1
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Diffusion Tensor Tractography Studies on Recovery Mechanisms of Aphasia in Stroke Patients: A Narrative Mini-Review. Healthcare (Basel) 2022; 10:healthcare10101927. [PMID: 36292374 PMCID: PMC9601675 DOI: 10.3390/healthcare10101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Aphasia is a common and serious clinical feature of stroke. Various neural tracts are known to be involved in language processing. Diffusion tensor tractography (DTT) appears to be an appropriate imaging technique for the elucidation of the recovery mechanisms of aphasia in the language-related neural tracts in stroke patients. In this article, twelve previous DTT-based studies on the recovery mechanisms of aphasia in stroke were reviewed. We classified the twelve studies into the following three categories according to the recovery mechanisms: recovery via the neural tracts in the dominant hemisphere (eight studies), via transcallosal fibers (two studies), and via the neural tracts in the non-dominant hemisphere (two studies). Although there are various neural tracts for language processing, eight of the ten studies focused only on the role of the arcuate fasciculus (AF) in the recovery process. Consequently, it appears from the studies that only one recovery mechanism of aphasia via the restoration of the integrity of the injured AF in the dominant hemisphere was clearly demonstrated. However, because various neural tracts are involved in language processing, there could be other mechanisms that have not yet been elucidated. Therefore, further original studies involving a larger number of patients with aphasia in stroke should be encouraged forthwith. Further studies involving various lesion locations and severity levels of injuries to the language-related neural tracts are also necessary because the recovery mechanisms of aphasia in stroke could be dependent on these factors.
Collapse
|
3
|
Ivanova MV, Zhong A, Turken A, Baldo JV, Dronkers NF. Functional Contributions of the Arcuate Fasciculus to Language Processing. Front Hum Neurosci 2021; 15:672665. [PMID: 34248526 PMCID: PMC8267805 DOI: 10.3389/fnhum.2021.672665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022] Open
Abstract
Current evidence strongly suggests that the arcuate fasciculus (AF) is critical for language, from spontaneous speech and word retrieval to repetition and comprehension abilities. However, to further pinpoint its unique and differential role in language, its anatomy needs to be explored in greater detail and its contribution to language processing beyond that of known cortical language areas must be established. We address this in a comprehensive evaluation of the specific functional role of the AF in a well-characterized cohort of individuals with chronic aphasia (n = 33) following left hemisphere stroke. To evaluate macro- and microstructural integrity of the AF, tractography based on the constrained spherical deconvolution model was performed. The AF in the left and right hemispheres were then manually reconstructed using a modified 3-segment model (Catani et al., 2005), and a modified 2-segment model (Glasser and Rilling, 2008). The normalized volume and a measure of microstructural integrity of the long and the posterior segments of the AF were significantly correlated with language indices while controlling for gender and lesion volume. Specific contributions of AF segments to language while accounting for the role of specific cortical language areas – inferior frontal, inferior parietal, and posterior temporal – were tested using multiple regression analyses. Involvement of the following tract segments in the left hemisphere in language processing beyond the contribution of cortical areas was demonstrated: the long segment of the AF contributed to naming abilities; anterior segment – to fluency and naming; the posterior segment – to comprehension. The results highlight the important contributions of the AF fiber pathways to language impairments beyond that of known cortical language areas. At the same time, no clear role of the right hemisphere AF tracts in language processing could be ascertained. In sum, our findings lend support to the broader role of the left AF in language processing, with particular emphasis on comprehension and naming, and point to the posterior segment of this tract as being most crucial for supporting residual language abilities.
