(s)
- Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Diana Pizarro
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew K Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristen O Riley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandipan Pati
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Serra L, Bruschini M, Ottaviani C, Di Domenico C, Fadda L, Caltagirone C, Cercignani M, Carlesimo GA, Bozzali M. Thalamocortical disconnection affects the somatic marker and social cognition: a case report. Neurocase 2019; 25:1-9. [PMID: 30931814 DOI: 10.1080/13554794.2019.1599025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thalamo-cortical connectivity was characterised in a patient with bilateral infarct of the thalami, without evidence of cognitive deficits in everyday life. Patient underwent social and emotional tests, Iowa Gambling Task (IGT), with and without concomitant heart rate variability (HRV) recording and at 3T-MRI to assess thalamo-cortical connectivity. Patient showed impairment at the IGT, in somatic marker, in emotions and theory of mind. MRI documented a bilateral damage of the centromedian-parafascicular complex. Patient's thalamic lesions disconnected brain areas involved in decision-making and autonomic regulation, affecting the somatic marker and resulting in the neuropsychological deficit exhibited by L.C.
Collapse
Affiliation(s)
- Laura Serra
- a Neuroimaging Laboratory , Santa Lucia Foundation, IRCCS , Rome , Italy
| | - Michela Bruschini
- a Neuroimaging Laboratory , Santa Lucia Foundation, IRCCS , Rome , Italy
| | - Cristina Ottaviani
- a Neuroimaging Laboratory , Santa Lucia Foundation, IRCCS , Rome , Italy.,b Department of Psychology , Sapienza University of Rome , Rome , Italy
| | | | - Lucia Fadda
- c Department of Clinical and Behavioural Neurology , Santa Lucia Foundation, IRCCS , Rome , Italy.,d Department of System Medicine , University of Rome 'Tor Vergata' , Rome , Italy
| | - Carlo Caltagirone
- c Department of Clinical and Behavioural Neurology , Santa Lucia Foundation, IRCCS , Rome , Italy.,d Department of System Medicine , University of Rome 'Tor Vergata' , Rome , Italy
| | - Mara Cercignani
- a Neuroimaging Laboratory , Santa Lucia Foundation, IRCCS , Rome , Italy.,e Clinical Imaging Sciences Centre, Department of Neuroscience , University of Sussex, Brighton & Sussex Medical School , Falmer , UK
| | - Giovanni Augusto Carlesimo
- c Department of Clinical and Behavioural Neurology , Santa Lucia Foundation, IRCCS , Rome , Italy.,d Department of System Medicine , University of Rome 'Tor Vergata' , Rome , Italy
| | - Marco Bozzali
- a Neuroimaging Laboratory , Santa Lucia Foundation, IRCCS , Rome , Italy.,e Clinical Imaging Sciences Centre, Department of Neuroscience , University of Sussex, Brighton & Sussex Medical School , Falmer , UK
| |
Collapse
|
16
|
Wolff M, Vann SD. The Cognitive Thalamus as a Gateway to Mental Representations. J Neurosci 2019; 39:3-14. [PMID: 30389839 PMCID: PMC6325267 DOI: 10.1523/jneurosci.0479-18.2018] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France,
- University of Bordeaux, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France, and
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
17
|
Godfrey M, Gillis MM, Khurana D, Poletto E, Tarazi RA. Neuropsychological outcome following thalamic stroke in adolescence: an identical twin comparison. Clin Neuropsychol 2018; 33:905-927. [DOI: 10.1080/13854046.2018.1533997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mary Godfrey
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | | | - Divya Khurana
- St. Christopher’s Hospital for Children, Philadelphia, PA, USA
- Department of Pediatrics, Drexel University, Philadelphia, PA, USA
| | - Erica Poletto
- St. Christopher’s Hospital for Children, Philadelphia, PA, USA
- Department of Pediatrics, Drexel University, Philadelphia, PA, USA
- Department of Radiologic Sciences, Drexel University, Philadelphia, PA, USA
| | - Reem A. Tarazi
- St. Christopher’s Hospital for Children, Philadelphia, PA, USA
- Department of Psychiatry, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Westmacott R, McDonald KP, Roberts SD, deVeber G, MacGregor D, Moharir M, Dlamini N, Williams TS. Predictors of Cognitive and Academic Outcome following Childhood Subcortical Stroke. Dev Neuropsychol 2018; 43:708-728. [PMID: 30321060 DOI: 10.1080/87565641.2018.1522538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Childhood arterial ischemic stroke often involves basal ganglia and thalamus but little is known about neuropsychological outcomes in this group. We examined intellectual ability, academics, attention, executive function, and psychological diagnoses in children and adolescents (6-20 years of age) with childhood stroke involving the basal ganglia (n = 32) or thalamus (n = 12). Intellectual ability was age-appropriate but working memory was significantly lower than expected. Compared to the normative mean, the stroke group exhibited significantly weaker performance in reading comprehension, math fluency, attention, and greater challenges with executive function. Children with basal ganglia stroke had weaker working memory and were more likely to receive diagnoses of Attention Deficit Hyperactivity Disorder and Anxiety Disorder than those with thalamic stroke. Lesion size was most important in predicting working memory ability, whereas age at stroke and age at test were important in predicting academic ability.
