1
|
Wischnewski M, Edwards L, Revill KP, Drake D, Hobbs G, Buetefisch CM. Intensity-Dependent Effects of Low-Frequency Subthreshold rTMS on Primary Motor Cortex Excitability and Interhemispheric Inhibition in Elderly Participants: A Randomized Trial. Neurorehabil Neural Repair 2024:15459683241292615. [PMID: 39462433 DOI: 10.1177/15459683241292615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BACKGROUND Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) protocols targeting primary motor cortex (M1) are used in rehabilitation of neurological diseases for their therapeutic potential, safety, and tolerability. Although lower intensity LF-rTMS can modulate M1 neurophysiology, results are variable, and a systematic assessment of its dose effect is lacking. OBJECTIVES To determine the dose-response of LF-rTMS on stimulated and non-stimulated M1. METHODS In a sham-controlled randomized double-blind crossover study the effect of LF-TMS protocols were determined in 20 right-handed older healthy participants. In 3 sessions, 1 Hz rTMS at 80% (rTMS80), 90% (rTMS90) of motor threshold or sham stimulation were applied to left upper extremity M1. Outcome measures were curve parameters of the stimulus-response curve (maximum motor evoked potential [MEPMAX], slope and the intensity to evoke 50% MEPMAX), short-interval intracortical inhibition (SICI), and interhemispheric inhibition (IHI). RESULTS Within LF-rTMS sessions, rTMS90, increased MEPMAX in the stimulated M1. Furthermore, rTMS90, increased the slope in the non-stimulated M1. LF-rTMS effects on SICI were dependent on the participants' baseline SICI, hemisphere, and intensity of conditioning pulse. Finally, rTMS90 increased whereas rTMS80 decreased IHI, for both IHI directions. These changes were dependent on baseline IHI and hemisphere and were no longer significant when baseline IHI was accounted for. CONCLUSIONS Intensity of subthreshold LF-rTMS has differential effects on excitation and inhibition of stimulated and non-stimulated M1. The effects were small and were only demonstrated within the LF-rTMS sessions but were not different when compared to sham. rTMS related changes in SICI and IHI were dependent on baseline level. CLINICALTRIALS.GOV IDENTIFIER NCT02544503, NCT01726218.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Neurology, Emory University, School of Medicine, Atlanta, GA, USA
- Department of Experimental Psychology, University of Groningen, Groningen, The Netherlands
| | - Lauren Edwards
- Department of Neurology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Kate P Revill
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Daniel Drake
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Gerald Hobbs
- Department of Statistics, West Virginia University, Morgantown, WV, USA
| | - Cathrin M Buetefisch
- Department of Neurology, Emory University, School of Medicine, Atlanta, GA, USA
- Departments of Neurology, Rehabilitation Medicine and Radiology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Tang HY, Liao X, Li P, Zhang P, Yao J, Xing Y, Zhao X, He X, Zan J, Li G. Efficacy of high-frequency rTMS in the treatment of gait disorder and cognition in patients with Parkinson's disease based on wearable devices and eye-movement assessments. Front Aging Neurosci 2024; 16:1480171. [PMID: 39478696 PMCID: PMC11521881 DOI: 10.3389/fnagi.2024.1480171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Background Postural instability and gait disorder and cognitive dysfunction are common symptoms of Parkinson's disease (PD). Scale assessment is frequently used in the clinic to evaluate PD, but this technique is limited by its lack of sensitivity to changes in disease progression and its difficulty in capturing subtle movements and changes in cognitive function. It is currently believed that high-frequency repetitive transcranial magnetic stimulation (rTMS) can improve motor and cognitive dysfunction in patients with PD, though it remains controversial. Therefore, it is imperative to monitor and dynamically identify changes in postural instability and gait disorder, as well as those in cognitive dysfunction, in PD to develop targeted interventions. In this study, we observed the effect of high-frequency rTMS on gait disorders and cognitive functions in patients with PD by comparing data from wearable devices and eye-tracking devices before and after treatment. Methods A total of 159 patients with PD were included in this study. A GYENNO MATRIX wearable gait analyzer was used to monitor the objective gait data (including the timed up-and-go, narrow-track, and turning tests), the Eyeknow eye-tracking evaluation system was used to monitor the patient's eye movement cognition data (including the smooth pursuit, pro-saccade, and anti-saccade tests), and gait and cognitive function-related scales, including the Tinetti Balance Scale, Tinetti Gait Scale, Berg Balance Scale, Mini-Mental State Examination, and Montreal Cognitive Assessment (MoCA), were evaluated at the same time before and after high-frequency rTMS treatment. Results The mean step length, mean stride velocity, stride length, and mean step frequency of patients with PD in the timed up-and-go test all increased compared with those before rTMS treatment, whereas the mean stride time and double support decreased. In the narrow-track test, the mean stride velocity increased and the mean stride time decreased. In the turning test, the turning left duration, turning right duration, mean duration, mean number of steps, and average step duration decreased, while the mean angular velocity increased after rTMS treatment. Compared with those before rTMS treatment, the latency period of patients with PD in overlapping saccades decreased, the completion time of overlapping saccades decreased, and the average saccade speed increased. In the anti-saccade test, the completion time decreased and the average saccade speed increased after rTMS treatment. Compared with those before rTMS treatment, the Tinetti Balance Scale, Tinetti Gait Scale, Berg Balance Scale, Mini-Mental State Examination, and MoCA scores increased, and the MoCA sub-items improved in terms of visual-spatial and executive function, language, abstraction, delayed recall, and orientation after rTMS treatment. Conclusion High-frequency rTMS may be an effective therapy for improving gait disorders and cognitive functions in patients with PD.
Collapse
Affiliation(s)
- Hong Yin Tang
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Third People’s Hospital of Baiyun District, Guangzhou, Guangdong, China
| | - XiangLian Liao
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Li
- Department of Anesthesiology and Surgery, Liwan Central Hospital of Guangzhou, Guangzhou, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Yao
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yilan Xing
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xin Zhao
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xuying He
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Guihua Li
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Mottaz A, Savic B, Allaman L, Guggisberg AG. Neural correlates of motor learning: Network communication versus local oscillations. Netw Neurosci 2024; 8:714-733. [PMID: 39355447 PMCID: PMC11340994 DOI: 10.1162/netn_a_00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/18/2024] [Indexed: 10/03/2024] Open
Abstract
Learning new motor skills through training, also termed motor learning, is central for everyday life. Current training strategies recommend intensive task-repetitions aimed at inducing local activation of motor areas, associated with changes in oscillation amplitudes ("event-related power") during training. More recently, another neural mechanism was suggested to influence motor learning: modulation of functional connectivity (FC), that is, how much spatially separated brain regions communicate with each other before and during training. The goal of the present study was to compare the impact of these two neural processing types on motor learning. We measured EEG before, during, and after a finger-tapping task (FTT) in 20 healthy subjects. The results showed that training gain, long-term expertise (i.e., average motor performance), and consolidation were all predicted by whole-brain alpha- and beta-band FC at motor areas, striatum, and mediotemporal lobe (MTL). Local power changes during training did not predict any dependent variable. Thus, network dynamics seem more crucial than local activity for motor sequence learning, and training techniques should attempt to facilitate network interactions rather than local cortical activation.