Collapse
Affiliation(s)
- Maria V Ivanova
- Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.,Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Allison Zhong
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States.,School of Medicine, New York Medical College, Valhalla, NY, United States
| | - And Turken
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Juliana V Baldo
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Nina F Dronkers
- Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.,Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States.,Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Kroliczak G, Buchwald M, Kleka P, Klichowski M, Potok W, Nowik AM, Randerath J, Piper BJ. Manual praxis and language-production networks, and their links to handedness. Cortex 2021; 140:110-127. [PMID: 33975084 DOI: 10.1016/j.cortex.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
While Liepmann was one of the first researchers to consider a relationship between skilled manual actions (praxis) and language for tasks performed "freely from memory", his primary focus was on the relations between the organization of praxis and left-hemisphere dominance. Subsequent attempts to apply his apraxia model to all cases he studied - including his first patient, a "non-pure right-hander" treated as an exception - left the praxis-handedness issue unresolved. Modern neuropsychological and recent neuroimaging evidence either showed closer associations of praxis and language, than between handedness and any of these two functions, or focused on their dissociations. Yet, present-day developments in neuroimaging and statistics allow us to overcome the limitations of the earlier work on praxis-language-handedness links, and to better quantify their interrelationships. Using functional magnetic resonance imaging (fMRI), we studied tool use pantomimes and subvocal word generation in 125 participants, including righthanders (NRH = 52), ambidextrous individuals (mixedhanders; NMH = 31), and lefthanders (NLH = 42). Laterality indices were calculated both in two critical cytoarchitectonic maps, and 180 multi-modal parcellations of the human cerebral cortex, using voxel count and signal intensity, and the most relevant regions of interest and their networks were further analyzed. We found that atypical organization of praxis was present in all handedness groups (RH = 25.0%, MH = 22.6%; LH = 45.2%), and was about two and a half times as common as atypical organization of language (RH = 3.8%; MH = 6.5%; LH = 26.2%), contingent on ROI selection/LI-calculation method. Despite strong associations of praxis and language, regardless of handedness and typicality, dissociations of atypically represented praxis from typical left-lateralized language were common (~20% of cases), whereas the inverse dissociations of atypically represented language from typical left-lateralized praxis were very rare (in ~2.5% of all cases). The consequences of the existence of such different phenotypes for theoretical accounts of manual praxis, and its links to language and handedness are modeled and discussed.
Collapse
Affiliation(s)
- Gregory Kroliczak
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland.
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland
| | - Pawel Kleka
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Weronika Potok
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Agnieszka M Nowik
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Jennifer Randerath
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Brian J Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
5
|
Di Cristofori A, Basso G, de Laurentis C, Mauri I, Sirtori MA, Ferrarese C, Isella V, Giussani C. Perspectives on (A)symmetry of Arcuate Fasciculus. A Short Review About Anatomy, Tractography and TMS for Arcuate Fasciculus Reconstruction in Planning Surgery for Gliomas in Language Areas. Front Neurol 2021; 12:639822. [PMID: 33643213 PMCID: PMC7902861 DOI: 10.3389/fneur.2021.639822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gliomas are brain tumors that are treated with surgical resection. Prognosis is influenced by the extent of resection and postoperative neurological status. As consequence, given the extreme interindividual and interhemispheric variability of subcortical white matter (WM) surgical planning requires to be patient's tailored. According to the “connectionist model,” there is a huge variability among both cortical areas and subcortical WM in all human beings, and it is known that brain is able to reorganize itself and to adapt to WM lesions. Brain magnetic resonance imaging diffusion tensor imaging (DTI) tractography allows visualization of WM bundles. Nowadays DTI tractography is widely available in the clinical setting for presurgical planning. Arcuate fasciculus (AF) is a long WM bundle that connects the Broca's and Wernicke's regions with a complex anatomical architecture and important role in language functions. Thus, its preservation is important for the postoperative outcome, and DTI tractography is usually performed for planning surgery within the language-dominant hemisphere. High variability among individuals and an asymmetrical pattern has been reported for this WM bundle. However, the functional relevance of AF in the contralateral non-dominant hemisphere in case of tumoral or surgical lesion of the language-dominant AF is unclear. This review focuses on AF anatomy with special attention to its asymmetry in both normal and pathological conditions and how it may be explored with preoperative tools for planning surgery on gliomas in language areas. Based on the findings available in literature, we finally speculate about the potential role of preoperative evaluation of the WM contralateral to the surgical site.