Collapse
Affiliation(s)
- Robyn Westmacott
- a Psychology Department , The Hospital for Sick Children , Toronto , Canada
| | - Kyla P McDonald
- a Psychology Department , The Hospital for Sick Children , Toronto , Canada
| | - Samantha D Roberts
- a Psychology Department , The Hospital for Sick Children , Toronto , Canada
| | - Gabrielle deVeber
- b Neurology , The Hospital for Sick Children , Toronto , Ontario , Canada
| | - Daune MacGregor
- b Neurology , The Hospital for Sick Children , Toronto , Ontario , Canada
| | | | - Nomazulu Dlamini
- b Neurology , The Hospital for Sick Children , Toronto , Ontario , Canada
| | - Tricia S Williams
- a Psychology Department , The Hospital for Sick Children , Toronto , Canada
| |
Collapse
|
19
|
Loss of glutamate signaling from the thalamus to dorsal striatum impairs motor function and slows the execution of learned behaviors. NPJ PARKINSONS DISEASE 2018; 4:23. [PMID: 30083593 PMCID: PMC6072777 DOI: 10.1038/s41531-018-0060-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
Abstract
Parkinson’s disease (PD) is primarily associated with the degeneration of midbrain dopamine neurons, but it is now appreciated that pathological processes like Lewy-body inclusions and cell loss affect several other brain regions, including the central lateral (CL) and centromedian/parafascicular (CM/PF) thalamic regions. These thalamic glutamatergic neurons provide a non-cortical excitatory input to the dorsal striatum, a major projection field of dopamine neurons. To determine how thalamostriatal signaling may contribute to cognitive and motor abnormalities found in PD, we used a viral vector approach to generate mice with loss of thalamostriatal glutamate signaling specifically restricted to the dorsal striatum (CAV2Cre-Slc17a6lox/lox mice). We measured motor function and behaviors corresponding to cognitive domains (visuospatial function, attention, executive function, and working memory) affected in PD. CAV2Cre-Slc17a6lox/lox mice were impaired in motor coordination tasks such as the rotarod and beam-walk tests compared with controls (CAV2Cre-Slc17a6+/+ mice). They did not demonstrate much cognitive impairment in the Morris water maze or a water U-maze, but had slower processing reaction times in those tests and in a two-way active avoidance task. These mice could model an aspect of bradyphrenia, the slowness of thought that is often seen in patients with PD and other neurological disorders. Mice in which glutamate signaling from the thalamus to dorsal striatum has been genetically inactivated mimic the slowness of thought that is often observed in patients with Parkinson’s disease (PD). The midbrain and striatum are the brain regions that are most affected in PD, however, it is increasingly recognized that cell loss in other areas of the brain also contribute to disease symptoms. Martin Darvas at the University of Washington, Seattle, USA, and colleagues found that disrupting the excitatory input from thalamic projection neurons into the dorsal striatum affected motor coordination and balance in mice. Although these mice did not have significant impairments in spatial learning and memory, they were slower at reacting to cues and executing learned behaviors suggesting that they could be used to test new approaches for treating this specific cognitive symptom of PD.
