1
|
Wittmann M, Droit-Volet S. Subjective Time in Ordinary and Non-ordinary States of Consciousness: How Interoceptive Feelings Inform Us About the Passage of Time. Curr Top Behav Neurosci 2024. [PMID: 39485647 DOI: 10.1007/7854_2024_520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In accordance with Bud (A.D.) Craig's theories, we maintain that ascending physiological signals in their temporal dynamics are a necessary prerequisite for human time judgments. Functional neuroimaging and psychophysiological evidence have increasingly demonstrated that the subjective judgment of time is based on the physical and emotional self. The psychological literature reveals how emotions and related body feelings shape subjective time. Empirical studies of altered states of consciousness, namely meditative states, are also of prime interest as the perception of the physical state is strongly modulated and thereby affects the subjective experience of time. Our conclusion is that the sense of time is strongly embodied.
Collapse
Affiliation(s)
- Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany.
| | | |
Collapse
|
2
|
Teghil A. Interoceptive and Bodily Processing in Prospective and Retrospective Timing. Curr Top Behav Neurosci 2024. [PMID: 39436628 DOI: 10.1007/7854_2024_516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This chapter reviews some directions along which Craig's proposal of subjective time as emergent from interoceptive and bodily dynamics allows to frame recent findings on prospective and retrospective time processing. Behavioral and neuroimaging evidence from prospective timing studies demonstrates that an interoceptive-insular system may support the development of a primary representation of time in the context of large-scale networks involved in duration processing. Studies showing a tight link between episodic memory and interoceptive, emotional, and sensorimotor states further provide insights on processes supporting retrospective timing. These lines of evidence show that acknowledging its dependence on bodily states is most likely a crucial step toward a mechanistic understanding of time perception.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Jin J, Zheng Q, Liu H, Feng K, Bai Y, Ni G. Musical experience enhances time discrimination: Evidence from cortical responses. Ann N Y Acad Sci 2024; 1536:167-176. [PMID: 38829709 DOI: 10.1111/nyas.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Time discrimination, a critical aspect of auditory perception, is influenced by numerous factors. Previous research has suggested that musical experience can restructure the brain, thereby enhancing time discrimination. However, this phenomenon remains underexplored. In this study, we seek to elucidate the enhancing effect of musical experience on time discrimination, utilizing both behavioral and electroencephalogram methodologies. Additionally, we aim to explore, through brain connectivity analysis, the role of increased connectivity in brain regions associated with auditory perception as a potential contributory factor to time discrimination induced by musical experience. The results show that the music-experienced group demonstrated higher behavioral accuracy, shorter reaction time, and shorter P3 and mismatch response latencies as compared to the control group. Furthermore, the music-experienced group had higher connectivity in the left temporal lobe. In summary, our research underscores the positive impact of musical experience on time discrimination and suggests that enhanced connectivity in brain regions linked to auditory perception may be responsible for this enhancement.
Collapse
Affiliation(s)
- Jiaqi Jin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hongxing Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Kunyun Feng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yanru Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Teghil A, Boccia M. Brain connectivity patterns associated with individual differences in the access to experience-near personal semantics: a resting-state fMRI study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:87-99. [PMID: 38200283 PMCID: PMC10827898 DOI: 10.3758/s13415-023-01149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
It has been proposed that a continuum of specificity exists between episodic and semantic autobiographical memory. Personal semantics have been theorized to situate intermediately on this continuum, with more "experience-near" personal semantics (enPS) closer to the episodic end. We used individual differences in behavior as a model to investigate brain networks associated with the access to episodic autobiographical (EAM) and enPS information, assessing the relation between performance in the EAM and enPS conditions of the Autobiographical Fluency Task (AFT) and intrinsic brain connectivity. Results of an intrinsic connectivity contrast analysis showed that the global connectivity of two clusters in the left and right posterior cingulate cortex (PCC) was predicted by performance in the enPS conditions. Moreover, enPS scores predicted the connectivity strength of the right PCC with the bilateral anterior hippocampus (aHC), anterior middle temporal gyrus (aMTG) and medial orbitofrontal cortex, and the left aMTG and PCC. enPS scores also predicted the connectivity strength of the left PCC with the bilateral HC and MTG. The network highlighted involves parts of the core and of the dorsal medial subsystems of the Default Mode Network, in line with the proposal that enPS represents an intermediate entity between episodic and semantic memory.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
5
|