Collapse
Affiliation(s)
- Anaïs Mottaz
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- SIB Text Mining Group, Swiss Institute of Bioinformatics, Carouge, Switzerland
- BiTeM Group, Information Sciences, HES-SO/HEG, Carouge, Switzerland
| | - Branislav Savic
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Leslie Allaman
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
| | - Adrian G. Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
4
|
Gao X, Ni Y, Hu W, Wang G, He X. Comparative study about the therapeutic effect of cTBS and rTMS in the treatment of auditory verbal hallucinations in schizophrenia. Postgrad Med J 2024:qgae119. [PMID: 39295243 DOI: 10.1093/postmj/qgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVE This study aims to compare the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) and continuous theta-burst stimulation (cTBS) treatment in schizophrenia patients with auditory verbal hallucinations (AVHs). METHODS We enrolled 64 schizophrenia patients with AVHs who were treated with either rTMS (n = 32) or cTBS (n = 32), and we compared the clinical outcomes by evaluating parameters from motor evoked potentials, Positive and Negative Syndrome Scale (PANSS), Auditory Hallucination Rating Scale (AHRS), and MATRICS Consensus Cognitive Battery (MCCB), as well as the changes of serum neurotrophic factors before and after the treatment. RESULTS After the treatment, both treatments resulted in reduced PANSS scores, with the cTBS group showing more substantial symptom improvement across positive, negative, and general symptoms, highlighting the enhanced efficacy of cTBS. Cognitive functions assessed by MCCB also improved in both groups, with cTBS showing a generally higher therapeutic effect. Serum levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) increased following treatment in both groups, with a more notable increase after cTBS, while GABA and glutamate levels remained unchanged. Cardiovascular indices were unaffected by either treatment, suggesting no significant impact on cardiovascular health. CONCLUSIONS Our study found that both rTMS and cTBS treatment can exhibit therapeutic effects in the management of AVHs in patients with schizophrenia. However, cTBS treatment generally shows a higher therapeutic effect than rTMS treatment.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Psychiatry Department, The Third Hospital of Quzhou, No. 226 Baiyun North Avenue, Kecheng District, Quzhou, Zhejiang 324000, China
| | - Yanfei Ni
- Psychiatry Department, The Third Hospital of Quzhou, No. 226 Baiyun North Avenue, Kecheng District, Quzhou, Zhejiang 324000, China
| | - Weiming Hu
- Psychiatry Department, The Third Hospital of Quzhou, No. 226 Baiyun North Avenue, Kecheng District, Quzhou, Zhejiang 324000, China
| | - Guomin Wang
- Psychiatry Department, The Third Hospital of Quzhou, No. 226 Baiyun North Avenue, Kecheng District, Quzhou, Zhejiang 324000, China
| | - Xianyan He
- Psychiatry Department, The Third Hospital of Quzhou, No. 226 Baiyun North Avenue, Kecheng District, Quzhou, Zhejiang 324000, China
| |
Collapse
|
5
|
Connelly N, Welsby E, Lange B, Hordacre B. Virtual Reality Action Observation and Motor Imagery to Enhance Neuroplastic Capacity in the Human Motor Cortex: A Pilot Double-blind, Randomized Cross-over Trial. Neuroscience 2024; 549:92-100. [PMID: 38705350 DOI: 10.1016/j.neuroscience.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Neuroplasticity is important for learning, development and recovery from injury. Therapies that can upregulate neuroplasticity are therefore of interest across a range of fields. We developed a novel virtual reality action observation and motor imagery (VR-AOMI) intervention and evaluated whether it could enhance the efficacy of mechanisms of neuroplasticity in the human motor cortex of healthy adults. A secondary question was to explore predictors of the change in neuroplasticity following VR-AOMI. A pre-registered, pilot randomized controlled cross-over trial was performed. Twenty right-handed adults (13 females; mean age: 23.0 ± 4.53 years) completed two experimental conditions in separate sessions; VR-AOMI and control. We used intermittent theta burst stimulation (iTBS) to induce long term potentiation-like plasticity in the motor cortex and recorded motor evoked potentials at multiple timepoints as a measure of corticospinal excitability. The VR-AOMI task did not significantly increase the change in MEP amplitude following iTBS when compared to the control task (Group × Timepoint interaction p = 0.17). However, regression analysis identified the change in iTBS response following VR-AOMI was significantly predicted by the baseline iTBS response in the control task. Specifically, participants that did not exhibit the expected increase in MEP amplitude following iTBS in the control condition appear to have greater excitability following iTBS in the VR-AOMI condition (r = -0.72, p < 0.001). Engaging in VR-AOMI might enhance capacity for neuroplasticity in some people who typically do not respond to iTBS. VR-AOMI may prime the brain for enhanced neuroplasticity in this sub-group.
Collapse
Affiliation(s)
- Niamh Connelly
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ellana Welsby
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Belinda Lange
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
| |
Collapse
|
6
|
Eysel UT, Jancke D. Induction of excitatory brain state governs plastic functional changes in visual cortical topology. Brain Struct Funct 2024; 229:531-547. [PMID: 38041743 PMCID: PMC10978694 DOI: 10.1007/s00429-023-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Adult visual plasticity underlying local remodeling of the cortical circuitry in vivo appears to be associated with a spatiotemporal pattern of strongly increased spontaneous and evoked activity of populations of cells. Here we review and discuss pioneering work by us and others about principles of plasticity in the adult visual cortex, starting with our study which showed that a confined lesion in the cat retina causes increased excitability in the affected region in the primary visual cortex accompanied by fine-tuned restructuring of neuronal function. The underlying remodeling processes was further visualized with voltage-sensitive dye (VSD) imaging that allowed a direct tracking of retinal lesion-induced reorganization across horizontal cortical circuitries. Nowadays, application of noninvasive stimulation methods pursues the idea further of increased cortical excitability along with decreased inhibition as key factors for the induction of adult cortical plasticity. We used high-frequency transcranial magnetic stimulation (TMS), for the first time in combination with VSD optical imaging, and provided evidence that TMS-amplified excitability across large pools of neurons forms the basis for noninvasively targeting reorganization of orientation maps in the visual cortex. Our review has been compiled on the basis of these four own studies, which we discuss in the context of historical developments in the field of visual cortical plasticity and the current state of the literature. Overall, we suggest markers of LTP-like cortical changes at mesoscopic population level as a main driving force for the induction of visual plasticity in the adult. Elevations in excitability that predispose towards cortical plasticity are most likely a common property of all cortical modalities. Thus, interventions that increase cortical excitability are a promising starting point to drive perceptual and potentially motor learning in therapeutic applications.
