1
|
Bouyer LN, Schwarzkopf DS, Saurels BW, Arnold DH. Objective priming from pre-imagining inputs before binocular rivalry presentations does not predict individual differences in the subjective intensity of imagined experiences. Cognition 2024; 256:106048. [PMID: 39700603 DOI: 10.1016/j.cognition.2024.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Most people can imagine images that they experience within their mind's eye. However, there are marked individual differences, with some people reporting that they are unable to visualise (aphantasics), and others who report having imagined experiences that are as realistic as seeing (hyper-phantasics). The vividness of imagery is most often measured via subjective self-report. Chang and Pearson (2018), however, have suggested that a binocular rivalry (BR) protocol can be used as an objective measure. They found that pre-imagining a moving input could enhance performance on an objective probe detection task when probes are embedded in imagery consistent inputs, as opposed to imagery inconsistent inputs. To date, nobody has assessed if this type of objective imagery priming can be used to predict the vividness of different people's visualisations. Here, we report that imagery priming of objective sensitivity to probes within static BR inputs does not correlate with the ratings people use to describe the vividness of their visualisations (a between participants effect). However, objective priming of sensitivity to probes embedded in BR inputs was greater on trials when participants reported that their pre-imagined experience had been more vivid than average (a within participants effect). Overall, our data suggest that while imagery can prime objective sensitivity to probes during BR, there is currently no strong evidence that this effect can be used as a reliable objective method to predict the subjective vividness of different people's visualisations.
Collapse
Affiliation(s)
- Loren N Bouyer
- School of Psychology, The University of Queensland, Australia.
| | | | - Blake W Saurels
- School of Psychology, The University of Queensland, Australia
| | - Derek H Arnold
- School of Psychology, The University of Queensland, Australia
| |
Collapse
|
2
|
Jin F, Hsu SM, Li Y. A Systematic Review of Aphantasia: Concept, Measurement, Neural Basis, and Theory Development. Vision (Basel) 2024; 8:56. [PMID: 39330760 PMCID: PMC11437436 DOI: 10.3390/vision8030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
People with aphantasia exhibit the inability to voluntarily generate or form mental imagery in their minds. Since the term "aphantasia" was proposed to describe this, it has gained increasing attention from psychiatrists, neuroscientists, and clinicians. Previous studies have mainly focused on the definition, prevalence, and measurement of aphantasia, its impacts on individuals' cognitive and emotional processing, and theoretical frameworks synthesizing existing findings, which have contributed greatly to our understanding of aphantasia. However, there are still some debates regarding the conclusions derived from existing research and the theories that were constructed from various sources of evidence. Building upon existing endeavors, this systematic review emphasizes that future research is much needed to refine the definition and diagnosis of aphantasia, strengthen empirical investigations at behavioral and neural levels, and, more importantly, develop or update theories. These multiple lines of efforts could lead to a deeper understanding of aphantasia and further guide researchers in future research directions.
Collapse
Affiliation(s)
- Feiyang Jin
- Applied Psychology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shen-Mou Hsu
- Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, Taipei 10617, Taiwan
| | - Yu Li
- Applied Psychology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
3
|
Larner AJ, Leff AP, Nachev PC. Phantasia, aphantasia, and hyperphantasia: Empirical data and conceptual considerations. Neurosci Biobehav Rev 2024; 164:105819. [PMID: 39032843 DOI: 10.1016/j.neubiorev.2024.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Within the past decade, the term "phantasia" has been increasingly used to describe the human capacity, faculty, or power of visual mental imagery, with extremes of imagery vividness characterised as "aphantasia" and "hyperphantasia". A substantial volume of empirical research addressing these constructs has now been published, including attempts to find inductive correlates of behaviourally defined aphantasia, for example using research questionnaires and functional magnetic resonance imaging. Mental imagery has long been noted as a source of conceptual confusions but no specific conceptual analysis of the new formulation of phantasia, aphantasia, and hyperphantasia has been undertaken hitherto. We offer some conceptual considerations on phantasia, noting the ongoing confusion of perceptual with mental images, and the ubiquitous use of unvalidated subjective assessment instruments such as the Vividness of Visual Imagery Questionnaire (VVIQ) in diagnosis and assessment, development of which was predicated on these conceptual confusions. We offer some suggestions for a conceptual framework for future empirical studies in this field, circumventing these conceptual confusions.
Collapse
Affiliation(s)
- A J Larner
- Department of Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, United Kingdom.
| | - A P Leff
- Department of Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| | - P C Nachev
- Department of Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Maw KJ, Beattie G, Burns EJ. Cognitive strengths in neurodevelopmental disorders, conditions and differences: A critical review. Neuropsychologia 2024; 197:108850. [PMID: 38467371 DOI: 10.1016/j.neuropsychologia.2024.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Neurodevelopmental disorders are traditionally characterised by a range of associated cognitive impairments in, for example, sensory processing, facial recognition, visual imagery, attention, and coordination. In this critical review, we propose a major reframing, highlighting the variety of unique cognitive strengths that people with neurodevelopmental differences can exhibit. These include enhanced visual perception, strong spatial, auditory, and semantic memory, superior empathy and theory of mind, along with higher levels of divergent thinking. Whilst we acknowledge the heterogeneity of cognitive profiles in neurodevelopmental conditions, we present a more encouraging and affirmative perspective of these groups, contrasting with the predominant, deficit-based position prevalent throughout both cognitive and neuropsychological research. In addition, we provide a theoretical basis and rationale for these cognitive strengths, arguing for the critical role of hereditability, behavioural adaptation, neuronal-recycling, and we draw on psychopharmacological and social explanations. We present a table of potential strengths across conditions and invite researchers to systematically investigate these in their future work. This should help reduce the stigma around neurodiversity, instead promoting greater social inclusion and significant societal benefits.