Collapse
|
20
|
Rodrigues JDC, Machado WDL, da Fontoura DR, Almeida AG, Brondani R, Martins SO, Ruschel Bandeira D, Salles JFD. What neuropsychological functions best discriminate performance in adults post-stroke? APPLIED NEUROPSYCHOLOGY-ADULT 2018; 26:452-464. [DOI: 10.1080/23279095.2018.1442334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jaqueline de Carvalho Rodrigues
- Universidade Federal do Rio Grande do Sul, Departamento de Psicologia do Desenvolvimento e da Personalidade, Porto Alegre, Brazil
| | - Wagner de Lara Machado
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde, Programa de Pós-graduação em Psicologia, Campinas, Brazil
| | | | | | | | - Sheila Ouriques Martins
- Universidade Federal do Rio Grande do Sul, Departamento de Medicina Interna, Porto Alegre, Brazil
| | - Denise Ruschel Bandeira
- Universidade Federal do Rio Grande do Sul, Departamento de Psicologia do Desenvolvimento e da Personalidade, Porto Alegre, Brazil
| | - Jerusa Fumagalli de Salles
- Universidade Federal do Rio Grande do Sul, Departamento de Psicologia do Desenvolvimento e da Personalidade, Porto Alegre, Brazil
| |
Collapse
|
21
|
Jang SH, Kim SH, Yeo SS. Injury of thalamocortical connection between the mediodorsal nucleus of the thalamus and the orbitofrontal cortex in a patient with traumatic brain injury. Neural Regen Res 2018; 13:1118-1120. [PMID: 29926840 PMCID: PMC6022465 DOI: 10.4103/1673-5374.233456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea
| | - Seong Ho Kim
- Department of Neurosurgery, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea
| | - Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan-si, Chungnam, Republic of Korea
| |
Collapse
|
22
|
Mole J, Winegardner J, Malley D, Fish J. Time perception impairment following thalamic stroke: A case study. Neuropsychol Rehabil 2017; 28:208-222. [PMID: 29108479 DOI: 10.1080/09602011.2017.1383273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Impaired time perception is considered to be a relatively unusual and poorly understood consequence of brain injury. This paper presents a case study of altered time perception in JB, a 50-year-old woman who in 2011 had a small thalamic stroke affecting the right anteromedian region. We report on her subjective experience and present results from studies of retrospective timing (i.e., estimating how much time has passed and the clock time) and prospective timing (i.e., producing and reproducing intervals). The results showed that relative to neurologically healthy and brain-injured controls, JB had impaired retrospective timing and impaired prospective time reproduction. However, her prospective time production did not differ significantly from either of the control groups. We interpret this to mean that JB's essential timing functions are intact, and that rather, her time perception impairment stems from a problem in anterograde memory for time intervals. Further, we argue that unlike other cognitive domains, time perception alteration is neither anticipated nor evaluated in most patients, yet these impairments can have a remarkably serious impact on daily life. We encourage further investigation of this topic.
Collapse
Affiliation(s)
- Joe Mole
- a Oliver Zangwill Centre for Neuropsychological Rehabilitation , Princess of Wales Hospital , Ely , United Kingdom
| | - Jill Winegardner
- a Oliver Zangwill Centre for Neuropsychological Rehabilitation , Princess of Wales Hospital , Ely , United Kingdom
| | - Donna Malley
- a Oliver Zangwill Centre for Neuropsychological Rehabilitation , Princess of Wales Hospital , Ely , United Kingdom
| | - Jessica Fish
- a Oliver Zangwill Centre for Neuropsychological Rehabilitation , Princess of Wales Hospital , Ely , United Kingdom
| |
Collapse
|
23
|
Danet L, Pariente J, Eustache P, Raposo N, Sibon I, Albucher JF, Bonneville F, Péran P, Barbeau EJ. Medial thalamic stroke and its impact on familiarity and recollection. eLife 2017; 6:28141. [PMID: 28837019 PMCID: PMC5595429 DOI: 10.7554/elife.28141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Models of recognition memory have postulated that the mammillo-thalamic tract (MTT)/anterior thalamic nucleus (AN) complex would be critical for recollection while the Mediodorsal nucleus (MD) of the thalamus would support familiarity and indirectly also be involved in recollection (Aggleton et al., 2011). 12 patients with left thalamic stroke underwent a neuropsychological assessment, three verbal recognition memory tasks assessing familiarity and recollection each using different procedures and a high-resolution structural MRI. Patients showed poor recollection on all three tasks. In contrast, familiarity was spared in each task. No patient had significant AN lesions. Critically, a subset of 5 patients had lesions of the MD without lesions of the MTT. They also showed impaired recollection but preserved familiarity. Recollection is therefore impaired following MD damage, but familiarity is not. This suggests that models of familiarity, which assign a critical role to the MD, should be reappraised.
