1
|
Austin DK, Amador LMD, Li LM, Little SJ, Rothwell JC. Fluoxetine does not influence response to continuous theta burst stimulation in human motor cortex. Neuropsychopharmacol Rep 2025; 45:e12493. [PMID: 39509560 DOI: 10.1002/npr2.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
AIM Selective serotonin reuptake inhibitors are thought to exert a clinical effect through various mechanisms, including through alteration in synaptic plasticity. Repetitive transcranial magnetic stimulation can induce temporary changes in synaptic excitability in cerebral cortex that resemble long-term potentiation and long-term depression that serve as a measure of synaptic plasticity in vivo. A version of repetitive transcranial magnetic stimulation called continuous theta burst stimulation can induce inhibition of cortical excitability that can be measured through a motor evoked potential. Previous work has suggested that this response can be modulated by administration of selective serotonin reuptake inhibitors. METHOD Thirty-one healthy volunteers received both fluoxetine 20 mg and placebo in randomly ordered sessions, followed by spaced continuous theta burst stimulation to motor cortex. Changes in Motor Evoked Potentials were then recorded over 60 min. RESULTS The response to spaced continuous theta burst stimulation did not differ significantly between fluoxetine and placebo sessions. Spaced continuous theta burst stimulation produced a paradoxical excitatory response in an unexpected number of participants. CONCLUSION A single dose of fluoxetine 20 mg does not influence the response to continuous theta burst stimulation. Previous results suggesting an effect of selective serotonin reuptake inhibitors on inhibitory non-invasive brain stimulation protocols may be due to insufficiently large sample sizes.
Collapse
Affiliation(s)
- Duncan K Austin
- University College London, London, UK
- Monash University, Melbourne, Australia
| | - Lourenço M D Amador
- University College London, London, UK
- University of Melbourne, Melbourne, Australia
| | - Lucia M Li
- University College London, London, UK
- Imperial College London, London, UK
| | - Simon J Little
- University College London, London, UK
- Department of Neurology, University of California, San Francisco, USA
| | | |
Collapse
|
2
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Boré A, Descoteaux M, Lepage JF, Théoret H. Multimodal response-predictor analysis for three non-invasive brain stimulation protocols. Brain Res 2024; 1850:149372. [PMID: 39645141 DOI: 10.1016/j.brainres.2024.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Non-invasive brain stimulation (NIBS) methods such as paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are used to modulate cortical excitability and reduce symptoms in a variety of psychiatric disorders. Recent studies have shown significant inter-individual variability in the physiological response to these techniques when they are applied over the hand representation of primary motor cortex (M1hand). The goal of the present study was to identify neurophysiological, neuroanatomical, and neurochemical baseline characteristics that may predict response to commonly used NIBS protocols using data from a previously published study (Therrien-Blanchet et al., 2023). To this end, PAS, anodal tDCS, and 20-Hz tACS were administered to healthy participants in a repeated measures design. Pre/Post differences in transcranial magnetic stimulation-induced input-output curves were used to quantify changes in corticospinal excitability. Primary predictors were late I-wave latency, cortical thickness (CT) of M1hand, and fractional anisotropy of the corticospinal tract (CSThand) originating from M1hand. Secondary exploratory analysis was performed with CT in areas outside motor cortex, diffusion MRI (dMRI) metrics of the CSThand, magnetic resonance spectroscopy measurements of GABA, glutamate, and n-acetyl aspartate of M1hand, baseline corticospinal excitability, and cranial circumference. Multiple regression analysis showed that none of the primary variables predicted intervention outcome for any of the NIBS protocols. Exploratory analysis revealed no significant correlation between predictor variables and PAS outcome. tDCS and tACS were significantly correlated with some baseline measures. These data suggest that modulation of cortical excitability following several NIBS protocols may not be easily predicted by baseline characteristics, underscoring the need for a better understanding of their mechanism of action. Significant exploratory associations need to be confirmed in larger samples and confirmatory designs.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | | | - Amira Merabtine
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Emelie Boucher
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Lydia Helena Hofmann
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, Canada
| | - Hugo Théoret
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Xiao H, Meng Y, Liu S, Cao Y, Sun H, Deng G, Wang M, Zheng Y, Qiu C. Non-invasive brain stimulation for treating catatonia: a systematic review. Front Psychiatry 2023; 14:1135583. [PMID: 37260758 PMCID: PMC10227525 DOI: 10.3389/fpsyt.2023.1135583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Background Non-invasive brain stimulation (NIBS) techniques offer new therapeutic options for modifying pathological neuroplasticity and have been proven to be beneficial in the treatment of neuropsychiatric disorders. Objective This study aimed to investigate the role of NIBS in treating catatonia. Materials and methods We conducted a systematic search to identify meta-analyses or systematic reviews on electroconvulsive therapy (ECT) and studies on the effects of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on patients with catatonia from the PubMed, Web of Science, Embase, China National Knowledge Internet, Wanfang, and China Science and Technology Journal databases from inception until 31 July 2022. The methodological quality of the included studies was assessed with the AMSTAR2 or Joanna Briggs Institute Critical Appraisal tools. Paired t-tests and Wilcoxon signed-rank tests were used to compare changes in catatonia symptom scores after rTMS or tDCS. Results A total of 13 systematic reviews and one meta-analysis on ECT, two systematic reviews and 12 case reports on rTMS, and seven studies of 14 cases applying tDCS were identified. Systematic reviews of ECT consistently described improvement in catatonia symptoms across catatonia types and patient age groups. After treatment with rTMS (t = 4.489, p = 0.006) and tDCS (z = -3.065, p = 0.002), patients exhibited significant improvement. Conclusion ECT, rTMS, and tDCS were effective in treating catatonia. Early intervention with NIBS techniques may help improve catatonia symptoms in patients with schizophrenia. It may be advantageous to use rTMS or tDCS to maintain this improvement. NIBS techniques may thus represent a promising treatment for catatonia, but additional high-quality randomized controlled trials are needed.