Collapse
Affiliation(s)
- Ulf T Eysel
- Department of Neurophysiology, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
7
|
Schoisswohl S, Kanig C, Osnabruegge M, Agboada D, Langguth B, Rethwilm R, Hebel T, Abdelnaim MA, Mack W, Seiberl W, Kuder M, Schecklmann M. Monitoring Changes in TMS-Evoked EEG and EMG Activity During 1 Hz rTMS of the Healthy Motor Cortex. eNeuro 2024; 11:ENEURO.0309-23.2024. [PMID: 38565296 PMCID: PMC11015949 DOI: 10.1523/eneuro.0309-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 04/04/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique capable of inducing neuroplasticity as measured by changes in peripheral muscle electromyography (EMG) or electroencephalography (EEG) from pre-to-post stimulation. However, temporal courses of neuromodulation during ongoing rTMS are unclear. Monitoring cortical dynamics via TMS-evoked responses using EMG (motor-evoked potentials; MEPs) and EEG (transcranial-evoked potentials; TEPs) during rTMS might provide further essential insights into its mode of action - temporal course of potential modulations. The objective of this study was to first evaluate the validity of online rTMS-EEG and rTMS-EMG analyses, and second to scrutinize the temporal changes of TEPs and MEPs during rTMS. As rTMS is subject to high inter-individual effect variability, we aimed for single-subject analyses of EEG changes during rTMS. Ten healthy human participants were stimulated with 1,000 pulses of 1 Hz rTMS over the motor cortex, while EEG and EMG were recorded continuously. Validity of MEPs and TEPs measured during rTMS was assessed in sensor and source space. Electrophysiological changes during rTMS were evaluated with model fitting approaches on a group- and single-subject level. TEPs and MEPs appearance during rTMS was consistent with past findings of single pulse experiments. Heterogeneous temporal progressions, fluctuations or saturation effects of brain activity were observed during rTMS depending on the TEP component. Overall, global brain activity increased over the course of stimulation. Single-subject analysis revealed inter-individual temporal courses of global brain activity. The present findings are in favor of dose-response considerations and attempts in personalization of rTMS protocols.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
- Department of Human Sciences, Institute of Psychology, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Carolina Kanig
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
- Department of Human Sciences, Institute of Psychology, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Mirja Osnabruegge
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
- Department of Human Sciences, Institute of Psychology, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Desmond Agboada
- Department of Human Sciences, Institute of Psychology, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Roman Rethwilm
- Department of Human Sciences, Institute of Sport Science, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Mohamed A Abdelnaim
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Wolfgang Mack
- Department of Human Sciences, Institute of Psychology, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Wolfgang Seiberl
- Department of Human Sciences, Institute of Sport Science, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Manuel Kuder
- Department of Electrical Engineering, Universität der Bundeswehr München, 85579 Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Yassine IA, Shehata H, Hamdy S, Abdel-Naseer M, Hassan T, Sherbiny M, Magdy E, Elmazny A, Shalaby N, ElShebawy H. Effect of high frequency repetitive transcranial magnetic stimulation (rTMS) on the balance and the white matter integrity in patients with relapsing-remitting multiple sclerosis: A long-term follow-up study. Mult Scler Relat Disord 2024; 83:105471. [PMID: 38295628 DOI: 10.1016/j.msard.2024.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVES Repetitive Transcranial Magnetic Stimulation (rTMS) is considered as a safe and non-invasive developing technique used as a therapeutic method for patients with Relapsing-Remitting Multiple Sclerosis (RRMS) who suffer from disturbances in gait and balance. The aim of our study is to evaluate the long-term effect of high frequency rTMS as a therapeutic option for truncal ataxia in RRMS patients and to assess its impact on the integrity of the white matter (WMI), measured in the form of anisotropy metrics using diffusion tensor imaging (DTI). METHODS The study was conducted in two phases: phase I; a randomized, single-blind, sham-controlled phase and phase II was a 12 months longitudinal open-label prospective phase. Phase I of the trial involved the randomization of 43 patients with RRMS and truncal ataxia to either real (n = 20) or sham (n = 19) rTMS (2 participants from each treatment group were excluded from the study; one developed a relapse before treatment, 2 declined to participate, and one did not show up). Phase II involved providing 12 actual treatments cycles to all patients; each cycle length is 4 weeks, repeated four times on a trimonthly basis, forming a total of 48 sessions. DTI was used for assessment of the WMI. All patients performed DTI 3 times: Imaging sessions were conducted at the screening visit, at the end of phase I, and after the last session in phase II for the first, second and third sessions respectively. A figure-of-8-shape coil, employing rTMS protocol and located over the cerebellum, was used. rTMS protocol is formed of 20 trains formed of 50 stimuli with 20 s apart (5 Hz of 80 % of resting Motor Threshold "MT"). The Berg Balance Scale (BBS), Time up and go (TUG) test, and 10-m walk test (10MWT) were first evaluated at the start of each cycle and just after the final rTMS session. RESULTS The genuine rTMS group's 10MWT, TUG, and BBS showed substantial improvement (p < 0.01), which is continued to be improved throughout the study Timeline, with a significant difference observed following the final rTMS session (P< 0.001). A longitudinal increase in FA was observed in both the Cerebello-Thalamo-Cortical (CTC) and Cortico-Ponto-Cerebellar (CPC) bilateral, as indicated by means of Fractional Anisotropy (FA) measures (p < 0.05). CONCLUSION In ataxic RRMS patients, high frequency rTMS over the cerebellum has a long-term beneficial impact on both balance and WMI.
Collapse
Affiliation(s)
- I A Yassine
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - H Shehata
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - S Hamdy
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - T Hassan
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - E Magdy
- Police Hospitals, Cairo, Egypt
| | - A Elmazny
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - N Shalaby
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - H ElShebawy
- Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Low-frequency rTMS induces modifications in cortical structural connectivity - functional connectivity coupling in schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2024; 45:e26614. [PMID: 38375980 PMCID: PMC10878014 DOI: 10.1002/hbm.26614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Auditory verbal hallucinations (AVH) are distinctive clinical manifestations of schizophrenia. While low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in mitigating AVH, the precise mechanisms by which it operates remain obscure. This study aimed to investigate alternations in structural connectivity and functional connectivity (SC-FC) coupling among schizophrenia patients with AVH prior to and following treatment with 1 Hz rTMS that specifically targets the left temporoparietal junction. Initially, patients exhibited significantly reduced macroscopic whole brain level SC-FC coupling compared to healthy controls. Notably, SC-FC coupling increased significantly across multiple networks, including the somatomotor, dorsal attention, ventral attention, frontoparietal control, and default mode networks, following rTMS treatment. Significant alternations in SC-FC coupling were noted in critical nodes comprising the somatomotor network and the default mode network, such as the precentral gyrus and the ventromedial prefrontal cortex, respectively. The alternations in SC-FC coupling exhibited a correlation with the amelioration of clinical symptom. The results of our study illuminate the intricate relationship between white matter structures and neuronal activity in patients who are receiving low-frequency rTMS. This advances our understanding of the foundational mechanisms underlying rTMS treatment for AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Department of Radiology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chenxi Li
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Muzhen Guan
- Department of Mental HealthXi'an Medical CollegeXi'anChina
| | - Tian Zhang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Chaozong Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Zhongheng Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhujing Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Huaning Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Peng Fang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent PerceptionXi'anChina
| |
Collapse
|
11
|
Farrokhi MR, Salehi S, Nejabat N, Safdari M, Ramezani Abadeh H. Beneficial Effect of Repetitive Transcranial Magnetic Stimulation Combined With Physiotherapy After Cervical Spondylotic Myelopathy Surgery. J Clin Neurophysiol 2024; 41:182-187. [PMID: 35583400 DOI: 10.1097/wnp.0000000000000949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Cervical spondylotic myelopathy (CSM) is one of the most notable causes of spinal cord impairment among elderly people worldwide. Little is written about the influence of postoperative rehabilitation on recovery of function in patients with CSM. In this study, we assessed the combined effects of repetitive transcranial magnetic stimulation (rTMS) combined with physiotherapy and physiotherapy alone on motor and sensory improvement assessed after spinal cord decompression in patients with CSM. METHODS This prospective study comprised 52 patients with CSM; they were divided into two randomized groups after spinal cord decompression. The first group (group Ι) includes 26 patients, received a combination of rTMS and physiotherapy. The second group (group ΙΙ) of 26 patients underwent only physiotherapy. The neurologic assessment measures, including American Spinal Cord Injury Association score, modified Japanese Orthopaedic Association score, Ashworth scale, and Nurick grade, were recorded before and after rehabilitation interventions for each patient. RESULTS According to the neurologic assessment measures, physiotherapy with/without rTMS after surgical decompression corresponded to significant improvement of motor function ( P < 0. 01) without significant restoration of sensory function ( P > 0. 01). Recovery rates of motor function were significantly better in group Ι than in group ΙΙ ( P < 0. 01). There was no significant difference between two groups with respect to age ( P = 0.162) and sex ( P = 1.00). CONCLUSIONS Although physiotherapy with/without rTMS improves motor function recovery after CSM surgery, rTMS in combination with physiotherapy leads to a more rapid motor function recovery than physiotherapy alone.