Collapse
Affiliation(s)
- Lola Danet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Pierre Eustache
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Nicolas Raposo
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Igor Sibon
- Department of Diagnostic and Therapeutic Neuroimaging, University of Bordeaux, Bordeaux University Hospital, Bordeaux, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Fabrice Bonneville
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France.,Neurology Department, CHU Toulouse Purpan, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Toulouse, France
| | - Emmanuel J Barbeau
- Brain and Cognition Research Centre, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
24
|
|
25
|
Schepers IM, Beck AK, Bräuer S, Schwabe K, Abdallat M, Sandmann P, Dengler R, Rieger JW, Krauss JK. Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection. Neuroimage 2017; 152:390-399. [PMID: 28288908 DOI: 10.1016/j.neuroimage.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/21/2023] Open
Abstract
Experimental research has shown that the centromedian-parafascicular complex (CM-Pf) of the intralaminar thalamus is activated in attentional orienting and processing of behaviorally relevant stimuli. These observations resulted in the hypothesis that the CM-Pf plays a pivotal role in goal-oriented behavior selection. We here set out to test this hypothesis with electrophysiological recordings from patients with electrodes implanted in CM-Pf for deep brain stimulation (DBS) treatment of chronic neuropathic pain. Six patients participated in (1) an auditory three-class oddball experiment, which required a button press to target tones, but not to standard and deviant tones and in (2) a multi-speaker experiment with a target word that required attention selection and a target image that required response selection. Subjects showed transient neural responses (8-15Hz) to the target tone and the target word. Two subjects additionally showed transient neural responses (15-25Hz) to the target image. All sensory target stimuli were related to an internal goal and required a behavior selection (attention selection, response selection). In group analyses, neural responses were greater to target tones than deviant and standard tones and to target words than other task-relevant words that did not require attention selection. The transient neural responses occurred after the target stimuli but prior to the overt behavioral response. Our results demonstrate that in human subjects the CM-Pf is involved in signaling sensory inputs related to goal-oriented selection of behavior.
Collapse
Affiliation(s)
- Inga M Schepers
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany.
| | - Anne-Kathrin Beck
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | - Susann Bräuer
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | | | - Pascale Sandmann
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hanover, Germany; Cluster of Excellence Hearing4All, Germany
| | - Jochem W Rieger
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| |
Collapse
|
26
|
Scheffer M, Kroeff C, Steigleder BG, Klein LA, Grassi-Oliveira R, de Almeida RMM. Right frontal stroke: extra-frontal lesions, executive functioning and impulsive behaviour. PSICOLOGIA-REFLEXAO E CRITICA 2016. [DOI: 10.1186/s41155-016-0018-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Ehlen F, Vonberg I, Tiedt HO, Horn A, Fromm O, Kühn AA, Klostermann F. Thalamic deep brain stimulation decelerates automatic lexical activation. Brain Cogn 2016; 111:34-43. [PMID: 27816778 DOI: 10.1016/j.bandc.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/23/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) is a therapeutic option for patients with essential tremor. Despite a generally low risk of side effects, declines in verbal fluency (VF) have previously been reported. OBJECTIVES We aimed to specify effects of VIM-DBS on major cognitive operations needed for VF task performance, represented by clusters and switches. Clusters are word production spurts, thought to arise from automatic activation of associated information pertaining to a given lexical field. Switches are slow word-to-word transitions, presumed to indicate controlled operations for stepping from one lexical field to another. PATIENTS & METHODS Thirteen essential tremor patients with VIM-DBS performed verbal fluency tasks in their VIM-DBS ON and OFF conditions. Clusters and switches were formally defined by mathematical criteria. All results were compared to those of fifteen healthy control subjects, and significant OFF-ON-change scores were correlated to stimulation parameters. RESULTS Patients produced fewer words than healthy controls. DBS ON compared to DBS OFF aggravated this deficit by prolonging the intervals between words within clusters, whereas switches remained unaffected. This stimulation effect correlated with more anterior electrode positions. CONCLUSION VIM-DBS seems to influence word output dynamics during verbal fluency tasks on the level of word clustering. This suggests a perturbation of automatic lexical co-activation by thalamic stimulation, particularly if delivered relatively anteriorly. The findings are discussed in the context of the hypothesized role of the thalamus in lexical processing.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Isabelle Vonberg
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Hannes O Tiedt
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor Neuroscience Group, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, 13353 Berlin, Germany; Laboratory for Brain Network Imaging and Modulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ortwin Fromm
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Andrea A Kühn
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor Neuroscience Group, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Fabian Klostermann
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany.