Collapse
Affiliation(s)
- Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yajing Meng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Shiyu Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yuan Cao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huan Sun
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Mei Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yaozong Zheng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
4
|
Effects of repetitive paired associative stimulation on brain plasticity and working memory in Alzheimer's disease: a pilot randomized double-blind-controlled trial. Int Psychogeriatr 2023; 35:143-155. [PMID: 33190659 DOI: 10.1017/s1041610220003518] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DESIGN Pilot randomized double-blind-controlled trial of repetitive paired associative stimulation (rPAS), a paradigm that combines transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) with peripheral median nerve stimulation. OBJECTIVES To study the impact of rPAS on DLPFC plasticity and working memory performance in Alzheimer's disease (AD). METHODS Thirty-two patients with AD (females = 16), mean (SD) age = 76.4 (6.3) years were randomized 1:1 to receive a 2-week (5 days/week) course of active or control rPAS. DLPFC plasticity was assessed using single session PAS combined with electroencephalography (EEG) at baseline and on days 1, 7, and 14 post-rPAS. Working memory and theta-gamma coupling were assessed at the same time points using the N-back task and EEG. RESULTS There were no significant differences between the active and control rPAS groups on DLPFC plasticity or working memory performance after the rPAS intervention. There were significant main effects of time on DLPFC plasticity, working memory, and theta-gamma coupling, only for the active rPAS group. Further, on post hoc within-group analyses done to generate hypotheses for future research, as compared to baseline, only the rPAS group improved on post-rPAS day 1 on all three indices. Finally, there was a positive correlation between working memory performance and theta-gamma coupling. CONCLUSIONS This study did not show a beneficial effect of rPAS for DLPFC plasticity or working memory in AD. However, post hoc analyses showed promising results favoring rPAS and supporting further research on this topic. (Clinicaltrials.gov-NCT01847586).
Collapse
|
5
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Lepage JF, Théoret H. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols. Cereb Cortex 2023:7030623. [PMID: 36749004 DOI: 10.1093/cercor/bhad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Amira Merabtine
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emelie Boucher
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lydia Helena Hofmann
- Department of Psychology and Neuroscience, Maastricht University, Maastricht 6229, The Netherlands
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Hanoglu L, Velioglu HA, Hanoglu T, Yulug B. Neuroimaging-Guided Transcranial Magnetic and Direct Current Stimulation in MCI: Toward an Individual, Effective and Disease-Modifying Treatment. Clin EEG Neurosci 2023; 54:82-90. [PMID: 34751037 DOI: 10.1177/15500594211052815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The therapeutic approaches currently applied in Alzheimer's disease (AD) and similar neurodegenerative diseases are essentially based on pharmacological strategies. However, despite intensive research, the effectiveness of these treatments is limited to transient symptomatic effects, and they are still far from exhibiting a true therapeutic effect capable of altering prognosis. The lack of success of such pharmacotherapy-based protocols may be derived from the cases in the majority of trials being too advanced to benefit significantly in therapeutic terms at the clinical level. For neurodegenerative diseases, mild cognitive impairment (MCI) may be an early stage of the disease continuum, including Alzheimer's. Noninvasive brain stimulation (NIBS) techniques have been developed to modulate plasticity in the human cortex in the last few decades. NIBS techniques have made it possible to obtain unique findings concerning brain functions, and design novel approaches to treat various neurological and psychiatric conditions. In addition, its synaptic and cellular neurobiological effects, NIBS is an attractive treatment option in the early phases of neurodegenerative diseases, such as MCI, with its beneficial modifying effects on cellular neuroplasticity. However, there is still insufficient evidence about the potential positive clinical effects of NIBS on MCI. Furthermore, the huge variability of the clinical effects of NIBS limits its use. In this article, we reviewed the combined approach of NIBS with various neuroimaging and electrophysiological methods. Such methodologies may provide a new horizon to the path for personalized treatment, including a more individualized pathophysiology approach which might even define new specific targets for specific symptoms of neurodegenerations.
Collapse
Affiliation(s)
- Lutfu Hanoglu
- 218502Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Halil Aziz Velioglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Taha Hanoglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Burak Yulug
- 450199Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
7
|
Adeel M, Lin BS, Chen HC, Lai CH, Liou JC, Wu CW, Chan WP, Peng CW. Motor Neuroplastic Effects of a Novel Paired Stimulation Technology in an Incomplete Spinal Cord Injury Animal Model. Int J Mol Sci 2022; 23:ijms23169447. [PMID: 36012710 PMCID: PMC9409074 DOI: 10.3390/ijms23169447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Paired stimulation of the brain and spinal cord can remodel the central nervous tissue circuitry in an animal model to induce motor neuroplasticity. The effects of simultaneous stimulation vary according to the extent and severity of spinal cord injury. Therefore, our study aimed to determine the significant effects on an incomplete SCI rat brain and spinal cord through 3 min and 20 min stimulations after 4 weeks of intervention. Thirty-three Sprague Dawley rats were classified into six groups: (1) normal, (2) sham, (3) iTBS/tsDCS, (4) iTBS/ts-iTBS, (5) rTMS/tsDCS, and (6) rTMS/ts-iTBS. Paired stimulation of the brain cortex and spinal cord thoracic (T10) level was applied simultaneously for 3−20 min. The motor evoked potential (MEP) and Basso, Beattie, and Bresnahan (BBB) scores were recorded after every week of intervention for four weeks along with wheel training for 20 min. Three-minute stimulation with the iTBS/tsDCS intervention induced a significant (p < 0.050 *) increase in MEP after week 2 and week 4 treatments, while 3 min iTBS/ts-iTBS significantly improved MEP (p < 0.050 *) only after the week 3 intervention. The 20 min rTMS/ts-iTBS intervention showed a significant change only in post_5 min after week 4. The BBB score also changed significantly in all groups except for the 20 min rTMS/tsDCS intervention. iTBS/tsDCS and rTMS/ts-iTBS interventions induce neuroplasticity in an incomplete SCI animal model by significantly changing electrophysiological (MEP) and locomotion (BBB) outcomes.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chien-Hung Lai
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Wing P. Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel./Fax: +886-2-2736-1661 (ext. 3070)
| |
Collapse
|
8
|
Frontotemporal Transcranial Direct Current Stimulation Decreases Serum Mature Brain-Derived Neurotrophic Factor in Schizophrenia. Brain Sci 2021; 11:brainsci11050662. [PMID: 34069556 PMCID: PMC8160668 DOI: 10.3390/brainsci11050662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
Although transcranial direct current stimulation (tDCS) shows promise as a treatment for auditory verbal hallucinations in patients with schizophrenia, mechanisms through which tDCS may induce beneficial effects remain unclear. Evidence points to the involvement of neuronal plasticity mechanisms that are underpinned, amongst others, by brain-derived neurotrophic factor (BDNF) in its two main forms: pro and mature peptides. Here, we aimed to investigate whether tDCS modulates neural plasticity by measuring the acute effects of tDCS on peripheral mature BDNF levels in patients with schizophrenia. Blood samples were collected in 24 patients with schizophrenia before and after they received a single session of either active (20 min, 2 mA, n = 13) or sham (n = 11) frontotemporal tDCS with the anode over the left prefrontal cortex and the cathode over the left temporoparietal junction. We compared the tDCS-induced changes in serum mature BDNF (mBDNF) levels adjusted for baseline values between the two groups. The results showed that active tDCS was associated with a significantly larger decrease in mBDNF levels (mean −20% ± standard deviation 14) than sham tDCS (−8% ± 21) (F = 5.387; p = 0.030; η2 = 0.205). Thus, mature BDNF may be involved in the beneficial effects of frontotemporal tDCS observed in patients with schizophrenia.