Collapse
Affiliation(s)
- Majid R Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran; and
| | - Sina Salehi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Nejabat
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Safdari
- Department of Neurosurgery, Khatam-Al-Anbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
12
|
Di Lazzaro V, Ranieri F, Bączyk M, de Carvalho M, Dileone M, Dubbioso R, Fernandes S, Kozak G, Motolese F, Ziemann U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin Neurophysiol 2024; 158:114-136. [PMID: 38218077 DOI: 10.1016/j.clinph.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Królowej Jadwigi Street 27/39, 61-871 Poznań, Poland
| | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine-JLA, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal; Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Michele Dileone
- Faculty of Health Sciences, UCLM Talavera de la Reina, Toledo, Spain; Neurology Department, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Napoli, Italy
| | - Sofia Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016-Lisboa, Portugal
| | - Gabor Kozak
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Francesco Motolese
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Adu MK, Dias RDL, Agyapong B, Eboreime E, Sapara AO, Lawal MA, Chew C, Diamond Frost K, Li D, Flynn M, Hassan S, Saleh A, Sridharan S, White M, Agyapong VI. Repetitive Transcranial Magnetic Stimulation With and Without Text4Support for the Treatment of Resistant Depression: Protocol for a Patient-Centered Multicenter Randomized Controlled Pilot Trial. JMIR Res Protoc 2023; 12:e46830. [PMID: 38060308 PMCID: PMC10739251 DOI: 10.2196/46830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Treatment-resistant depression (TRD) is the inability of a patient with major depressive disorder (MDD) to accomplish or achieve remission after an adequate trial of antidepressant treatments. Several combinations and augmentation treatment strategies for TRD exist, including the use of repetitive transcranial magnetic stimulation (rTMS), and new therapeutic options are being introduced. Text4Support, a text message-based form of cognitive behavioral therapy that allows patients with MDD to receive daily supportive text messages for correcting or altering negative thought patterns through positive reinforcement, may be a useful augmentation treatment strategy for patients with TRD. It is however currently unknown if adding the Text4Support intervention will enhance the response of patients with TRD to rTMS treatment. OBJECTIVE This study aims to assess the initial comparative clinical effectiveness of rTMS with and without the Text4Support program as an innovative patient-centered intervention for the management of patients diagnosed with TRD. METHODS This study is a multicenter, prospective, parallel-design, 2-arm, rater-blinded randomized controlled pilot trial. The recruitment process is scheduled to last 12 months. It will involve active treatment for 6 weeks, observation, and a follow-up period of 6 months for participants in the study arms. In total, 200 participants diagnosed with TRD at rTMS care clinics in Edmonton, Alberta, and rTMS clinics in Halifax, Nova Scotia will be randomized to 1 of 2 treatment arms (rTMS sessions alone or rTMS sessions plus Text4Support intervention). Participants in each group will be made to complete evaluation measures at baseline, and 1, 3, and 6 months. The primary outcome measure will be the mean change in the scores of the Patient Health Questionnaire-9 (PHQ-9). The secondary outcome measures will involve the scores of the 7-item Generalized Anxiety Disorders Scale (GAD-7), Columbia-Suicide Severity Rating Scale (CSSRS), and World Health Organization-Five Well-Being Index (WHO-5). Patient data will be analyzed with descriptive statistics, repeated measures, and correlational analyses. Qualitative data will be analyzed using the thematic analysis framework. RESULTS The results of the study are expected to be available 18 months from the start of recruitment. We hypothesize that participants enrolled in the rTMS plus Text4Support intervention treatment arm of the study will achieve superior outcomes compared with the outcomes of participants enrolled in the rTMS alone arm. CONCLUSIONS The application of the combination of rTMS and Text4Support has not been investigated previously. Therefore, we hope that this study will provide a concrete base of data to evaluate the practical application and efficacy of using the novel combination of these 2 treatment modalities. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/46830.
Collapse
Affiliation(s)
- Medard Kofi Adu
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | | | - Belinda Agyapong
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ejemai Eboreime
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | | | - Mobolaji A Lawal
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Corina Chew
- Alberta Health Services, Addiction and Mental Health, Edmonton, AB, Canada
| | | | - Daniel Li
- Alberta Health Services, Addiction and Mental Health, Edmonton, AB, Canada
| | - Michael Flynn
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Nova Scotia Health Authority, Halifax, NS, Canada
| | - Sameh Hassan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Nova Scotia Health Authority, Halifax, NS, Canada
| | - Ahmed Saleh
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Nova Scotia Health Authority, Halifax, NS, Canada
| | - Sanjana Sridharan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Nova Scotia Health Authority, Halifax, NS, Canada
| | - Matt White
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Nova Scotia Health Authority, Halifax, NS, Canada
| | - Vincent Io Agyapong
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Nova Scotia Health Authority, Halifax, NS, Canada
| |
Collapse
|
14
|
Guan M, Xie Y, Li C, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Rich-club reorganization of white matter structural network in schizophrenia patients with auditory verbal hallucinations following 1 Hz rTMS treatment. Neuroimage Clin 2023; 40:103546. [PMID: 37988997 PMCID: PMC10701084 DOI: 10.1016/j.nicl.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The human brain comprises a large-scale structural network of regions and interregional pathways, including a selectively defined set of highly central and interconnected hub regions, often referred to as the "rich club", which may play a pivotal role in the integrative processes of the brain. A quintessential symptom of schizophrenia, auditory verbal hallucinations (AVH) have shown a decrease in severity following low-frequency repetitive transcranial magnetic stimulation (rTMS). However, the underlying mechanism of rTMS in treating AVH remains elusive. This study investigated the effect of low-frequency rTMS on the rich-club organization within the brain in patients diagnosed with schizophrenia who experience AVH using diffusion tensor imaging data. Through by constructing structural connectivity networks, we identified several critical rich hub nodes, which constituted a rich-club subnetwork, predominantly located in the prefrontal cortices. Notably, our findings revealed enhanced connection strength and density within the rich-club subnetwork following rTMS treatment. Furthermore, we found that the decreased connectivity within the subnetwork components, including the rich-club subnetwork, was notably enhanced in patients following rTMS treatment. In particular, the increased connectivity strength of the right median superior frontal gyrus, which functions as a critical local bridge, with the right postcentral gyrus exhibited a significant correlation with improvements in both positive symptoms and AVH. These findings provide valuable insights into the role of rTMS in inducing reorganizational changes within the rich-club structural network in schizophrenia and shed light on potential mechanisms through which rTMS may alleviate AVH.
Collapse
Affiliation(s)
- Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China.
| | - Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Szücs-Bencze L, Vékony T, Pesthy O, Szabó N, Kincses TZ, Turi Z, Nemeth D. Modulating Visuomotor Sequence Learning by Repetitive Transcranial Magnetic Stimulation: What Do We Know So Far? J Intell 2023; 11:201. [PMID: 37888433 PMCID: PMC10607545 DOI: 10.3390/jintelligence11100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Predictive processes and numerous cognitive, motor, and social skills depend heavily on sequence learning. The visuomotor Serial Reaction Time Task (SRTT) can measure this fundamental cognitive process. To comprehend the neural underpinnings of the SRTT, non-invasive brain stimulation stands out as one of the most effective methodologies. Nevertheless, a systematic list of considerations for the design of such interventional studies is currently lacking. To address this gap, this review aimed to investigate whether repetitive transcranial magnetic stimulation (rTMS) is a viable method of modulating visuomotor sequence learning and to identify the factors that mediate its efficacy. We systematically analyzed the eligible records (n = 17) that attempted to modulate the performance of the SRTT with rTMS. The purpose of the analysis was to determine how the following factors affected SRTT performance: (1) stimulated brain regions, (2) rTMS protocols, (3) stimulated hemisphere, (4) timing of the stimulation, (5) SRTT sequence properties, and (6) other methodological features. The primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) were found to be the most promising stimulation targets. Low-frequency protocols over M1 usually weaken performance, but the results are less consistent for the DLPFC. This review provides a comprehensive discussion about the behavioral effects of six factors that are crucial in designing future studies to modulate sequence learning with rTMS. Future studies may preferentially and synergistically combine functional neuroimaging with rTMS to adequately link the rTMS-induced network effects with behavioral findings, which are crucial to develop a unified cognitive model of visuomotor sequence learning.