Collapse
Affiliation(s)
| | - Gianpaolo Basso
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neuroradiology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Camilla de Laurentis
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Mauri
- Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | | | - Carlo Ferrarese
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Valeria Isella
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Carlo Giussani
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Wang H, Li S, Dai Y, Yu Q. Correlation Between Speech Repetition Function and the Arcuate Fasciculus in the Dominant Hemisphere Detected by Diffusion Tensor Imaging Tractography in Stroke Patients with Aphasia. Med Sci Monit 2020; 26:e928702. [PMID: 33277460 PMCID: PMC7724775 DOI: 10.12659/msm.928702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Repetition disorder can be used as an important criterion for aphasia classification, and damaged arcuate fasciculus in the dominate hemisphere has been reported to be closely related to repetition disorder, but the underlying neurological mechanism remains unclear. Material/Methods Fifteen stroke patients with poststroke aphasia and 9 healthy controls were included in the study. The value of fractional anisotropy (FA) in the dominate arcuate fasciculus in stroke patients and healthy controls were measured using DTI. We also assessed their repetition dysfunction with the Aphasia Battery of Chinese (ABC) assessment and calculated the correlation between the FA values in the dominate arcuate fasciculus and ABC scores of word repetition and sentence repetition. Results There was a moderate correlation between the total score of repetition evaluation and the FA value of injured arcuate fasciculus in the dominant hemisphere (r=0.551, P=0.033). We found no correlation between the score of word repetition and the FA value of injured arcuate fasciculus in the dominant hemisphere (r=0.330, P=0.230), but there was a strong correlation between the score of sentence repetition and the FA value of injured arcuate fasciculus in the dominant hemisphere (r=0.795, P≤0.001). Conclusions We found that unintegrated left arcuate fasciculus might be related to the repetition dysfunction after stroke, especially sentence repetition deficit, which suggests that sentence repetition evaluation could be used to indicate the integrity of the arcuate fasciculus in the dominant hemisphere after stroke.
Collapse
Affiliation(s)
- Hong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland).,Department of Rehabilitation Medicine, Integrated Traditional Chinese and Western Medicine Hospital Affiliated of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Shuqing Li
- Department of Rehabilitation Medicine, Dongguan People's Hospital, Dongguan, Guangdong, China (mainland)
| | - Yanhong Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Qiwei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
7
|
Garcea FE, Greene C, Grafton ST, Buxbaum LJ. Structural Disconnection of the Tool Use Network after Left Hemisphere Stroke Predicts Limb Apraxia Severity. Cereb Cortex Commun 2020; 1:tgaa035. [PMID: 33134927 PMCID: PMC7573742 DOI: 10.1093/texcom/tgaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Producing a tool use gesture is a complex process drawing upon the integration of stored knowledge of tools and their associated actions with sensory-motor mechanisms supporting the planning and control of hand and arm actions. Understanding how sensory-motor systems in parietal cortex interface with semantic representations of actions and objects in the temporal lobe remains a critical issue and is hypothesized to be a key determinant of the severity of limb apraxia, a deficit in producing skilled action after left hemisphere stroke. We used voxel-based and connectome-based lesion-symptom mapping with data from 57 left hemisphere stroke participants to assess the lesion sites and structural disconnection patterns associated with poor tool use gesturing. We found that structural disconnection among the left inferior parietal lobule, lateral and ventral temporal cortices, and middle and superior frontal gyri predicted the severity of tool use gesturing performance. Control analyses demonstrated that reductions in right-hand grip strength were associated with motor system disconnection, largely bypassing regions supporting tool use gesturing. Our findings provide evidence that limb apraxia may arise, in part, from a disconnection between conceptual representations in the temporal lobe and mechanisms enabling skilled action production in the inferior parietal lobule.
Collapse
Affiliation(s)
- Frank E Garcea
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clint Greene
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93016, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93016, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|