| |
Collapse
|
28
|
Tiedt HO, Ehlen F, Krugel LK, Horn A, Kühn AA, Klostermann F. Subcortical roles in lexical task processing: Inferences from thalamic and subthalamic event-related potentials. Hum Brain Mapp 2016; 38:370-383. [PMID: 27647660 DOI: 10.1002/hbm.23366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023] Open
Abstract
Subcortical functions for language capacities are poorly defined, but may be investigated in the context of deep brain stimulation. Here, we studied event-related potentials recorded from electrodes in the subthalamic nucleus (STN) and the thalamic ventral intermediate nucleus (VIM) together with surface-EEG. Participants completed a lexical decision task (LDT), which required the differentiation of acoustically presented words from pseudo-words by button press. Target stimuli were preceded by prime-words. In recordings from VIM, a slow potential shift apparent at the lower electrode contacts persisted during target stimulus presentation (equally for words and pseudo-words). In contrast, recordings from STN electrodes showed a short local activation on prime-words but not target-stimuli. In both depth-recording regions, further components related to contralateral motor responses to target words were evident. On scalp level, mid-central activations on (pseudo)lexical stimuli were obtained, in line with the expression of N400 potentials. The prolonged activity recorded from VIM, exclusively accompanying the relevant LDT phase, is in line with the idea of thalamic "selective engagement" for supporting the realization of the behavioral focus demanded by the task. In contrast, the phasic prime related activity rather indicates "procedural" STN functions, for example, for trial sequencing or readiness inhibition of prepared target reactions. Hum Brain Mapp 38:370-383, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannes O Tiedt
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Lea K Krugel
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Andreas Horn
- Department of Neurology, Motor Neuroscience Group, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany.,Laboratory for Brain Network Imaging and Modulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215
| | - Andrea A Kühn
- Department of Neurology, Motor Neuroscience Group, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| |
Collapse
|
29
|
Besnard J, Allain P, Lerma V, Aubin G, Chauviré V, Etcharry-Bouyx F, Le Gall D. Frontal versus dysexecutive syndromes: relevance of an interactionist approach in a case series of patients with prefrontal lobe damage. Neuropsychol Rehabil 2016; 28:919-936. [DOI: 10.1080/09602011.2016.1209420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jérémy Besnard
- Laboratoire de Psychologie des Pays de la Loire (UPRES EA 4638), LUNAM Université, University of Angers, Angers, France
- Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
| | - Philippe Allain
- Laboratoire de Psychologie des Pays de la Loire (UPRES EA 4638), LUNAM Université, University of Angers, Angers, France
- Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
| | - Vanesa Lerma
- Department of Psychology, St. Edward’s University, Austin, TX, USA
| | - Ghislaine Aubin
- Laboratoire de Psychologie des Pays de la Loire (UPRES EA 4638), LUNAM Université, University of Angers, Angers, France
- Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
- Department of Rehabilitation Medicine, Regional Centre for Functional Rehabilitation, Angers, France
| | - Valérie Chauviré
- Laboratoire de Psychologie des Pays de la Loire (UPRES EA 4638), LUNAM Université, University of Angers, Angers, France
- Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
| | - Frédérique Etcharry-Bouyx
- Laboratoire de Psychologie des Pays de la Loire (UPRES EA 4638), LUNAM Université, University of Angers, Angers, France
- Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
| | - Didier Le Gall
- Laboratoire de Psychologie des Pays de la Loire (UPRES EA 4638), LUNAM Université, University of Angers, Angers, France
- Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
| |
Collapse
|
30
|
Ehlen F, Vonberg I, Kühn AA, Klostermann F. Effects of thalamic deep brain stimulation on spontaneous language production. Neuropsychologia 2016; 89:74-82. [PMID: 27267813 DOI: 10.1016/j.neuropsychologia.2016.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/18/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022]
Abstract
The thalamus is thought to contribute to language-related processing, but specifications of this notion remain vague. An assessment of potential effects of thalamic deep brain stimulation (DBS) on spontaneous language may help to delineate respective functions. For this purpose, we analyzed spontaneous language samples from thirteen (six female / seven male) patients with essential tremor treated with DBS of the thalamic ventral intermediate nucleus (VIM) in their respective ON vs. OFF conditions. Samples were obtained from semi-structured interviews and examined on multidimensional linguistic levels. In the VIM-DBS ON condition, participants used a significantly higher proportion of paratactic as opposed to hypotactic sentence structures. This increase correlated negatively with the change in the more global cognitive score, which in itself did not change significantly. In conclusion, VIM-DBS appears to induce the use of a simplified syntactic structure. The findings are discussed in relation to concepts of thalamic roles in language-related cognitive behavior.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Charité - University Medicine Berlin, Campus Benjamin Franklin, Department of Neurology, Motor and Cognition Group, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Isabelle Vonberg
- Charité - University Medicine Berlin, Campus Benjamin Franklin, Department of Neurology, Motor and Cognition Group, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Andrea A Kühn
- Charité - University Medicine Berlin, Campus Virchow Klinikum, Department of Neurology, Motor Neuroscience Group, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Fabian Klostermann
- Charité - University Medicine Berlin, Campus Benjamin Franklin, Department of Neurology, Motor and Cognition Group, Hindenburgdamm 30, 12203 Berlin, Germany.
| |
Collapse
|
31
|
Memory Profiles after Unilateral Paramedian Thalamic Stroke Infarction: A Comparative Study. Case Rep Med 2015; 2015:430869. [PMID: 26587026 PMCID: PMC4637464 DOI: 10.1155/2015/430869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022] Open
Abstract
We performed extensive neuropsychological assessment of two male patients (matched for age and educational level) with similar (localization and size) unilateral paramedian ischemic thalamic lesions (AB on the left and SD on the right). Both patients showed severe memory impairments as well as other cognitive deficits. In comparison to SD, AB showed severe impairment of executive functions and a more severe deficit of episodic/anterograde memory, especially in the verbal modality. The findings of this single case study suggest the possibility that the profile and severity of the executive dysfunction are determinant for the memory deficits and depend on from the side of the lesion. In addition to a material-side-specific (verbal versus visual) deficit hypothesis, the differential diencephalo-prefrontal contributions in mnestic-processing, in case of paramedian thalamic stroke, might also be explained in terms of their stage-specificity (encoding versus retrieval).