Collapse
Affiliation(s)
- Laura Szücs-Bencze
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, 95 Boulevard Pinel, F-69500 Bron, France
| | - Orsolya Pesthy
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064 Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd Universiry, Izabella utca 46, H-1064 Budapest, Hungary
| | - Nikoletta Szabó
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
- Department of Radiology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Dezso Nemeth
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, 95 Boulevard Pinel, F-69500 Bron, France
- BML-NAP Research Group, Institute of Psychology & Institute of Cognitive Neuroscience and Psychology, ELTE Eötvös Loránd University & Research Centre for Natural Sciences, Damjanich utca 41, H-1072 Budapest, Hungary
| |
Collapse
|
17
|
Valiuliene G, Valiulis V, Zentelyte A, Dapsys K, Germanavicius A, Navakauskiene R. Anti-neuroinflammatory microRNA-146a-5p as a potential biomarker for neuronavigation-guided rTMS therapy success in medication resistant depression disorder. Biomed Pharmacother 2023; 166:115313. [PMID: 37572636 DOI: 10.1016/j.biopha.2023.115313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Treatment-resistant depression (TRD) is a challenging issue to address. Repetitive transcranial magnetic stimulation (rTMS) is commonly used but shows varying efficacy, necessitating a deeper understanding of depression physiology and rTMS mechanisms. Notably, an increasing amount of recent data has displayed the connection of TRD and its clinical outcome with chronic inflammatory processes. The current study included 19 TRD patients undergoing rTMS and 11 depressed patients responding to medication as a comparison group. We assessed therapeutic efficacy using MADRS, HAM-D-17, GAD-7, and PHQ-9 tests. Inflammatory markers, neurotrophins, and associated miRNAs were measured in patients blood serum before and during treatment. A control group of 18 healthy individuals provided baseline data. The results of our study showed significantly higher levels of pro-inflammatory interleukins-6 and - 8 in TRD patients compared to drug-responders, which also related to more severe symptoms before treatment. In addition, TRD patients, both before and during treatment, exhibited higher average blood serum concentrations of pro-inflammatory interleukin-18 and lower levels of anti-neuroinflammatory miR-146a-5p compared to healthy controls. We also observed that the expression of miR-16-5p, miR-93-5p, and especially miR-146a-5p correlated with clinical changes following rTMS. Our study confirmed that TRD patients possess a higher inflammatory status, while the anti-neuroinflammatory miR-146a-5p was demonstrated to have a considerable potential for predicting their rTMS treatment success.
Collapse
Affiliation(s)
- Giedre Valiuliene
- Vilnius University, Life Sciences Center, Institute of Biochemistry, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Vladas Valiulis
- Vilnius University, Life Sciences Center, Institute of Biochemistry, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; Republican Vilnius Psychiatric Hospital, Parko str. 21, LT-11205 Vilnius, Lithuania
| | - Aiste Zentelyte
- Vilnius University, Life Sciences Center, Institute of Biochemistry, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Kastytis Dapsys
- Vilnius University, Life Sciences Center, Institute of Biochemistry, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; Republican Vilnius Psychiatric Hospital, Parko str. 21, LT-11205 Vilnius, Lithuania
| | - Arunas Germanavicius
- Vilnius University, Life Sciences Center, Institute of Biochemistry, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; Republican Vilnius Psychiatric Hospital, Parko str. 21, LT-11205 Vilnius, Lithuania
| | - Ruta Navakauskiene
- Vilnius University, Life Sciences Center, Institute of Biochemistry, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
18
|
Kanig C, Osnabruegge M, Schwitzgebel F, Litschel K, Seiberl W, Mack W, Schoisswohl S, Schecklmann M. Retest reliability of repetitive transcranial magnetic stimulation over the healthy human motor cortex: a systematic review and meta-analysis. Front Hum Neurosci 2023; 17:1237713. [PMID: 37771347 PMCID: PMC10525715 DOI: 10.3389/fnhum.2023.1237713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Repetitive transcranial magnetic stimulation (rTMS) is used to induce long-lasting changes (aftereffects) in cortical excitability, which are often measured via single-pulse TMS (spTMS) over the motor cortex eliciting motor-evoked potentials (MEPs). rTMS includes various protocols, such as theta-burst stimulation (TBS), paired associative stimulation (PAS), and continuous rTMS with a fixed frequency. Nevertheless, subsequent aftereffects of rTMS are variable and seem to fail repeatability. We aimed to summarize standard rTMS procedures regarding their test-retest reliability. Hereby, we considered influencing factors such as the methodological quality of experiments and publication bias. Methods We conducted a literature search via PubMed in March 2023. The inclusion criteria were the application of rTMS, TBS, or PAS at least twice over the motor cortex of healthy subjects with measurements of MEPs via spTMS as a dependent variable. The exclusion criteria were measurements derived from the non-stimulated hemisphere, of non-hand muscles, and by electroencephalography only. We extracted test-retest reliability measures and aftereffects from the eligible studies. With the Rosenthal fail-safe N, funnel plot, and asymmetry test, we examined the publication bias and accounted for influential factors such as the methodological quality of experiments measured with a standardized checklist. Results A total of 15 studies that investigated test-retest reliability of rTMS protocols in a total of 291 subjects were identified. Reliability measures, i.e., Pearson's r and intraclass correlation coefficient (ICC) applicable from nine studies, were mainly in the small to moderate range with two experiments indicating good reliability of 20 Hz rTMS (r = 0.543) and iTBS (r = 0.55). The aftereffects of rTMS procedures seem to follow the heuristics of respective inhibition or facilitation, depending on the protocols' frequency, and application pattern. There was no indication of publication bias and the influence of methodological quality or other factors on the reliability of rTMS. Conclusion The reliability of rTMS appears to be in the small to moderate range overall. Due to a limited number of studies reporting test-retest reliability values and heterogeneity of dependent measures, we could not provide generalizable results. We could not identify any protocol as superior to the others.