Collapse
|
9
|
Smith AE, Dumuid D, Goldsworthy MR, Graetz L, Hodyl N, Thornton NLR, Ridding MC. Daily activities are associated with non-invasive measures of neuroplasticity in older adults. Clin Neurophysiol 2021; 132:984-992. [PMID: 33639453 DOI: 10.1016/j.clinph.2021.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We aimed to determine the association between daily activities (sleep, sedentary behavior and physical activities) and neuroplasticity in older adults by measuring motor evoked potential amplitudes (MEPs) elicited after a single and spaced continuous theta burst stimulation (cTBS) paradigm, targeting the primary motor cortex. METHODS MEPs were recorded from the right first dorsal interosseous muscle of 34 older adults (66.9 ± 4.5 years) by delivering single-pulse TMS before, between and at 0, 10, 20, 40 and 60 min after the application of spaced-cTBS separated by 10 min. Habitual activity was assessed by accelerometry for 24 h/day over 7-days. Multiple linear regression models determined if the time-use composition (sleep, sedentary behavior and physical activities) was associated with neuroplasticity response. RESULTS More physical activity at the equal expense of sleep and sedentary behaviors was associated with greater motor cortical neuroplasticity. Associations appeared to be driven by more time spent in light- but not moderate-to-vigorous- physical activities. CONCLUSIONS Engaging in light physical activity at the expense of sleep and sedentary behavior was associated with greater LTD-like motor cortex neuroplasticity (as measured with cTBS) in older adults. SIGNIFICANCE These findings suggest the promotion of physical activity among older adults to support brain neuroplasticity.
Collapse
Affiliation(s)
- Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, City East Campus, Australia.
| | - Dorothea Dumuid
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, City East Campus, Australia
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia; Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia; Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Australia
| | - Nicolette Hodyl
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia
| | - Nicollette L R Thornton
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Australia
| | - Michael C Ridding
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, City East Campus, Australia
| |
Collapse
|
10
|
Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex. Transl Psychiatry 2021; 11:17. [PMID: 33414402 PMCID: PMC7791098 DOI: 10.1038/s41398-020-01134-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is increasingly used as a form of noninvasive brain stimulation to treat psychiatric disorders; however, its mechanism of action remains unclear. Prolonged visual stimulation (PVS) can enhance evoked EEG potentials (visually evoked potentials, VEPs) and has been proposed as a tool to examine long-term potentiation (LTP) in humans. The objective of the current study was to induce and analyze VEP plasticity and examine whether tDCS could either modulate or mimic plasticity changes induced by PVS. Thirty-eight healthy participants received tDCS, PVS, either treatment combined or neither treatment, with stimulation sessions being separated by one week. One session consisted of a baseline VEP measurement, one stimulation block, and six test VEP measurements. For PVS, a checkerboard reversal pattern was presented, and for tDCS, a constant current of 1 mA was applied via each bioccipital anodal target electrode for 10 min (Fig. S1). Both stimulation types decreased amplitudes of C1 compared to no stimulation (F = 10.1; p = 0.002) and led to a significantly smaller increase (PVS) or even decrease (tDCS) in N1 compared to no stimulation (F = 4.7; p = 0.034). While all stimulation types increased P1 amplitudes, the linear mixed effects model did not detect a significant difference between active stimulation and no stimulation. Combined stimulation induced sustained plastic modulation of C1 and N1 but with a smaller effect size than what would be expected for an additive effect. The results demonstrate that tDCS can directly induce LTP-like plasticity in the human cortex and suggest a mechanism of action of tDCS relying on the restoration of dysregulated synaptic plasticity in psychiatric disorders such as depression and schizophrenia.
Collapse
|
11
|
Sundman MH, Lim K, Ton That V, Mizell JM, Ugonna C, Rodriguez R, Chen NK, Fuglevand AJ, Liu Y, Wilson RC, Fellous JM, Rapcsak S, Chou YH. Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Commun 2020; 2:fcaa203. [PMID: 33376989 PMCID: PMC7750948 DOI: 10.1093/braincomms/fcaa203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Homoeostatic metaplasticity is a neuroprotective physiological feature that counterbalances Hebbian forms of plasticity to prevent network destabilization and hyperexcitability. Recent animal models highlight dysfunctional homoeostatic metaplasticity in the pathogenesis of Alzheimer's disease. However, the association between homoeostatic metaplasticity and cognitive status has not been systematically characterized in either demented or non-demented human populations, and the potential value of homoeostatic metaplasticity as an early biomarker of cognitive impairment has not been explored in humans. Here, we report that, through pre-conditioning the synaptic activity prior to non-invasive brain stimulation, the association between homoeostatic metaplasticity and cognitive status could be established in a population of non-demented human subjects (older adults across cognitive spectrums; all within the non-demented range). All participants (n = 40; age range, 65-74, 47.5% female) underwent a standardized neuropsychological battery, magnetic resonance imaging and a transcranial magnetic stimulation protocol. Specifically, we sampled motor-evoked potentials with an input/output curve immediately before and after repetitive transcranial magnetic stimulation to assess neural plasticity with two experimental paradigms: one with voluntary muscle contraction (i.e. modulated synaptic activity history) to deliberately introduce homoeostatic interference, and one without to serve as a control condition. From comparing neuroplastic responses across these experimental paradigms and across cohorts grouped by cognitive status, we found that (i) homoeostatic metaplasticity is diminished in our cohort of cognitively impaired older adults and (ii) this neuroprotective feature remains intact in cognitively normal participants. This novel finding suggests that (i) future studies should expand their scope beyond just Hebbian forms of plasticity that are traditionally assessed when using non-invasive brain stimulation to investigate cognitive ageing and (ii) the potential value of homoeostatic metaplasticity in serving as a biomarker for cognitive impairment should be further explored.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Koeun Lim
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Viet Ton That
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Chidi Ugonna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85721, USA
| | - Rudolph Rodriguez
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Yilin Liu
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Robert C Wilson
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Jean-Marc Fellous
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Steven Rapcsak
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Department of Neurology, University of Arizona, Tucson, AZ 85721, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Whife CJ, Vallence AM, Edgar DW, Wood FM. Decreased neuroplasticity in minor burn injury survivors compared to non-injured adults: A pilot study in burn injury survivors aged 45 years and older. Burns 2020; 47:327-337. [PMID: 33288329 DOI: 10.1016/j.burns.2020.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Neuroplasticity is the capacity of the brain to change or adapt with experience: brain changes occur with use, disuse, and injury. Repetitive transcranial magnetic stimulation (rTMS) can be used to induce neuroplasticity in the human brain. Here, we examined rTMS-induced neuroplasticity in the primary motor cortex in burns survivors and controls without injury, and whether neuroplasticity is associated with functional recovery in burns survivors. METHODS Sixteen burn injury survivors (total body surface area of burn injury <15%) and 13 non-injured control participants were tested. Repetitive TMS (specifically, spaced continuous theta-burst stimulation[cTBS]) was applied to induce neuroplasticity 6 and 12 weeks after injury in burn survivors and in two sessions separated by 6 weeks in controls. Motor evoked potentials (MEPs) elicited by single-pulse TMS were measured before and after rTMS to measure neuroplasticity. Burns survivors completed a functional assessment 12 weeks after injury. RESULTS Non-injured controls showed decreased MEP amplitude 15-30 min after spaced cTBS in both experimental sessions. Burn survivors showed a smaller change in MEP amplitude after spaced cTBS compared to controls 6 weeks after burn injury but no difference compared to controls 12 weeks after burn injury. In burn survivors, there was a significant positive association between general health outcome (Short-Form Health Survey) and the change in MEP amplitude after spaced cTBS 12 weeks after injury (r=.73, p = .01). CONCLUSIONS The current findings suggest that burn survivors have a reduced capacity for neuroplasticity early in the recovery period (6 weeks after injury), which normalizes later in the recovery period (12 weeks after injury). Furthermore, the results provide preliminary evidence to suggest that burn survivors with normalized neuroplasticity 12 weeks after injury recover faster after burn injury.