Collapse
|
32
|
Wilkos E, Brown TJ, Slawinska K, Kucharska KA. Social cognitive and neurocognitive deficits in inpatients with unilateral thalamic lesions - pilot study. Neuropsychiatr Dis Treat 2015; 11:1031-8. [PMID: 25914535 PMCID: PMC4401357 DOI: 10.2147/ndt.s78037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The essential role of the thalamus in neurocognitive processes has been well documented. In contrast, relatively little is known about its involvement in social cognitive processes such as recognition of emotion, mentalizing, or empathy. THE AIM OF THE STUDY This study was designed to compare the performance of eight patients (five males, three females, mean age ± SD: 63.7±7.9 years) at early stage of unilateral thalamic lesions and eleven healthy controls (six males, five females, 49.6±12.2 years) in neurocognitive tests (CogState Battery: Groton Maze Learning Test, GML; Groton Maze Learning Test-Delayed Recall, GML-DR; Detection Task, DT; Identification Task, IT; One Card Learning Task, OCLT; One Back Task, OBT; Two Back Task, TBT; Set-Shifting Task, S-ST) and other well-known tests (Benton Visual Retention Test, BVRT; California Verbal Learning Test, CVLT; The Rey-Osterrieth Complex Figure Test, ROCF; Trail Making Test, TMT part A and B; Color - Word Stroop Task, CWST; Verbal Fluency Test, VFT), and social cognitive tasks (The Penn Emotion Recognition Test, ER40; Penn Emotion Discrimination Task, EmoDiff40; The Penn Emotional Acuity Test, PEAT40; Reading the Mind in the Eyes Test, revised version II; Toronto Alexithymia Scale, TAS-20). METHODS Thalamic-damaged subjects were included if they experienced a single-episode ischemic stroke localized in right or left thalamus. The patients were examined at 3 weeks after the stroke onset. All were right handed. In addition, the following clinical scales were used: the Mini-Mental State Examination (MMSE), Spielberger State-Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI II). An inclusion criteria was a minimum score of 23/30 in MMSE. RESULTS Compared with the healthy controls, patients revealed significantly lower scores in CVLT, GML-DR, and VFT. Furthermore, compared to healthy controls, patients showed significantly delayed recognition of "happiness" in EmoDiff40 and significantly worse performance on Reading the Mind in the Eyes Test, revised version II. Neuropsychological assessment demonstrated some statistically significant deficits in learning and remembering both verbal and visual material, long-term information storing, problem solving, and executive functions such as verbal fluency. CONCLUSION Patients at early stage of unilateral thalamic stroke showed both neurocognitive and social cognitive deficits. Further research is needed to increase understanding about diagnosis, early treatment, and prognosis of patients with thalamic lesions.
Collapse
Affiliation(s)
- Ewelina Wilkos
- Department of Neuroses, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Timothy Jb Brown
- Department of Medical Education, Hull York Medical School, Hull, UK
| | - Ksenia Slawinska
- Department of Neurology, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Katarzyna A Kucharska
- Department of Neuroses, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland ; Department of Medical Education, Hull York Medical School, Hull, UK
| |
Collapse
|
33
|
Kraft A, Irlbacher K, Finke K, Kaufmann C, Kehrer S, Liebermann D, Bundesen C, Brandt SA. Dissociable spatial and non-spatial attentional deficits after circumscribed thalamic stroke. Cortex 2014; 64:327-42. [PMID: 25597524 DOI: 10.1016/j.cortex.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022]
Abstract
Thalamic nuclei act as sensory, motor and cognitive relays between multiple subcortical areas and the cerebral cortex. They play a crucial role in cognitive functions such as executive functioning, memory and attention. In the acute period after thalamic stroke attentional deficits are common. The precise functional relevance of specific nuclei or vascular sub regions of the thalamus for attentional sub functions is still unclear. The theory of visual attention (TVA) allows the measurement of four independent attentional parameters (visual short term memory storage capacity (VSTM), visual perceptual processing speed, selective control and spatial weighting). We combined parameter-based assessment based on TVA with lesion symptom mapping in standard stereotactic space in sixteen patients (mean age 41.2 ± 11.0 SD, 6 females), with focal thalamic lesions in the medial (N = 9), lateral (N = 5), anterior (N = 1) or posterior (N = 1) vascular territories of the thalamus. Compared with an age-matched control group of 52 subjects (mean age 40.1 ± 6.4, 35 females), the patients with thalamic lesions were, on the group level, mildly impaired in visual processing speed and VSTM. Patients with lateral thalamic lesions showed a deficit in processing speed while all other TVA parameters were within the normal range. Medial thalamic lesions can be associated with a spatial bias and extinction of targets either in the ipsilesional or the contralesional field. A posterior case with a thalamic lesion of the pulvinar replicated a finding of Habekost and Rostrup (2006), demonstrating a spatial bias to the ipsilesional field, as suggested by the neural theory of visual attention (NTVA) (Bundesen, Habekost, & Kyllingsbæk, 2011). A case with an anterior-medial thalamic lesion showed reduced selective attentional control. We conclude that lesions in distinct vascular sub regions of the thalamus are associated with distinct attentional syndromes (medial = spatial bias, lateral = processing speed).