Teghil A, Boccia M, Di Vita A, Zazzaro G, Sepe Monti M, Trebbastoni A, Talarico G, Campanelli A, Bruno G, Guariglia C, de Lena C, D'Antonio F. Multidimensional assessment of time perception along the continuum of Alzheimer's Disease and evidence of alterations in subjective cognitive decline. Sci Rep 2023; 13:22117. [PMID: 38092802 PMCID: PMC10719320 DOI: 10.1038/s41598-023-49222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Timing alterations occur in Alzheimer's disease (AD), even in early stages (mild cognitive impairment, MCI). Moreover, a stage named subjective cognitive decline (SCD), in which individuals perceive a change in cognitive performance not revealed by neuropsychological tests, has been identified as a preclinical phase of AD. However, no study to date has investigated different dimensions of time processing along the continuum from physiological to pathological aging, and whether timing alterations occur in SCD. Here a sample of participants with SCD, MCI, AD and healthy controls (HC) performed tasks assessing prospective duration estimation, production, reproduction, implicit temporal learning in conditions dependent from external cues (externally-cued learning, ECL) or independent from external cues (internally-based learning, IBL), retrospective duration estimation, the subjective experience of time and the temporal collocation of events. AD patients performed worse than HC and SCD in prospective timing, and in collocating events in time. The subjective experience of time did not differ between groups. Concerning temporal learning, AD performed worse in ECL than in IBL, whereas SCD performed worse in IBL than in ECL. SCD, MCI and AD patients all showed errors greater than HC in retrospective duration estimation. Results point to implicit temporal learning in externally-cued conditions and retrospective time estimation as possible early markers of cognitive decline.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Zazzaro
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Micaela Sepe Monti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carlo de Lena
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Fabrizia D'Antonio
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Boccia M, Raimo S, Di Vita A, Teghil A, Palermo L. Combining the Inner Self with the Map of the Body: Evidence for White Matter Contribution to the Relation Between Interoceptive Sensibility and Nonaction-oriented Body Representation. Neuroscience 2023; 521:157-165. [PMID: 37142183 DOI: 10.1016/j.neuroscience.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Very recent studies on healthy individuals suggest that changes in the sensibility toward internal bodily sensations across the lifespan affect the ability to mentally represent one's body, in terms of action-oriented and nonaction-oriented body representation (BR). Little is known about the neural correlates of this relation. Here we fill this gap using the neuropsychological model provided by focal brain damage. Sixty-five patients with unilateral stroke (20 with left and 45 with right brain damage, LBD and RBD, respectively) participated in this study. Both action-oriented BR and nonaction-oriented BR were tested; interoceptive sensibility was assessed as well. First, we tested whether interoceptive sensibility predicted action-oriented BR and nonaction-oriented BR, in RBD and LBD separately. Then, a track-wise hodological lesion-deficit analysis was performed in a subsample of twenty-four patients to test the brain network supporting this relation. We found that interoceptive sensibility predicted the performances in the task tapping nonaction-oriented BR. The higher interoceptive sensibility was, the worse patients performed. This relation was associated with the disconnection probability of the corticospinal tract, the fronto-insular tract, and the pons. We expand over the previous findings on healthy individuals, supporting the idea that high levels of interoceptive sensibility negatively affect BR. Specific frontal projections and frontal u-shaped tracts may play a pivotal role in such an effect, likely affecting the development of a first-order representation of the self within the brainstem autoregulatory centers and posterior insula and of a second-order representation of the self within the anterior insula and higher-order prefrontal areas.
Collapse
Affiliation(s)
- Maddalena Boccia
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Simona Raimo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alice Teghil
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Liana Palermo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
7
|
Teghil A, D'Antonio F, Di Vita A, Guariglia C, Boccia M. Temporal learning in the suprasecond range: insights from cognitive style. PSYCHOLOGICAL RESEARCH 2023; 87:568-582. [PMID: 35344099 PMCID: PMC9928821 DOI: 10.1007/s00426-022-01667-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The acquisition of information on the timing of events or actions (temporal learning) occurs in both the subsecond and suprasecond range. However, although relevant differences between participants have been reported in temporal learning, the role of dimensions of individual variability in affecting performance in such tasks is still unclear. Here we investigated this issue, assessing the effect of field-dependent/independent cognitive style on temporal learning in the suprasecond range. Since different mechanisms mediate timing when a temporal representation is self-generated, and when it depends on an external referent, temporal learning was assessed in two conditions. Participants observed a stimulus across six repetitions and reproduced it. Unbeknownst to them, in an internally-based learning (IBL) condition, the stimulus duration was fixed within a trial, although the number of events defining it varied; in an externally-cued learning (ECL) condition, the stimulus was defined by the same number of events within each trial, although its duration varied. The effect of the reproduction modality was also assessed (motor vs. perceptual). Error scores were higher in IBL compared to ECL; the reverse was true for variability. Field-independent individuals performed better than field-dependent ones only in IBL, as further confirmed by correlation analyses. Findings provide evidence that differences in dimensions of variability in high-level cognitive functioning, such as field dependence/independence, significantly affect temporal learning in the suprasecond range, and that this effect depends on the type of temporal representation fostered by the specific task demands.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Fabrizia D'Antonio
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