Collapse
Affiliation(s)
- Carolina Kanig
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mirja Osnabruegge
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Florian Schwitzgebel
- Department of Electrical Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Karsten Litschel
- Department of Electrical Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Wolfgang Seiberl
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Wolfgang Mack
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Stefan Schoisswohl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Richter K, Kellner S, Licht C. rTMS in mental health disorders. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:943223. [PMID: 37577037 PMCID: PMC10417823 DOI: 10.3389/fnetp.2023.943223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2023] [Indexed: 08/15/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an innovative and non-invasive technique used in the diagnosis and treatment of psychiatric and neurological disorders. Repetitive TMS (rTMS) can modulate neuronal activity, neuroplasticity and arousal of the waking and sleeping brain, and, more generally, overall mental health. Numerous studies have examined the predictors of the efficacy of rTMS on clinical outcome variables in various psychiatric disorders. These predictors often encompass the stimulated brain region's location, electroencephalogram (EEG) activity patterns, potential morphological and neurophysiological anomalies, and individual patient's response to treatment. Most commonly, rTMS is used in awake patients with depression, catatonia, and tinnitus. Interestingly, rTMS has also shown promise in inducing slow-wave oscillations in insomnia patients, opening avenues for future research into the potential beneficial effects of these oscillations on reports of non-restorative sleep. Furthermore, neurophysiological measures emerge as potential, disease-specific biomarkers, aiding in predicting treatment response and monitoring post-treatment changes. The study posits the convergence of neurophysiological biomarkers and individually tailored rTMS treatments as a gateway to a new era in psychiatric care. The potential of rTMS to induce slow-wave activity also surfaces as a significant contribution to personalized treatment approaches. Further investigations are called for to validate the imaging and electrophysiological biomarkers associated with rTMS. In conclusion, the potential for rTMS to significantly redefine treatment strategies through personalized approaches could enhance the outcomes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kneginja Richter
- Paracelsus Medical Private University, Nuremberg, Germany
- Department for Social Sciences, Georg Simon Ohm University of Applied Sciences Nuremberg, Nuremberg, Germany
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Stefanie Kellner
- Department for Social Sciences, Georg Simon Ohm University of Applied Sciences Nuremberg, Nuremberg, Germany
| | | |
Collapse
|
20
|
Wrightson JG, Cole J, Sohn MN, McGirr A. The effects of D-Cycloserine on corticospinal excitability after repeated spaced intermittent theta-burst transcranial magnetic stimulation: A randomized controlled trial in healthy individuals. Neuropsychopharmacology 2023; 48:1217-1224. [PMID: 37041205 PMCID: PMC10267195 DOI: 10.1038/s41386-023-01575-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/13/2023]
Abstract
Repeated spaced TMS protocols, also termed accelerated TMS protocols, are of increasing therapeutic interest. The long-term potentiation (LTP)-like effects of repeated spaced intermittent theta-burst transcranial magnetic stimulation (iTBS) are presumed to be N-Methyl-D-Aspartate receptor (NMDA-R) dependent; however, this has not been tested. We tested whether the LTP-like effects of repeated spaced iTBS are influenced by low-dose D-Cycloserine (100 mg), an NMDA-R partial-agonist. We conducted a randomized, double-blind, placebo-controlled crossover trial in 20 healthy adults from August 2021-Feb 2022. Participants received repeated spaced iTBS, consisting of two iTBS sessions 60 minutes apart, to the primary motor cortex. The peak-to-peak amplitude of the motor evoked potentials (MEP) at 120% resting motor threshold (RMT) was measured after each iTBS. The TMS stimulus-response (TMS-SR; 100-150% RMT) was measured at baseline, +30 min, and +60 min after each iTBS. We found evidence for a significant Drug*iTBS effect in MEP amplitude, revealing that D-Cycloserine enhanced MEP amplitudes relative to the placebo. When examining TMS-SR, pairing iTBS with D-Cycloserine increased the TMS-SR slope relative to placebo after both iTBS tetani, and this was due to an increase in the upper bound of the TMS-SR. This indicates that LTP-like and metaplastic effects of repeated-spaced iTBS involve NMDA-R, as revealed by two measures of corticospinal excitability, and that low-dose D-Cycloserine facilitates the physiological effects of repeated spaced iTBS. However, extension of these findings to clinical populations and therapeutic protocols targeting non-motor regions of cortex requires empirical validation.
Collapse
Affiliation(s)
- James G Wrightson
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jaeden Cole
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Maya N Sohn
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
21
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
22
|
Van Dam JM, Graetz L, Pitcher JB, Goldsworthy MR. The effects of age and biological sex on the association between I-wave recruitment and the response to cTBS: an exploratory study. Brain Res 2023; 1810:148359. [PMID: 37030620 DOI: 10.1016/j.brainres.2023.148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
The neuroplastic response to continuous theta burst stimulation (cTBS) is inherently variable. The measurement of I-wave latencies has been shown to strongly predict the magnitude and direction of the response to cTBS, whereby longer latencies are associated with stronger long-term depression-like responses. However, potential differences in this association relating to age and sex have not been explored. We performed cTBS and measured I-wave recruitment (via MEP latencies) in 66 participants (31 female) ranging in age from 11 to 78 years. The influence of age and sex on the association between I-wave recruitment and the response to cTBS was tested using linear regression models. In contrast to previous studies, there was not a significant association between I-wave latencies and cTBS response at the group level (p = 0.142, R2 = 0.033). However, there were interactions between I-waves and both age and sex when predicting cTBS response. Subgroup analysis revealed that preferential late I-wave recruitment predicted cTBS response in adolescent females, but not in adolescent or adult males or adult females. These data suggest that the generalisability of I-wave measurement in predicting the response to cTBS may be lower than initially believed. Prediction models should include age and sex, rather than I-wave latencies alone, as our findings suggest that, while each factor alone is not a strong predictor, these factors interact to influence the response to cTBS.
Collapse
Affiliation(s)
- Jago M Van Dam
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Julia B Pitcher
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia.
| |
Collapse
|
23
|
Yu C, Ruan Y, Sun X, Chen C, Shen T, Liu C, Qiu W, Lu Z, Chan SO, Wang L. rTMS ameliorates depression/anxiety-like behaviors in experimental autoimmune encephalitis by inhibiting neurotoxic reactive astrocytes. J Affect Disord 2023; 331:352-361. [PMID: 36958487 DOI: 10.1016/j.jad.2023.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
One third of patients with multiple sclerosis (MS) suffered from depressive symptoms. The pathogenesis of depression in MS patients has been related to innate immune activation in certain regions of the brain such as hippocampus. However, pharmacotherapy lacks sufficient evidence for beneficial effects on depression in MS patients, urging for a novel treatment modality for this mental disorder. Treatment effects of rTMS on depression/anxiety-like behaviors in mice with experimental autoimmune encephalomyelitis (EAE) were assessed by behavioral tests. The role of innate immune response was examined by RNA sequencing, quantitative RT-PCR, and immunofluorescence techniques. Depressive symptom severity and astroglial activation in patients with MS were assessed by Beck Depression Inventory and serum glial fibrillary acidic protein (GFAP), respectively. EAE mice displayed depression/anxiety-like behaviors, which were ameliorated by rTMS. Transcriptome and gene-specific expression analysis of the hippocampus showed significant reduction in transcript levels associated with neurotoxic reactive astrocytes in EAE mice after rTMS treatment. This was confirmed by immunofluorescence studies. Complement component 3d, a marker of neurotoxic reactive astrocytes, was highly expressed in EAE hippocampus, but was reduced to a basal level after rTMS treatment. In patients with MS, astroglial activation, indicated by serum GFAP levels, was significantly elevated in those with moderate or major depressive symptoms. These findings support that the suppression of neurotoxic reactive astrocytes might be a potential target for treatment of depression in patients with MS, and suggest the potential of using rTMS as a potential therapeutic treatment for this disorder.
Collapse
Affiliation(s)
- Chao Yu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Medical Examination Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaobo Sun
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chen Chen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Ting Shen
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Chunxin Liu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhengqi Lu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Liqing Wang
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
24
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Study Protocol for a Multicenter, Randomized Controlled Trial to Improve Upper Extremity Hemiparesis in Chronic Stroke Patients by One-to-One Training (NEURO ®) with Repetitive Transcranial Magnetic Stimulation. J Clin Med 2022; 11:jcm11226835. [PMID: 36431312 PMCID: PMC9695575 DOI: 10.3390/jcm11226835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
During recovery from upper limb motor paralysis after stroke, it is important to (1) set the exercise difficulty level according to the motor paralysis severity, (2) provide adequate exercises, and (3) motivate the patient to achieve the goal. However, these factors have not been well-formulated. This multicenter, randomized controlled trial study aims to examine the therapeutic effects of these three factors on patients undergoing a novel intervention using repetitive transcranial magnetic stimulation and intensive one-to-one training (NEURO®) and to formulate a corresponding research protocol. The control group will receive conventional NEURO® occupational therapy. In the intervention group, four practice plans will be selected according to the Fugl-Meyer assessment (FMA-UE) scores of the upper extremity. The goal is to predict the post-treatment outcomes based on the pre-treatment FMA-UE scores. Based on the degree of difficulty and amount of practice required, we can formulate a practice plan to promote upper limb motor recovery. This occupational therapy plan will be less influenced by the therapist's skill, facilitating effective rehabilitation. The study findings may be utilized to promote upper limb motor paralysis recovery and provide a basis for proposing activities of daily living adapted to upper limb function.