Collapse
Affiliation(s)
- Antje Kraft
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Kerstin Irlbacher
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Finke
- Department of Psychology, General and Experimental Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Kaufmann
- Clinical Psychology, Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefanie Kehrer
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Liebermann
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Claus Bundesen
- Center of Visual Cognition, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Brandt
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Saalmann YB. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Front Syst Neurosci 2014; 8:83. [PMID: 24847225 PMCID: PMC4023070 DOI: 10.3389/fnsys.2014.00083] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/21/2014] [Indexed: 11/15/2022] Open
Abstract
The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing.
Collapse
Affiliation(s)
- Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
35
|
Jang SH, Yeo SS. Thalamocortical connections between the mediodorsal nucleus of the thalamus and prefrontal cortex in the human brain: a diffusion tensor tractographic study. Yonsei Med J 2014; 55:709-14. [PMID: 24719138 PMCID: PMC3990063 DOI: 10.3349/ymj.2014.55.3.709] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/11/2013] [Accepted: 08/19/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The elucidation of thalamocortical connections between the mediodorsal nucleus (MD) of thalamus and the prefrontal cortex (PFC) is important in the clinical fields of neurorehabilitation and psychiatry. However, little is known about these connections in human brain. We attempted to identify and investigate the anatomical characteristics of the thalamocortical connection between MD and PFC in human brain using diffusion tensor tractography (DTT). MATERIALS AND METHODS Thirty-two healthy volunteers were recruited for this study. Diffusion tensor images were scanned using a 1.5-T. A seed region of interest was placed at the MD of the thalamus on coronal images, and target regions of interest were placed on the dorsolateral prefrontal cortex (DLPFC), the ventrolateral prefrontal cortex (VLPFC), and the orbitofrontal cortex (OFC), respectively. The three thalamocortical connections found were reconstructed using Functional Magnetic Resonance Imaging of the Brain (FMRIB) software. RESULTS The three thalamocortical connections were arranged in subcortical white matter in the following order from upper to lower levels: the DLPFC, the VLPFC, and the OFC. In terms of fractional anisotropy and mean diffusivity values, no significant differences were observed between the DLPFC, VLPFC and OFC (p>0.05). In contrast, the OFC tract volume was higher than those of the DLPFC and the VLPFC (p<0.05). CONCLUSION Three thalamocortical connections were reconstructed between MD and PFCs in human brain using DTT. We believe that the results of this study would be helpful to clinicians in treating frontal network syndrome and psychiatric diseases.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Korea
| | - Sang Seok Yeo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
36
|
Klostermann F, Krugel LK, Ehlen F. Functional roles of the thalamus for language capacities. Front Syst Neurosci 2013; 7:32. [PMID: 23882191 PMCID: PMC3712252 DOI: 10.3389/fnsys.2013.00032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023] Open
Abstract
Early biological concepts of language were predominantly corticocentric, but over the last decades biolinguistic research, equipped with new technical possibilities, has drastically changed this view. To date, connectionist models, conceiving linguistic skills as corticobasal network activities, dominate our understanding of the neural basis of language. However, beyond the notion of an involvement of the thalamus and, in most cases also, the basal ganglia (BG) in linguistic operations, specific functions of the respective depth structures mostly remain rather controversial. In this review, some of these issues shall be discussed, particularly the functional configuration of basal network components and the language specificity of subcortical supporting activity. Arguments will be provided for a primarily cortico-thalamic language network. In this view, the thalamus does not engage in proper linguistic operations, but rather acts as a central monitor for language-specific cortical activities, supported by the BG in both perceptual and productive language execution.