Collapse
Affiliation(s)
- Casey J Whife
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
| | - Ann-Maree Vallence
- Psychology, Murdoch University, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.
| | - Dale W Edgar
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, Western Australia, Australia; Burn Injury Research Node, The University of Notre Dame Australia, Fremantle, Western Australia, Australia; Burns Service of Western Australia, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, Western Australia, Australia; Burns Service of Western Australia, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
13
|
Goldsworthy MR, Rogasch NC, Ballinger S, Graetz L, Van Dam JM, Harris R, Yu S, Pitcher JB, Baune BT, Ridding MC. Age-related decline of neuroplasticity to intermittent theta burst stimulation of the lateral prefrontal cortex and its relationship with late-life memory performance. Clin Neurophysiol 2020; 131:2181-2191. [DOI: 10.1016/j.clinph.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/09/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
|
14
|
Grasso PA, Gallina J, Bertini C. Shaping the visual system: cortical and subcortical plasticity in the intact and the lesioned brain. Neuropsychologia 2020; 142:107464. [PMID: 32289349 DOI: 10.1016/j.neuropsychologia.2020.107464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Visual system is endowed with an incredibly complex organization composed of multiple visual pathway affording both hierarchical and parallel processing. Even if most of the visual information is conveyed by the retina to the lateral geniculate nucleus of the thalamus and then to primary visual cortex, a wealth of alternative subcortical pathways is present. This complex organization is experience dependent and retains plastic properties throughout the lifespan enabling the system with a continuous update of its functions in response to variable external needs. Changes can be induced by several factors including learning and experience but can also be promoted by the use non-invasive brain stimulation techniques. Furthermore, besides the astonishing ability of our visual system to spontaneously reorganize after injuries, we now know that the exposure to specific rehabilitative training can produce not only important functional modifications but also long-lasting changes within cortical and subcortical structures. The present review aims to update and address the current state of the art on these topics gathering studies that reported relevant modifications of visual functioning together with plastic changes within cortical and subcortical structures both in the healthy and in the lesioned visual system.
Collapse
Affiliation(s)
- Paolo A Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, 50135, Italy.
| | - Jessica Gallina
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| |
Collapse
|
15
|
Abstract
Traumatic brain injury (TBI) represents a major clinical and economic challenge for health systems worldwide, and it is considered one of the leading causes of disability in young adults. The recent development of brain-computer interface (BCI) tools to target cognitive and motor impairments has led to the exploration of these techniques as potential therapeutic tools in patients with TBI. However, little evidence has been gathered so far to support applicability and efficacy of BCIs for TBI in a clinical setting. In the present chapter, results from studies using BCI approaches in conscious patients with TBI or in animal models of TBI as well as an overview of future directions in the use of BCIs to treat cognitive symptoms in this patient population will be presented.
Collapse
Affiliation(s)
- Virginia Conde
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Clinical Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
16
|
Alder G, Signal N, Olsen S, Taylor D. A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Front Neurosci 2019; 13:895. [PMID: 31507367 PMCID: PMC6718871 DOI: 10.3389/fnins.2019.00895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory interventions have the potential to influence neural plasticity and augment motor rehabilitation in people with stroke. Paired associative stimulation (PAS) involves the repeated pairing of single pulses of electrical stimulation to a peripheral nerve and single pulses of transcranial magnetic stimulation over the contralateral primary motor cortex. Efficacy of PAS in the lower limb of healthy and stroke populations has not been systematically appraised. Optimal protocols including stimulation parameter settings have yet to be determined. This systematic review (a) examines the efficacy of PAS on lower limb corticomotor excitability in healthy and stroke populations and (b) evaluates the stimulation parameters employed. Five databases were searched for randomized, non-randomized, and pre-post experimental studies evaluating lower limb PAS in healthy and stroke populations. Two independent reviewers identified eligible studies and assessed methodological quality using a modified Downs and Blacks Tool and the TMS Checklist. Intervention stimulation parameters and TMS measurement details were also extracted and compared. Twelve articles, comprising 24 experiments, met the inclusion criteria. Four articles evaluated PAS in people with stroke. Following a single session of PAS, 21 experiments reported modulation of corticomotor excitability, lasting up to 60 min; however, the research lacked methodological rigor. Intervention stimulation parameters were highly variable across experiments, and whilst these appeared to influence efficacy, variations in the intervention and outcome assessment methods hindered the ability to draw conclusions about optimal parameters. Lower limb PAS research requires further investigation before considering its translation into clinical practice. Eight key recommendations serve as guide for enhancing future research in the field.