Collapse
|
26
|
Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci Biobehav Rev 2022; 142:104867. [PMID: 36122739 DOI: 10.1016/j.neubiorev.2022.104867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Mental health disorders and substance use disorders are a leading cause of morbidity and mortality worldwide, and one of the most important challenges for public health systems. While evidence-based psychotherapy is generally pursued to address mental health challenges, psychological change is often hampered by non-adherence to treatments, relapses, and practical barriers (e.g., time, cost). In recent decades, Non-invasive brain stimulation (NIBS) techniques have emerged as promising tools to directly target dysfunctional neural circuitry and promote long-lasting plastic changes. While the therapeutic efficacy of NIBS protocols for mental illnesses has been established, neuromodulatory interventions might also be employed to support the processes activated by psychotherapy. Indeed, combining psychotherapy with NIBS might help tailor the treatment to the patient's unique characteristics and therapeutic goal, and would allow more direct control of the neuronal changes induced by therapy. Herein, we overview emerging evidence on the use of NIBS to enhance the psychotherapeutic effect, while highlighting the next steps in advancing clinical and research methods toward personalized intervention approaches.
Collapse
|
27
|
Kleineberg NN, Tscherpel C, Fink GR, Grefkes C, Weiss PH. Different facets of object-use pantomime: online TMS evidence on the role of the supramarginal gyrus. Cortex 2022; 156:13-25. [DOI: 10.1016/j.cortex.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
|
28
|
Bakulin I, Zabirova A, Sinitsyn D, Poydasheva A, Lagoda D, Suponeva N, Piradov M. Adding a Second iTBS Block in 15 or 60 Min Time Interval Does Not Increase iTBS Effects on Motor Cortex Excitability and the Responder Rates. Brain Sci 2022; 12:brainsci12081064. [PMID: 36009127 PMCID: PMC9405900 DOI: 10.3390/brainsci12081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The use of metaplasticity-based intermittent theta-burst stimulation (iTBS) protocols including several stimulation blocks could be a possible approach to increasing stimulation effectiveness. Our aim was to investigate the neurophysiological effects of two protocols with a short and a long interval between blocks. Seventeen healthy volunteers received four protocols in a pseudorandomized order: iTBS 0-15 (two blocks of active iTBS of primary motor cortex (M1) separated by 15 min and a control stimulation block of the vertex in 60 min from the first block); iTBS 0-60 (active iTBS, a control block in 15 min, and an active block in 60 min); iTBS 0 (active iTBS and two control blocks with the same intervals); and Control (three control blocks). The motor evoked potentials (MEPs) were measured before the first and after the second and third blocks. We have shown no significant differences between the effects of the protocols on both the motor cortex excitability and the responder rates. No significant changes of MEPs were observed after all the protocols. The reliability for the responsiveness to a single block between two sessions was insignificant. Our data confirm low reproducibility of the response to iTBS and suggest that the use of repeated protocols does not increase the responder rates or neurophysiological effects of iTBS.
Collapse
|
29
|
Wang Q, Huang H, Li D, Wang Y, Qi N, Ci Y, Xu T. Intensive rTMS for treatment-resistant depression patients with suicidal ideation: An open-label study. Asian J Psychiatr 2022; 74:103189. [PMID: 35728457 DOI: 10.1016/j.ajp.2022.103189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
The advantages of intensive repetitive transcranial magnetic stimulation (rTMS) protocol are in the possible acute effect of the stimulation and in the possible reduction in the time required to achieve remission in depression. Here, we investigated the antidepressant effects and antisuicidal effects of a more intensive rTMS protocol for treatment-resistant depression (TRD) patients with suicidal ideation. Thirty-one outpatients were included in this study, including 22 military veterans and 9 non- militaries. The rTMS treatment consisted of 25 sessions, each session lasting 30 min (60 trains of 50 pulsations, 110 % resting motor threshold intensity) for a total of 3000 pulse. The total amount of stimulation (750,000 pulses) applied by our rTMS protocol was equivalent to that of a 5-week standard rTMS protocol. We found a significant effect of time on the 17-item Hamilton Depression Rating Scale (HAMD-17) scores and the Sheehan Disability Scale (SDS) scores. There was no difference in change in the HAMD-17 scores and SDS scores between the military veteran group and the non-military group between baseline and the week 4 assessment time point. The response rate of depression was 64.52 %, and the remission rate of depression was 51.61 % at day 5. 48.39 % and 35.48 % at week 4, respectively. All patients (100 %) met response criteria of suicidal ideation, and the remission rate was 87.09 % at day 5. The response rate was 83.87 % %, and the remission rate was 77.42 % at week 4. The accelerated high-dose rTMS treatment was well tolerated by all patients. Our intensive rTMS protocol is preliminarily safe and feasible. The TRD patients with suicidal ideation could benefit from much shorter exposure to this protocol with more efficacy in comparison with conventional rTMS protocol. In addition, intensive rTMS offers a promising treatment for military veteran populations.
Collapse
Affiliation(s)
- Qi Wang
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Hongfei Huang
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Dongdong Li
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Yitong Wang
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Na Qi
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Yihong Ci
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Tianchao Xu
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China.
| |
Collapse
|
30
|
Zhao Q, Li H, Liu Y, Mei H, Guo L, Liu X, Tao X, Ma J. Non-invasive brain stimulation associated mirror therapy for upper-limb rehabilitation after stroke: Systematic review and meta-analysis of randomized clinical trials. Front Neurol 2022; 13:918956. [PMID: 35928134 PMCID: PMC9345505 DOI: 10.3389/fneur.2022.918956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-invasive brain stimulation (NIBS) techniques and mirror therapy (MT) are promising rehabilitation measures for stroke. While the combination of MT and NIBS has been employed for post-stroke upper limb motor functional rehabilitation, its effectiveness has not been examined. Objective This study aimed to evaluate the effectiveness of combined MT and NIBS in the recovery of upper limb motor function in stroke patients. Methods The search was carried out in PubMed, EMBASE, Cochrane Library, Web of Science, Science Direct, CNKI, WANFANG and VIP until December 2021. Randomized clinical trials (RCTs) comparing MT or NIBS alone with the combination of NIBS and MT in improving upper extremity motor recovery after stroke were selected. A meta-analysis was performed to calculate the mean differences (MD) or the standard mean differences (SMD) and 95% confidence intervals (CI) with random-effect models. Subgroup analyses were also conducted according to the types of control group, the types of NIBS, stimulation timing and phase poststroke. Results A total of 12 articles, including 17 studies with 628 patients, were reviewed in the meta-analysis. In comparison with MT or NIBS alone, the combined group significantly improved body structure and function (MD = 5.97; 95% CI: 5.01–6.93; P < 0.05), activity levels (SMD = 0.82; 95% CI 0.61–1.02; P < 0.05). For cortical excitability, the motor evoked potential cortical latency (SMD = −1.05; 95% CI:−1.57–−0.52; P < 0.05) and the central motor conduction time (SMD=-1.31 95% CI:−2.02-−0.61; P < 0.05) of the combined group were significantly shortened. A non-significant homogeneous summary effect size was found for MEP amplitude (SMD = 0.47; 95%CI = −0.29 to 1.23; P = 0.23). Subgroup analysis showed that there is an interaction between the stimulation sequence and the combined treatment effect. Conclusion In this meta-analysis of randomized clinical trials, in comparison to the control groups, MT combined with NIBS promoted the recovery of upper extremity motor function after stroke, which was reflected in the analysis of body structure and function, activity levels, and cortical excitability. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022304455.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, China
| | - Hong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yu Liu
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang, China
| | - Haonan Mei
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, China
| | - Liying Guo
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, China
| | - Xianying Liu
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Tao
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jiang Ma
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, China
- *Correspondence: Jiang Ma
| |
Collapse
|
31
|
Continuous but not intermittent theta burst stimulation decreases striatal dopamine release and cortical excitability. Exp Neurol 2022; 354:114106. [DOI: 10.1016/j.expneurol.2022.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022]
|
32
|
Hussain SJ, Quentin R. Decoding personalized motor cortical excitability states from human electroencephalography. Sci Rep 2022; 12:6323. [PMID: 35428785 PMCID: PMC9012777 DOI: 10.1038/s41598-022-10239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Brain state-dependent transcranial magnetic stimulation (TMS) requires real-time identification of cortical excitability states. Current approaches deliver TMS during brain states that correlate with motor cortex (M1) excitability at the group level. Here, we hypothesized that machine learning classifiers could successfully discriminate between high and low M1 excitability states in individual participants using information obtained from low-density electroencephalography (EEG) signals. To test this, we analyzed a publicly available dataset that delivered 600 single TMS pulses to the right M1 during EEG and electromyography (EMG) recordings in 20 healthy adults. Multivariate pattern classification was used to discriminate between brain states during which TMS evoked small and large motor-evoked potentials (MEPs). Results show that personalized classifiers successfully discriminated between low and high M1 excitability states in 80% of tested participants. MEPs elicited during classifier-predicted high excitability states were significantly larger than those elicited during classifier-predicted low excitability states in 90% of tested participants. Personalized classifiers did not generalize across participants. Overall, results show that individual participants exhibit unique brain activity patterns which predict low and high M1 excitability states and that these patterns can be efficiently captured using low-density EEG signals. Our findings suggest that deploying individualized classifiers during brain state-dependent TMS may enable fully personalized neuromodulation in the future.