Collapse
Affiliation(s)
- Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité - University Medicine BerlinCBF, Berlin, Germany
| | | | | |
Collapse
|
37
|
Serra L, Cercignani M, Carlesimo GA, Fadda L, Tini N, Giulietti G, Caltagirone C, Bozzali M. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct. PLoS One 2013; 8:e64578. [PMID: 23755128 PMCID: PMC3670907 DOI: 10.1371/journal.pone.0064578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients’ lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.’s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.’s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient’s frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on interconnectivity brain patterns.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Mara Cercignani
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy
- Brighton and Sussex Medical School, Clinical Imaging Sciences Centre, Falmer, United Kingdom
| | - Giovanni A. Carlesimo
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation, IRCCS, Rome, Italy
- Neurology Clinic, University of Rome “Tor Vergata”, Rome, Italy
| | - Lucia Fadda
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation, IRCCS, Rome, Italy
- Neurology Clinic, University of Rome “Tor Vergata”, Rome, Italy
| | - Nadia Tini
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | | | - Carlo Caltagirone
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation, IRCCS, Rome, Italy
- Neurology Clinic, University of Rome “Tor Vergata”, Rome, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
38
|
Ostendorf F, Liebermann D, Ploner CJ. A role of the human thalamus in predicting the perceptual consequences of eye movements. Front Syst Neurosci 2013; 7:10. [PMID: 23630474 PMCID: PMC3632791 DOI: 10.3389/fnsys.2013.00010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/05/2013] [Indexed: 01/06/2023] Open
Abstract
Internal monitoring of oculomotor commands may help to anticipate and keep track of changes in perceptual input imposed by our eye movements. Neurophysiological studies in non-human primates identified corollary discharge (CD) signals of oculomotor commands that are conveyed via thalamus to frontal cortices. We tested whether disruption of these monitoring pathways on the thalamic level impairs the perceptual matching of visual input before and after an eye movement in human subjects. Fourteen patients with focal thalamic stroke and 20 healthy control subjects performed a task requiring a perceptual judgment across eye movements. Subjects reported the apparent displacement of a target cue that jumped unpredictably in sync with a saccadic eye movement. In a critical condition of this task, six patients exhibited clearly asymmetric perceptual performance for rightward vs. leftward saccade direction. Furthermore, perceptual judgments in seven patients systematically depended on oculomotor targeting errors, with self-generated targeting errors erroneously attributed to external stimulus jumps. Voxel-based lesion-symptom mapping identified an area in right central thalamus as critical for the perceptual matching of visual space across eye movements. Our findings suggest that trans-thalamic CD transmission decisively contributes to a correct prediction of the perceptual consequences of oculomotor actions.
Collapse
Affiliation(s)
- Florian Ostendorf
- Department of Neurology, Charité - Universitätsmedizin Berlin Berlin, Germany ; Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany
| | | | | |
Collapse
|
39
|
Luo X, Zhang S, Hu S, Bednarski SR, Erdman E, Farr OM, Hong KI, Sinha R, Mazure CM, Li CSR. Error processing and gender-shared and -specific neural predictors of relapse in cocaine dependence. ACTA ACUST UNITED AC 2013; 136:1231-44. [PMID: 23485852 DOI: 10.1093/brain/awt040] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deficits in cognitive control are implicated in cocaine dependence. Previously, combining functional magnetic resonance imaging and a stop signal task, we demonstrated altered cognitive control in cocaine-dependent individuals. However, the clinical implications of these cross-sectional findings and, in particular, whether the changes were associated with relapse to drug use, were not clear. In a prospective study, we recruited 97 treatment-seeking individuals with cocaine dependence to perform the stop signal task during functional magnetic resonance imaging and participate in follow-up assessments for 3 months, during which time cocaine use was evaluated with timeline follow back and ascertained by urine toxicology tests. Functional magnetic resonance imaging data were analysed using general linear models as implemented in Statistical Parametric Mapping 8, with the contrast 'stop error greater than stop success trials' to index error processing. Using voxelwise analysis with logistic and Cox regressions, we identified brain activations of error processing that predict relapse and time to relapse. In females, decreased error-related activations of the thalamus and dorsal anterior cingulate cortex predicted relapse and an earlier time to relapse. In males, decreased error-related activations of the dorsal anterior cingulate cortex and left insula predicted relapse and an earlier time to relapse. These regional activations were validated with data resampling and predicted relapse with an average area under the curve of 0.849 in receiver operating characteristic analyses. These findings provide direct evidence linking deficits in cognitive control to clinical outcome in a moderate-sized cohort of cocaine-dependent individuals. These results may provide a useful basis for future studies to examine how psychosocial factors interact with cognitive control to determine drug use and to evaluate the efficacy of pharmacological or behavioural treatment in remediating deficits of cognitive control in cocaine addicts.
Collapse
Affiliation(s)
- Xi Luo
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|