1
|
Zhou L, Wu B, Qin B, Gao F, Li W, Hu H, Zhu Q, Qian Z. Cortico-muscular coherence of time-frequency and spatial characteristics under movement observation, movement execution, and movement imagery. Cogn Neurodyn 2024; 18:1079-1096. [PMID: 39553842 PMCID: PMC11561224 DOI: 10.1007/s11571-023-09970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 11/19/2024] Open
Abstract
Studies show that movement observation (MO), movement imagery (MI), or movement execution (ME) based brain-computer interface systems are promising in promoting the rehabilitation and reorganization of damaged motor function. This study was aimed to explore and compare the motor function rehabilitation mechanism among MO, MI, and ME. 64-channel electroencephalogram and 4-channel electromyogram data were collected from 39 healthy participants (25 males, 14 females; 18-23 years old) during MO, ME, and MI. We analyzed and compared the inter-cortical, inter-muscular, cortico-muscular, and spatial coherence under MO, ME, and MI. Under MO, ME, and MI, cortico-muscular coherence was strongest at the beta-lh band, which means the beta frequency band for cortical signals and the lh frequency band for muscular signals. 56.25-96.88% of the coherence coefficients were significantly larger than 0.5 (ps < 0.05) at the beta-lh band. MO and ME had a contralateral advantage in the spatial coherence between cortex and muscle, while MI had an ipsilateral advantage in the spatial coherence between cortex and muscle. Our results show that the cortico-muscular beta-lh band plays a critical role in the synchronous coupling between cortex and muscle. Also, our findings suggest that the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and premotor cortex (PMC) are the specific regions of MO, ME, and MI. However, their pathways of regulating muscles are different under MO, ME, and MI. This study is important for better understanding the motor function rehabilitation mechanism in MO, MI, and ME.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Biao Wu
- Electronic Information Department, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Haixu Hu
- Sports Training Academy, Nanjing Sport Institute, Nanjing, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| |
Collapse
|
2
|
Bonnal J, Ozsancak C, Prieur F, Auzou P. Video mirror feedback induces more extensive brain activation compared to the mirror box: an fNIRS study in healthy adults. J Neuroeng Rehabil 2024; 21:78. [PMID: 38745322 PMCID: PMC11092069 DOI: 10.1186/s12984-024-01374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION NCT04738851.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France.
- CIAMS, Université Paris-Saclay, Orsay Cedex, 91405, France.
- CIAMS, Université d'Orléans, Orléans, 45067, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France
- LI2RSO, Université d'Orléans, Orléans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, Orsay Cedex, 91405, France
- CIAMS, Université d'Orléans, Orléans, 45067, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France
- LI2RSO, Université d'Orléans, Orléans, France
| |
Collapse
|
3
|
Nuara A, Bazzini MC, Cardellicchio P, Scalona E, De Marco D, Rizzolatti G, Fabbri-Destro M, Avanzini P. The value of corticospinal excitability and intracortical inhibition in predicting motor skill improvement driven by action observation. Neuroimage 2023; 266:119825. [PMID: 36543266 DOI: 10.1016/j.neuroimage.2022.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
The observation of other's actions represents an essential element for the acquisition of motor skills. While action observation is known to induce changes in the excitability of the motor cortices, whether such modulations may explain the amount of motor improvement driven by action observation training (AOT) remains to be addressed. Using transcranial magnetic stimulation (TMS), we first assessed in 41 volunteers the effect of action observation on corticospinal excitability, intracortical inhibition, and transcallosal inhibition. Subsequently, half of the participants (AOT-group) were asked to observe and then execute a right-hand dexterity task, while the controls had to observe a no-action video before practicing the same task. AOT participants showed greater performance improvement relative to controls. More importantly, the amount of improvement in the AOT group was predicted by the amplitude of corticospinal modulation during action observation and, even more, by the amount of intracortical inhibition induced by action observation. These relations were specific for the AOT group, while the same patterns were not found in controls. Taken together, our findings demonstrate that the efficacy of AOT in promoting motor learning is rooted in the capacity of action observation to modulate the trainee's motor system excitability, especially its intracortical inhibition. Our study not only enriches the picture of the neurophysiological effects induced by action observation onto the observer's motor excitability, but linking them to the efficacy of AOT, it also paves the way for the development of models predicting the outcome of training procedures based on the observation of other's actions.