Collapse
Affiliation(s)
- Gemma Alder
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Sharon Olsen
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
17
|
Qi F, Nitsche MA, Zschorlich VR. Interaction Between Transcranial Random Noise Stimulation and Observation-Execution Matching Activity Promotes Motor Cortex Excitability. Front Neurosci 2019; 13:69. [PMID: 30792626 PMCID: PMC6374348 DOI: 10.3389/fnins.2019.00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Pathways of the human mirror neuron system are activated during both, action observation and action execution, including lateralized activation of respective areas, as shown by observed right-or left-hand actions. Here, we investigated whether execution-dependent motor cortex excitability is affected by prior interaction between transcranial random noise stimulation (tRNS) and action observation. Sham or real tRNS (1 mA) was applied for 10-min over the left primary motor cortex during action observation. In the main experiments, participants received sham or real tRNS while they watched a video showing repeated tapping tasks, involving either the right-hand (Experiment 1, congruent action observation), or a mirror-reversed video showing the same performance (Experiment 2), followed by action execution of the right-hand. In control Experiments 1–3, participants received real tRNS while observing a perceptual sequence, watching a landscape picture, or observing the left-hand performing the action (the sequence was identical to Experiment 1), followed by action execution of the right-hand. In control Experiment 4, participants received real tRNS during congruent action observation, and then took 6-min rest. Motor-evoked potentials (MEP) were recorded before action observation, a perceptual sequence or a landscape picture, immediately after, and after action execution, or an interval of 6-min, dependent on the respective experimental condition. MEPs in the right first dorsal interosseous muscle increased significantly after real tRNS combined with congruent action observation, and after action execution compared to the sham session in Experiment 1 and control experiments. We conclude that prior interaction between real tRNS and action observation of mirror-matched movements modulates subsequent execution-dependent motor cortex excitability.
Collapse
Affiliation(s)
- Fengxue Qi
- Department of Movement Science, Faculty of Philosophy, University of Rostock, Rostock, Germany.,Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Volker R Zschorlich
- Department of Movement Science, Faculty of Philosophy, University of Rostock, Rostock, Germany.,Faculty of Medicine, University of Rostock, Rostock, Germany.,Department Ageing of Individuals and Society, Faculty of Interdisciplinary Research, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Zak N, Moberget T, Bøen E, Boye B, Waage TR, Dietrichs E, Harkestad N, Malt UF, Westlye LT, Andreassen OA, Andersson S, Elvsåshagen T. Longitudinal and cross-sectional investigations of long-term potentiation-like cortical plasticity in bipolar disorder type II and healthy individuals. Transl Psychiatry 2018; 8:103. [PMID: 29795193 PMCID: PMC5966393 DOI: 10.1038/s41398-018-0151-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/19/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Visual evoked potential (VEP) plasticity is a promising assay for noninvasive examination of long-term potentiation (LTP)-like synaptic processes in the cerebral cortex. We conducted longitudinal and cross-sectional investigations of VEP plasticity in controls and individuals with bipolar disorder (BD) type II. VEP plasticity was assessed at baseline, as described previously (Elvsåshagen et al. Biol Psychiatry 2012), and 2.2 years later, at follow-up. The longitudinal sample with VEP data from both time points comprised 29 controls and 16 patients. VEP data were available from 13 additional patients at follow-up (total n = 58). VEPs were evoked by checkerboard reversals in two premodulation blocks before and six blocks after a plasticity-inducing block of prolonged (10 min) visual stimulation. VEP plasticity was computed by subtracting premodulation VEP amplitudes from postmodulation amplitudes. Saliva samples for cortisol analysis were collected immediately after awakening in the morning, 30 min later, and at 12:30 PM, at follow-up. We found reduced VEP plasticity in BD type II, that impaired plasticity was present in the euthymic phases of the illness, and that VEP plasticity correlated negatively with depression severity. There was a positive association between VEP plasticity and saliva cortisol in controls, possibly reflecting an inverted U-shaped relationship between cortisol and synaptic plasticity. VEP plasticity exhibited moderate temporal stability over a period of 2.2 years. The present study provides additional evidence for impaired LTP-like cortical plasticity in BD type II. VEP plasticity is an accessible method, which may help elucidate the pathophysiological and clinical significance of synaptic dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Nathalia Zak
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Erlend Bøen
- 0000 0004 0512 8628grid.413684.cDepartment of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Birgitte Boye
- 0000 0004 0389 8485grid.55325.34Section of Psychosocial Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Department of Behavioural Sciences in Medicine, University of Oslo, Oslo, Norway
| | - Trine R. Waage
- 0000 0004 1936 8921grid.5510.1Department of Psychology, University of Oslo, Oslo, Norway
| | - Espen Dietrichs
- 0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Nina Harkestad
- 0000 0004 1936 7443grid.7914.bDepartment of Biological and Medical Pscyhology, University of Bergen, Bergen, Norway
| | - Ulrik F. Malt
- 0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Lars T. Westlye
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stein Andersson
- 0000 0004 1936 8921grid.5510.1Department of Psychology, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
19
|
Zhao J, Li Z, Cong Y, Zhang J, Tan M, Zhang H, Geng N, Li M, Yu W, Shan P. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget 2018; 8:33864-33871. [PMID: 27823981 PMCID: PMC5464918 DOI: 10.18632/oncotarget.13060] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) acts as a kind of widely-applied and non-invasive method in the intervention of some neurological disorders. This prospective, randomized, double-blind, placebo-controlled trial investigates the effect of rTMS on 30 cases of Alzheimer’s disease (AD) participants, who were classified into mild and moderate groups. Neuropsychological tests were carried out using the AD Assessment Scale-cognitive subscale (ADAS-cog), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and World Health Organization University of California-Los Angeles, Auditory Verbal Learning Test (WHO-UCLA AVLT) before, immediately after, and 6 weeks after the intervention. In this work, data from 30 AD patients revealed that there was no obvious interaction effect of time-by-group. The ADAS-cog, MMSE and WHO-UCLA AVLT score in the rTMS group was significantly improved compared with baselines at 6 weeks after treatment (all p<0.05). Meanwhile, MoCA scores were also obviously ameliorated in the mild AD patients with rTMS. Besides, subgroup analysis showed that the effect of rTMS on the memory and language of mild AD patients was superior to those of moderate AD patients. In conclusion, our findings suggested that repetitive transcranial magnetic stimulation improves cognitive function, memory and language level of AD patients, especially in the mild stage of AD. Thus, rTMS can be recommended as a promising adjuvant therapy combined with cholinesterase inhibitors at the mild stage of AD patients.