Teghil A, Bonavita A, Procida F, Giove F, Boccia M. Intrinsic hippocampal connectivity is associated with individual differences in retrospective duration processing. Brain Struct Funct 2023; 228:687-695. [PMID: 36695891 PMCID: PMC9944733 DOI: 10.1007/s00429-023-02612-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The estimation of incidentally encoded durations of time intervals (retrospective duration processing) is thought to rely on the retrieval of contextual information associated with a sequence of events, automatically encoded in medial temporal lobe regions. "Time cells" have been described in the hippocampus (HC), encoding the temporal progression of events and their duration. However, whether the HC supports explicit retrospective duration judgments in humans, and which neural dynamics are involved, is still poorly understood. Here we used resting-state fMRI to test the relation between variations in intrinsic connectivity patterns of the HC, and individual differences in retrospective duration processing, assessed using a novel task involving the presentation of ecological stimuli. Results showed that retrospective duration discrimination performance predicted variations in the intrinsic connectivity of the bilateral HC with the right precentral gyrus; follow-up exploratory analyses suggested a role of the CA1 and CA4/DG subfields in driving the observed pattern. Findings provide insights on neural networks associated with implicit processing of durations in the second range.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy. .,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Alessia Bonavita
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy ,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy ,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Federica Procida
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Federico Giove
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy ,MARBILab, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy ,Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Khoshnoud S, Alvarez Igarzábal F, Wittmann M. Brain–Heart Interaction and the Experience of Flow While Playing a Video Game. Front Hum Neurosci 2022; 16:819834. [PMID: 35572002 PMCID: PMC9096496 DOI: 10.3389/fnhum.2022.819834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The flow state – an experience of complete absorption in an activity – is linked with less self-referential processing and increased arousal. We used the heart-evoked potential (HEP), an index representing brain–heart interaction, as well as indices of peripheral physiology to assess the state of flow in individuals playing a video game. 22 gamers and 21 non-gamers played the video game Thumper for 25 min while their brain and cardiorespiratory signals were simultaneously recorded. The more participants were absorbed in the game, the less they thought about time and the faster time passed subjectively. On the cortical level, the fronto-central HEP amplitude was significantly lower while playing the game compared to resting states before and after the game, reflecting less self-referential processing while playing. This HEP effect corresponded with lower activity during gameplay in brain regions contributing to interoceptive processing. The HEP amplitude predicted the level of absorption in the game. While the HEP amplitude was overall lower during the gaming session than during the resting states, within the gaming session the amplitude of HEP was positively associated with absorption. Since higher absorption was related to higher performance in the game, the higher HEP in more absorbed individuals reflects more efficient brain–heart interaction, which is necessary for efficient game play. On the physiological level, a higher level of flow was associated with increased overall sympathetic activity and less inhibited parasympathetic activity toward the end of the game. These results are building blocks for future neurophysiological assessments of flow.
Collapse
Affiliation(s)
- Shiva Khoshnoud
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, University of Tübingen, Tübingen, Germany
- *Correspondence: Shiva Khoshnoud,
| | | | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| |
Collapse
|
10
|
Wittmann M. Psychologie und Neurobiologie des Zeiterlebens: Körper, Gefühle und das Selbst. PSYCHOTHERAPEUT 2022. [DOI: 10.1007/s00278-022-00585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Teghil A, Di Vita A, Pietranelli V, Matano A, Boccia M. Duration reproduction in regular and irregular contexts after unilateral brain damage: Evidence from voxel-based lesion-symptom mapping and atlas-based hodological analysis. Neuropsychologia 2020; 147:107577. [PMID: 32758553 DOI: 10.1016/j.neuropsychologia.2020.107577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
It has been proposed that not completely overlapping brain networks support interval timing depending on whether or not an external, predictable temporal cue is provided during the task, aiding time estimation. Here we tested this hypothesis in a neuropsychological study, using both a topological approach - through voxel-based lesion-symptom mapping (VLSM), that assesses the relation between continuous behavioral scores and lesion information on a voxel-by-voxel basis - and a hodological approach, using an atlas-based tractography. A group of patients with unilateral focal brain lesions and their matched controls performed a duration reproduction task assessing time processing in two conditions, namely with regularly spaced stimuli during encoding and reproduction (Regular condition), and with irregularly spaced stimuli during the same task (Irregular condition). VLSM analyses showed that scores in the two conditions were associated with lesions involving partly separable clusters of voxels, with lower performance only in the Irregular condition being related to lesions involving the right insular cortex. Performance in both conditions correlated with the probability of disconnection of the right frontal superior longitudinal tract, and of the superior and middle branches of the right superior longitudinal fasciculus. These findings suggest that the dissociation between timing in regular and irregular contexts is not complete, since performance in both conditions relies on the integrity of a common suprasecond timing network. Furthermore, they are consistent with the hypothesis that tracking time without the aid of external cues selectively relies on the integration of psychophysiological changes in the right insula.
Collapse
Affiliation(s)
- Alice Teghil
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Antonella Di Vita
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | | | | | - Maddalena Boccia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|