Collapse
Affiliation(s)
- Arturo Nuara
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy.
| | | | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Emilia Scalona
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università degli studi di Brescia, Italia
| | - Doriana De Marco
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy
| | | | | | - Pietro Avanzini
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
| |
Collapse
|
4
|
Zschorlich VR, Behrendt F, de Lussanet MHE. Multimodal Sensorimotor Integration of Visual and Kinaesthetic Afferents Modulates Motor Circuits in Humans. Brain Sci 2021; 11:brainsci11020187. [PMID: 33546384 PMCID: PMC7913510 DOI: 10.3390/brainsci11020187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Optimal motor control requires the effective integration of multi-modal information. Visual information of movement performed by others even enhances potentials in the upper motor neurons through the mirror-neuron system. On the other hand, it is known that motor control is intimately associated with afferent proprioceptive information. Kinaesthetic information is also generated by passive, external-driven movements. In the context of sensory integration, it is an important question how such passive kinaesthetic information and visually perceived movements are integrated. We studied the effects of visual and kinaesthetic information in combination, as well as isolated, on sensorimotor integration, compared to a control condition. For this, we measured the change in the excitability of the motor cortex (M1) using low-intensity Transcranial magnetic stimulation (TMS). We hypothesised that both visual motoneurons and kinaesthetic motoneurons enhance the excitability of motor responses. We found that passive wrist movements increase the motor excitability, suggesting that kinaesthetic motoneurons do exist. The kinaesthetic influence on the motor threshold was even stronger than the visual information. Moreover, the simultaneous visual and passive kinaesthetic information increased the cortical excitability more than each of them independently. Thus, for the first time, we found evidence for the integration of passive kinaesthetic- and visual-sensory stimuli.
Collapse
Affiliation(s)
- Volker R. Zschorlich
- Department of Movement Science, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
- Correspondence:
| | - Frank Behrendt
- Reha Rheinfelden, Research Department, Salinenstrasse 98, CH-4310 Rheinfelden, Switzerland;
| | - Marc H. E. de Lussanet
- Department of Movement Science, and OCC Center for Cognitive and Behavioral Neuroscience, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany;
| |
Collapse
|
5
|
Tuna Z, Oskay D, Algin O, Koçak OM. Cortical motor areas show different reorganizational changes in adult patients with brachial plexus birth injury (BPBI). Int J Dev Neurosci 2020; 80:389-395. [PMID: 32416040 DOI: 10.1002/jdn.10037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Brachial plexus birth injury (BPBI) may cause permanent disability. It is recently thought to result from the (mal)adaptive reorganizational central nervous system problems. METHODS In this study, adult patients with BPBI and age-matched healthy controls were compared for the cortical activity during action observation by functional magnetic resonance imaging (fMRI). RESULTS The cortical activity in patients was significantly weaker than in the control group (p < .05). Areas of difference were middle temporal gyrus, premotor area, and inferior parietal lobule. The signal change in these areas was significantly lower in the patient group (p < .05). CONCLUSIONS This study showed that the cortical activity in the associative motor regions was weaker in the patients while no primary region showed any difference. The results were concluded that there is a diversity in the neuroplastic changes between primary and associative motor areas. Clinically, neurorehabilitative interventions should be planned based on this diversity.
Collapse
Affiliation(s)
- Zeynep Tuna
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Gazi University, Ankara, Turkey
| | - Deran Oskay
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Gazi University, Ankara, Turkey
| | - Oktay Algin
- Department of Radiology, Atatürk Education and Research Hospital, Ankara, Turkey
| | - Orhan Murat Koçak
- Faculty of Medicine, Department of Psychiatry, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
6
|
Amoruso L, Finisguerra A. Low or High-Level Motor Coding? The Role of Stimulus Complexity. Front Hum Neurosci 2019; 13:332. [PMID: 31680900 PMCID: PMC6798151 DOI: 10.3389/fnhum.2019.00332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces activity in the onlooker's motor system. In light of the muscle specificity and time-locked mirroring nature of the effect, this motor resonance has been traditionally viewed as an inner automatic replica of the observed movement. Notably, studies highlighting this aspect have classically considered movement in isolation (i.e., using non-realistic stimuli such as snapshots of hands detached from background). However, a few recent studies accounting for the role of contextual cues, motivational states, and social factors, have challenged this view by showing that motor resonance is not completely impervious to top-down modulations. A debate is still present. We reasoned that motor resonance reflects the inner replica of the observed movement only when its modulation is assessed during the observation of movements in isolation. Conversely, the presence of top-down modulations of motor resonance emerges when other high-level factors (i.e., contextual cues, past experience, social, and motivational states) are taken into account. Here, we attempt to lay out current TMS studies assessing this issue and discuss the results in terms of their potential to favor the inner replica or the top-down modulation hypothesis. In doing so, we seek to shed light on this actual debate and suggest specific avenues for future research, highlighting the need for a more ecological approach when studying motor resonance phenomenon.
Collapse
Affiliation(s)
- Lucia Amoruso
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
7
|
Oh H, Braun AR, Reggia JA, Gentili RJ. Fronto-parietal mirror neuron system modeling: Visuospatial transformations support imitation learning independently of imitator perspective. Hum Mov Sci 2019; 65:S0167-9457(17)30942-9. [DOI: 10.1016/j.humov.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022]
|