Collapse
Affiliation(s)
- Junwu Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Yannan Cong
- Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Ming Tan
- Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Haixia Zhang
- Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Na Geng
- Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Wenwen Yu
- Department of Clinical Medicine (Neurology), Weifang Medical University, Weifang, Shandong, China
| | - Peiyan Shan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Kumar S, Zomorrodi R, Ghazala Z, Goodman MS, Blumberger DM, Cheam A, Fischer C, Daskalakis ZJ, Mulsant BH, Pollock BG, Rajji TK. Extent of Dorsolateral Prefrontal Cortex Plasticity and Its Association With Working Memory in Patients With Alzheimer Disease. JAMA Psychiatry 2017; 74:1266-1274. [PMID: 29071355 PMCID: PMC6583382 DOI: 10.1001/jamapsychiatry.2017.3292] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The extent of dorsolateral prefrontal cortex (DLPFC) plasticity in Alzheimer disease (AD) and its association with working memory are not known. OBJECTIVES To determine whether participants with AD had impaired DLPFC plasticity compared with healthy control participants, to compare working memory between participants with AD and controls, and to determine whether DLPFC plasticity was associated with working memory. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study included 32 participants with AD who were 65 years or older and met diagnostic criteria for dementia due to probable AD with a score of at least 17 on the Mini-Mental State Examination and 16 age-matched control participants. Participants were recruited from a university teaching hospital from May 2013 to October 2016. MAIN OUTCOMES AND MEASURES Plasticity of the DLPFC measured as potentiation of cortical-evoked activity using paired associative stimulation (a combination of peripheral nerve electrical stimulation and transcranial magnetic stimulation) combined with electroencephalography. Working memory was assessed with the n-back task (1- and 2-back) and measured using the A' statistic. RESULTS Among the 32 participants with AD, 17 were women and 15 were men (mean [SD] age, 76.3 [6.3] years); among the 16 controls, 8 were men and 8 were women (mean [SD] age, 76.4 [5.1] years). Participants with AD had impaired DLPFC plasticity (mean [SD] potentiation, 1.18 [0.25]) compared with controls (mean [SD] potentiation, 1.40 [0.35]; F1,44 = 5.90; P = .02; between-group comparison, Cohen d = 0.77; P = .01). Participants with AD also had impaired performances on the 1-back condition (mean [SD] A' = 0.47 [0.30]) compared with controls (mean [SD] A' = 0.96 [0.01]; Cohen d = 1.86; P < .001), with similar findings for participants with AD on the 2-back condition (mean [SD] A' = 0.29 [0.2]) compared with controls (mean [SD], A' = 0.85 [0.18]; Cohen d = 2.83; P < .001). Plasticity of DLPFC was positively associated with working memory performance on the 1-back A' (parameter estimate B [SE] = 0.32 [0.13]; standardized β = 0.29; P = .02) and 2-back A' (B [SE] = 0.43 [0.15]; β = 0.39; P = .006) across both groups after controlling for age, education, and attention. CONCLUSIONS AND RELEVANCE This study demonstrated impaired in vivo DLPFC plasticity in patients with AD. The findings support the use of DLPFC plasticity as a measure of DLPFC function and a potential treatment target to enhance DLPFC function and working memory in patients with AD.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada
| | - Zaid Ghazala
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Michelle S. Goodman
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Amay Cheam
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada
| | - Corinne Fischer
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Keenan Research Centre for Biomedical Research, the Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
| | - Zafiris J. Daskalakis
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G. Pollock
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K. Rajji
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, Toronto, Ontario, Canada,Campbell Family Research Institute, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Sidhu SK, Pourmajidian M, Opie GM, Semmler JG. Increasing motor cortex plasticity with spaced paired associative stimulation at different intervals in older adults. Eur J Neurosci 2017; 46:2674-2683. [PMID: 28965371 DOI: 10.1111/ejn.13729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/01/2022]
Abstract
The ability of priming non-invasive brain stimulation (NIBS) to modulate neuroplasticity induction (i.e. metaplasticity) within primary motor cortex (M1) may be altered in older adults. Previous studies in young subjects suggest that consecutive NIBS protocols interact in a time-dependent manner and involve homoeostatic metaplasticity mechanisms. This was investigated in older adults by assessing the response to consecutive blocks of paired-associative stimulation (PAS) separated by different inter-PAS intervals (IPIs). Fifteen older (62-82 years) subjects participated in four sessions, with each session involving two PAS blocks separated by IPIs of 10 (IPI10 ) or 30 (IPI30 ) mins. For each IPI, the first (priming) PAS block was either PASLTP (N20 latency + 2 ms) or PASLTD (N20 latency - 10 ms), while the second (test) PAS block was always PASLTP . Changes in M1 excitability were assessed by recording motor evoked potentials from a muscle of the right hand. For both IPIs, the response produced by PASLTD -primed PASLTP was significantly greater than the response produced by PASLTP -primed PASLTP . Furthermore, the effects of PASLTD priming on PASLTP were significantly greater for IPI30 . These findings suggest that priming PAS can increase plasticity induction in older adults, and this occurs through mechanisms involving homoeostatic metaplasticity. They also demonstrate that the timing between priming and test NIBS is a crucial determinant of this effect, with a 30-min interval being most effective. Providing a 30-min delay between priming NIBS and motor training may improve the efficacy of NIBS in augmenting motor performance and learning in the elderly.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - Maryam Pourmajidian
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Chae KS, Kim YH. Potential Impact of Geomagnetic Field in Transcranial Magnetic Stimulation for the Treatment of Neurodegenerative Diseases. Front Hum Neurosci 2017; 11:478. [PMID: 29021752 PMCID: PMC5623677 DOI: 10.3389/fnhum.2017.00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
Throughout the long history of various therapeutic trials of transcranial magnetic stimulation (TMS), some TMS protocols have been reported to be clearly effective in the treatment of neurodegenerative diseases. Despite promising results from repetitive TMS (rTMS) using low frequency electromagnetic fields (EMFs) for neurodegenerative diseases, the low reproducibility has hampered the clinical applications of rTMS. Here, based on the notion of radical pair mechanism explaining magnetoreception in living organisms, we propose a new perspective that rTMS with controlled geomagnetic field (rTMS-GMF) can be an efficient and reproducible therapeutic approach for neurodegenerative diseases. In addition, combined consideration of imprinted GMF and/or EMFs in patients’ earlier life may augment the potential efficacy of the rTMS-GMF. The investigation of this approach is intriguing and may have a high impact on the technical suitability and clinical application of the rTMS-GMF in the near future.
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology Education, Kyungpook National University, Daegu, South Korea.,Department of Nanoscience & Nanotechnology, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Yong-Hwan Kim
- Department of Biological Sciences, Neuroscience Program, Delaware State University, Dover, DE, United States
| |
Collapse
|
23
|
Dinkelbach L, Brambilla M, Manenti R, Brem AK. Non-invasive brain stimulation in Parkinson’s disease: Exploiting crossroads of cognition and mood. Neurosci Biobehav Rev 2017; 75:407-418. [DOI: 10.1016/j.neubiorev.2017.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
|
24
|
Abstract
This chapter is intended as a primer to the most widely used neuroimaging methods available in the prediction, diagnosis and monitoring of the neurodegenerative diseases. We describe the imaging methods that allow us to examine brain structure, function and pathology and investigate neurodegenerative mechanisms in vivo. We describe methods to interrogate brain structure with magnetic resonance imaging (MRI), and brain function with molecular imaging, functional MRI and electro- and magneto-encephalography. We highlight the major neuroimaging advances, including brain stimulation and connectomics, which have brought new insights into a wide range of neurodegenerative diseases and describe some of the challenges in imaging clinical populations. Finally, we discuss the future of neuroimaging in neurodegenerative disease and its potential for generating predictive, diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Michele Veldsman
- Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Natalia Egorova
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
25
|
Sykes M, Matheson NA, Brownjohn PW, Tang AD, Rodger J, Shemmell JBH, Reynolds JNJ. Differences in Motor Evoked Potentials Induced in Rats by Transcranial Magnetic Stimulation under Two Separate Anesthetics: Implications for Plasticity Studies. Front Neural Circuits 2016; 10:80. [PMID: 27766073 PMCID: PMC5052269 DOI: 10.3389/fncir.2016.00080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an anesthetic and in interpreting results during prolonged TMS recording.