Collapse
Affiliation(s)
- Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, 540 Bellmont Hall, 2109 San Jacinto Blvd, Austin, TX, 78712, USA.
| | - Romain Quentin
- MEL Group, EDUWELL Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CRNS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
33
|
Xie Y, He Y, Guan M, Wang Z, Zhou G, Ma Z, Wang H, Yin H. Low-frequency rTMS treatment alters the topographical organization of functional brain networks in schizophrenia patients with auditory verbal hallucination. Psychiatry Res 2022; 309:114393. [PMID: 35042065 DOI: 10.1016/j.psychres.2022.114393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
Abstract
Auditory verbal hallucinations (AVH) are an important characteristic of schizophrenia. Repeated transcranial magnetic stimulation (rTMS) has been evidence to be effective in treating AVH. We evaluated the topological properties of resting-state functional brain networks in schizophrenia patients with AVH (n = 32) who received 1-Hz rTMS treatment and matched healthy controls (n = 33). The results showed that the psychotic symptoms and certain neurocognitive performances in patients were improved by rTMS treatment. Furthermore, the pretreatment patients showed abnormal global topological metrics compared with the controls, including lower global efficiency (Eglob, represents the relative quality of information transmission between all nodes in the network) and higher characteristic path length (Lp, characterizes the mean shortest distance between any two nodes in the network). The pretreament patients also showed decreased local topological metrics relative to the controls, including the nodal shortest path (NLp, quantifies the mean distance between the given node and the other nodes in the network) and nodal efficiency (Ne, measures the information interchange among the neighbor nodes when one node is removed), mainly located in the prefrontal cortex, occipital cortex, and subcortical regions. While the abnormal global and local topological patterns were normalized in patients after rTMS treatment. The multiple linear regression analysis indicated that the baseline topological metrics could be associated with the clinical responses after treatment in the patient group. The results suggested that the topological organization of the functional brain network was globally and regionally altered in schizophrenia patients with AVH after rTMS treatment and may be a potential therapeutic effect for AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
34
|
Fecteau S. Influencing Human Behavior with Noninvasive Brain Stimulation: Direct Human Brain Manipulation Revisited. Neuroscientist 2022; 29:317-331. [PMID: 35057668 PMCID: PMC10159214 DOI: 10.1177/10738584211067744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of tools to perturb brain activity can generate important insights into brain physiology and offer valuable therapeutic approaches for brain disorders. Furthermore, the potential of such tools to enhance normal behavior has become increasingly recognized, and this has led to the development of various noninvasive technologies that provides a broader access to the human brain. While providing a brief survey of brain manipulation procedures used in the past decades, this review aims at stimulating an informed discussion on the use of these new technologies to investigate the human. It highlights the importance to revisit the past use of this unique armamentarium and proceed to a detailed analysis of its present state, especially in regard to human behavioral regulation.
Collapse
|
35
|
Facilitation of Motor Evoked Potentials in Response to a Modified 30 Hz Intermittent Theta-Burst Stimulation Protocol in Healthy Adults. Brain Sci 2021; 11:brainsci11121640. [PMID: 34942942 PMCID: PMC8699605 DOI: 10.3390/brainsci11121640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Theta-burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) developed to induce neuroplasticity. TBS usually consists of 50 Hz bursts at 5 Hz intervals. It can facilitate motor evoked potentials (MEPs) when applied intermittently, although this effect can vary between individuals. Here, we sought to determine whether a modified version of intermittent TBS (iTBS) consisting of 30 Hz bursts repeated at 6 Hz intervals would lead to lasting MEP facilitation. We also investigated whether recruitment of early and late indirect waves (I-waves) would predict individual responses to 30 Hz iTBS. Participants (n = 19) underwent single-pulse TMS to assess MEP amplitude at baseline and variations in MEP latency in response to anterior-posterior, posterior-anterior, and latero-medial stimulation. Then, 30 Hz iTBS was administered, and MEP amplitude was reassessed at 5-, 20- and 45-min. Post iTBS, most participants (13/19) exhibited MEP facilitation, with significant effects detected at 20- and 45-min. Contrary to previous evidence, recruitment of early I-waves predicted facilitation to 30 Hz iTBS. These observations suggest that 30 Hz/6 Hz iTBS is effective in inducing lasting facilitation in corticospinal excitability and may offer an alternative to the standard 50 Hz/5 Hz protocol.
Collapse
|
36
|
Differential Influence of the Dorsal Premotor and Primary Somatosensory Cortex on Corticospinal Excitability during Kinesthetic and Visual Motor Imagery: A Low-Frequency Repetitive Transcranial Magnetic Stimulation Study. Brain Sci 2021; 11:brainsci11091196. [PMID: 34573217 PMCID: PMC8465986 DOI: 10.3390/brainsci11091196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Consistent evidence suggests that motor imagery involves the activation of several sensorimotor areas also involved during action execution, including the dorsal premotor cortex (dPMC) and the primary somatosensory cortex (S1). However, it is still unclear whether their involvement is specific for either kinesthetic or visual imagery or whether they contribute to motor activation for both modalities. Although sensorial experience during motor imagery is often multimodal, identifying the modality exerting greater facilitation of the motor system may allow optimizing the functional outcomes of rehabilitation interventions. In a sample of healthy adults, we combined 1 Hz repetitive transcranial magnetic stimulation (rTMS) to suppress neural activity of the dPMC, S1, and primary motor cortex (M1) with single-pulse TMS over M1 for measuring cortico-spinal excitability (CSE) during kinesthetic and visual motor imagery of finger movements as compared to static imagery conditions. We found that rTMS over both dPMC and S1, but not over M1, modulates the muscle-specific facilitation of CSE during kinesthetic but not during visual motor imagery. Furthermore, dPMC rTMS suppressed the facilitation of CSE, whereas S1 rTMS boosted it. The results highlight the differential pattern of cortico-cortical connectivity within the sensorimotor system during the mental simulation of the kinesthetic and visual consequences of actions.
Collapse
|