Collapse
Affiliation(s)
- Matthew Sykes
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; Department of Anatomy, University of OtagoDunedin, New Zealand; Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western AustraliaPerth, WA, Australia
| | - Natalie A Matheson
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; Department of Anatomy, University of OtagoDunedin, New Zealand
| | - Philip W Brownjohn
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; School of Physical Education, Sport and Exercise Sciences, University of OtagoDunedin, New Zealand
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Perth, WA, Australia
| | - Jonathan B H Shemmell
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; School of Physical Education, Sport and Exercise Sciences, University of OtagoDunedin, New Zealand
| | - John N J Reynolds
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; Department of Anatomy, University of OtagoDunedin, New Zealand
| |
Collapse
|
26
|
Brennan S, McLoughlin DM, O'Connell R, Bogue J, O'Connor S, McHugh C, Glennon M. Anodal transcranial direct current stimulation of the left dorsolateral prefrontal cortex enhances emotion recognition in depressed patients and controls. J Clin Exp Neuropsychol 2016; 39:384-395. [PMID: 27662113 DOI: 10.1080/13803395.2016.1230595] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) can enhance a range of neuropsychological functions but its efficacy in addressing clinically significant emotion recognition deficits associated with depression is largely untested. METHOD A randomized crossover placebo controlled study was used to investigate the effects of tDCS over the left dorsolateral prefrontal cortex (L-DLPFC) on a range of neuropsychological variables associated with depression as well as neural activity in the associated brain region. A series of computerized tests was administered to clinical (n = 17) and control groups (n = 20) during sham and anodal (1.5 mA) stimulation. RESULTS Anodal tDCS led to a significant main effect for overall emotion recognition (p = .02), with a significant improvement in the control group (p = .04). Recognition of disgust was significantly greater in the clinical group (p = .01). Recognition of anger was significantly improved for the clinical group (p = .04) during anodal stimulation. Differences between groups for each of the six emotions at varying levels of expression found that at 40% during anodal stimulation, happy recognition significantly improved for the clinical group (p = .01). Anger recognition at 80% during anodal stimulation significantly improved for the clinical group (p = .02). These improvements were observed in the absence of any change in psychomotor speed or trail making ability during anodal stimulation. Working memory significantly improved during anodal stimulation for the clinical group but not for controls (p = .03). CONCLUSIONS The tentative findings of this study indicate that tDCS can have a neuromodulatory effect on a range of neuropsychological variables. However, it is clear that there was a wide variation in responses to tDCS and that individual difference and different approaches to testing and stimulation have a significant impact on final outcomes. Nonetheless, tDCS remains a promising tool for future neuropsychological research.
Collapse
Affiliation(s)
- Sean Brennan
- a Department of Psychology , National University of Ireland , Galway , Ireland
| | - Declan M McLoughlin
- b Department of Psychiatry, St. Patricks University Hospital , Trinity College Dublin , Dublin , Ireland
| | - Redmond O'Connell
- c Department of Psychology , Trinity College Dublin , Dublin , Ireland
| | - John Bogue
- a Department of Psychology , National University of Ireland , Galway , Ireland
| | - Stephanie O'Connor
- b Department of Psychiatry, St. Patricks University Hospital , Trinity College Dublin , Dublin , Ireland
| | - Caroline McHugh
- b Department of Psychiatry, St. Patricks University Hospital , Trinity College Dublin , Dublin , Ireland
| | - Mark Glennon
- a Department of Psychology , National University of Ireland , Galway , Ireland
| |
Collapse
|
27
|
Trebbastoni A, Pichiorri F, D’Antonio F, Campanelli A, Onesti E, Ceccanti M, de Lena C, Inghilleri M. Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease: Results from a 4-year Prospective Cohort Study. Front Aging Neurosci 2016; 7:253. [PMID: 26793103 PMCID: PMC4709411 DOI: 10.3389/fnagi.2015.00253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD). MATERIALS AND METHODS Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120% of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time. RESULTS Thirty-five aMCI subjects completed the study; 60% of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51). DISCUSSION aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.
Collapse
Affiliation(s)
| | - Floriana Pichiorri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
- Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia – Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabrizia D’Antonio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | | | - Emanuela Onesti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marco Ceccanti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Carlo de Lena
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Maurizio Inghilleri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Goldsworthy MR, Vallence AM, Hodyl NA, Semmler JG, Pitcher JB, Ridding MC. Probing changes in corticospinal excitability following theta burst stimulation of the human primary motor cortex. Clin Neurophysiol 2016; 127:740-747. [DOI: 10.1016/j.clinph.2015.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/19/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
29
|
Héroux ME, Taylor JL, Gandevia SC. The Use and Abuse of Transcranial Magnetic Stimulation to Modulate Corticospinal Excitability in Humans. PLoS One 2015; 10:e0144151. [PMID: 26629998 PMCID: PMC4668054 DOI: 10.1371/journal.pone.0144151] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/13/2015] [Indexed: 11/18/2022] Open
Abstract
The magnitude and direction of reported physiological effects induced using transcranial magnetic stimulation (TMS) to modulate human motor cortical excitability have proven difficult to replicate routinely. We conducted an online survey on the prevalence and possible causes of these reproducibility issues. A total of 153 researchers were identified via their publications and invited to complete an anonymous internet-based survey that asked about their experience trying to reproduce published findings for various TMS protocols. The prevalence of questionable research practices known to contribute to low reproducibility was also determined. We received 47 completed surveys from researchers with an average of 16.4 published papers (95% CI 10.8-22.0) that used TMS to modulate motor cortical excitability. Respondents also had a mean of 4.0 (2.5-5.7) relevant completed studies that would never be published. Across a range of TMS protocols, 45-60% of respondents found similar results to those in the original publications; the other respondents were able to reproduce the original effects only sometimes or not at all. Only 20% of respondents used formal power calculations to determine study sample sizes. Others relied on previously published studies (25%), personal experience (24%) or flexible post-hoc criteria (41%). Approximately 44% of respondents knew researchers who engaged in questionable research practices (range 30–81%), yet only 18% admitted to engaging in them (range 6–38%) [corrected]. These practices included screening subjects to find those that respond in a desired way to a TMS protocol, selectively reporting results and rejecting data based on a gut feeling. In a sample of 56 published papers that were inspected, not a single questionable research practice was reported. Our survey revealed that approximately 50% of researchers are unable to reproduce published TMS effects. Researchers need to start increasing study sample size and eliminating--or at least reporting--questionable research practices in order to make the outcomes of TMS research reproducible.
Collapse
Affiliation(s)
- Martin E. Héroux
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Randwick, NSW, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Randwick, NSW, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Randwick, NSW, Australia
- * E-mail:
| |
Collapse
|
30
|
Labruna L, Jamil A, Fresnoza S, Batsikadze G, Kuo MF, Vanderschelden B, Ivry RB, Nitsche MA. Efficacy of Anodal Transcranial Direct Current Stimulation is Related to Sensitivity to Transcranial Magnetic Stimulation. Brain Stimul 2015; 9:8-15. [PMID: 26493498 DOI: 10.1016/j.brs.2015.08.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 07/21/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has become an important non-invasive brain stimulation tool for basic human brain physiology and cognitive neuroscience, with potential applications in cognitive and motor rehabilitation. To date, tDCS studies have employed a fixed stimulation level, without considering the impact of individual anatomy and physiology on the efficacy of the stimulation. This approach contrasts with the standard procedure for transcranial magnetic stimulation (TMS) where stimulation levels are usually tailored on an individual basis. OBJECTIVE/HYPOTHESIS The present study tests whether the efficacy of tDCS-induced changes in corticospinal excitability varies as a function of individual differences in sensitivity to TMS. METHODS We performed an archival review to examine the relationship between the TMS intensity required to induce 1 mV motor-evoked potentials (MEPs) and the efficacy of (fixed-intensity) tDCS over the primary motor cortex (M1). For the latter, we examined tDCS-induced changes in corticospinal excitability, operationalized by comparing MEPs before and after anodal or cathodal tDCS. For comparison, we performed a similar analysis on data sets in which MEPs had been obtained before and after paired associative stimulation (PAS), a non-invasive brain stimulation technique in which the stimulation intensity is adjusted on an individual basis. RESULTS MEPs were enhanced following anodal tDCS. This effect was larger in participants more sensitive to TMS as compared to those less sensitive to TMS, with sensitivity defined as the TMS intensity required to produce MEPs amplitudes of the size of 1 mV. While MEPs were attenuated following cathodal tDCS, the magnitude of this attenuation was not related to TMS sensitivity nor was there a relationship between TMS sensitivity and responsiveness to PAS. CONCLUSION Accounting for variation in individual sensitivity to non-invasive brain stimulation may enhance the utility of tDCS as a tool for understanding brain-behavior interactions and as a method for clinical interventions.
Collapse
Affiliation(s)
- Ludovica Labruna
- Department of Psychology, University of California, Berkeley, California, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.
| | - Asif Jamil
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Shane Fresnoza
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Giorgi Batsikadze
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Min-Fang Kuo
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen, Germany
| | | | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, California, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen, Germany; Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Cerebellar Continuous Theta Burst Stimulation in Essential Tremor. THE CEREBELLUM 2014; 14:133-41. [DOI: 10.1007/s12311-014-0621-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Balan PF, Gerits A, Vanduffel W. A practical application of text mining to literature on cognitive rehabilitation and enhancement through neurostimulation. Front Syst Neurosci 2014; 8:182. [PMID: 25309356 PMCID: PMC4176459 DOI: 10.3389/fnsys.2014.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/08/2014] [Indexed: 11/29/2022] Open
Abstract
The exponential growth in publications represents a major challenge for researchers. Many scientific domains, including neuroscience, are not yet fully engaged in exploiting large bodies of publications. In this paper, we promote the idea to partially automate the processing of scientific documents, specifically using text mining (TM), to efficiently review big corpora of publications. The “cognitive advantage” given by TM is mainly related to the automatic extraction of relevant trends from corpora of literature, otherwise impossible to analyze in short periods of time. Specifically, the benefits of TM are increased speed, quality and reproducibility of text processing, boosted by rapid updates of the results. First, we selected a set of TM-tools that allow user-friendly approaches of the scientific literature, and which could serve as a guide for researchers willing to incorporate TM in their work. Second, we used these TM-tools to obtain basic insights into the relevant literature on cognitive rehabilitation (CR) and cognitive enhancement (CE) using transcranial magnetic stimulation (TMS). TM readily extracted the diversity of TMS applications in CR and CE from vast corpora of publications, automatically retrieving trends already described in published reviews. TMS emerged as one of the important non-invasive tools that can both improve cognitive and motor functions in numerous neurological diseases and induce modulations/enhancements of many fundamental brain functions. TM also revealed trends in big corpora of publications by extracting occurrence frequency and relationships of particular subtopics. Moreover, we showed that CR and CE share research topics, both aiming to increase the brain's capacity to process information, thus supporting their integration in a larger perspective. Methodologically, despite limitations of a simple user-friendly approach, TM served well the reviewing process.
Collapse
Affiliation(s)
- Puiu F Balan
- Laboratory for Neuro-and Psychophysiology, Katholieke Universiteit Leuven Medical School Leuven, Belgium
| | - Annelies Gerits
- Laboratory for Neuro-and Psychophysiology, Katholieke Universiteit Leuven Medical School Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro-and Psychophysiology, Katholieke Universiteit Leuven Medical School Leuven, Belgium ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Charlestown, MA, USA ; Department of Radiology, Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
33
|
A plastic brain for a changing environment. Cortex 2014; 58:248-50. [DOI: 10.1016/j.cortex.2014.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 02/01/2023]
|
34
|
Abstract
In primates, the functional connectivity of adult primary visual cortex is susceptible to be modified by sensory training during perceptual learning. It is widely held that this type of neural plasticity might involve mechanisms like long-term potentiation (LTP) and long-term depression (LTD). NMDAR-dependent forms of LTP and LTD are particularly attractive because in rodents they can be induced in a Hebbian manner by near coincidental presynaptic and postsynaptic firing, in a paradigm termed spike timing-dependent plasticity (STDP). These fundamental properties of LTP and LTD, Hebbian induction and NMDAR dependence, have not been examined in primate cortex. Here we demonstrate these properties in the primary visual cortex of the rhesus macaque (Macaca mulatta), and also show that, like in rodents, STDP is gated by neuromodulators. These findings indicate that the cellular principles governing cortical plasticity are conserved across mammalian species, further validating the use of rodents as a model system.
Collapse
|