Collapse
|
5
|
Bouyer LN, Arnold DH. Deep Aphantasia: a visual brain with minimal influence from priors or inhibitory feedback? Front Psychol 2024; 15:1374349. [PMID: 38646116 PMCID: PMC11026567 DOI: 10.3389/fpsyg.2024.1374349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 04/23/2024] Open
Abstract
The authors are both self-described congenital aphantasics, who feel they have never been able to have volitional imagined visual experiences during their waking lives. In addition, Loren has atypical experiences of a number of visual phenomena that involve an extrapolation or integration of visual information across space. In this perspective, we describe Loren's atypical experiences of a number of visual phenomena, and we suggest these ensue because her visual experiences are not strongly shaped by inhibitory feedback or by prior expectations. We describe Loren as having Deep Aphantasia, and Derek as shallow, as for both a paucity of feedback might prevent the generation of imagined visual experiences, but for Loren this additionally seems to disrupt activity at a sufficiently early locus to cause atypical experiences of actual visual inputs. Our purpose in describing these subjective experiences is to alert others to the possibility of there being sub-classes of congenital aphantasia, one of which-Deep Aphantasia, would be characterized by atypical experiences of actual visual inputs.
Collapse
Affiliation(s)
- Loren N Bouyer
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Derek H Arnold
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Arnold DH, Saurels BW, Anderson N, Andresen I, Schwarzkopf DS. Predicting the subjective intensity of imagined experiences from electrophysiological measures of oscillatory brain activity. Sci Rep 2024; 14:836. [PMID: 38191506 PMCID: PMC10774351 DOI: 10.1038/s41598-023-50760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
Most people can conjure images and sounds that they experience in their minds. There are, however, marked individual differences. Some people report that they cannot generate imagined sensory experiences at all (aphantasics) and others report that they have unusually intense imagined experiences (hyper-phantasics). These individual differences have been linked to activity in sensory brain regions, driven by feedback. We would therefore expect imagined experiences to be associated with specific frequencies of oscillatory brain activity, as these can be a hallmark of neural interactions within and across regions of the brain. Replicating a number of other studies, relative to a Resting-State we find that the act of engaging in auditory or in visual imagery is linked to reductions in the power of oscillatory brain activity across a broad range of frequencies, with prominent peaks in the alpha band (8-12 Hz). This oscillatory activity, however, did not predict individual differences in the subjective intensity of imagined experiences. For audio imagery, these were rather predicted by reductions within the theta (6-9 Hz) and gamma (33-38 Hz) bands, and by increases in beta (15-17 Hz) band activity. For visual imagery these were predicted by reductions in lower (14-16 Hz) and upper (29-32 Hz) beta band activity, and by an increase in mid-beta band (24-26 Hz) activity. Our data suggest that there is sufficient ground truth in the subjective reports people use to describe the intensity of their imagined sensory experiences to allow these to be linked to the power of distinct rhythms of brain activity. In future, we hope to combine this approach with better measures of the subjective intensity of imagined sensory experiences to provide a clearer picture of individual differences in the subjective intensity of imagined experiences, and of why these eventuate.
Collapse
Affiliation(s)
- Derek H Arnold
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia.
| | - Blake W Saurels
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia
| | - Natasha Anderson
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia
| | - Isabella Andresen
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia
| | - Dietrich S Schwarzkopf
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
- Experimental Psychology, University College London, London, UK
| |
Collapse
|
7
|
Marks DF. Phenomenological Studies of Visual Mental Imagery: A Review and Synthesis of Historical Datasets. Vision (Basel) 2023; 7:67. [PMID: 37873895 PMCID: PMC10594508 DOI: 10.3390/vision7040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
This article reviews historically significant phenomenological studies of visual mental imagery (VMI), starting with Fechner in 1860 and continuing to the present. This synthesis of diverse VMI phenomenological studies in healthy adults serves as a unique resource for investigators of individual differences, cognitive development and clinical and neurological conditions. The review focuses on two kinds of VMI, "memory imagery" and "eidetic imagery". Ten primary studies are drawn from three periods of the scholarly literature: early (1860-1929), middle (1930-1999) and recent (2000-2023). It is concluded that memory and eidetic imagery are two forms of constructive imagery, varying along a continuum of intensity or vividness. Vividness is a combination of clarity, colourfulness and liveliness, where clarity is defined by brightness and sharpness, colourfulness by image saturation and liveliness by vivacity, animation, feeling, solidity, projection and metamorphosis. The findings are integrated in a template that specifies, as a tree-like structure, the 16 properties of VMI vividness in healthy adult humans. The template takes into account the weight of evidence drawn from the accounts and reveals an extraordinary degree of consistency in reported VMI characteristics, revealed by specialized studies of healthy adult humans across time, space and culture.
Collapse
Affiliation(s)
- David F Marks
- Independent Researcher, 13200 Arles, Bouches-du-Rhône, Provence-Alpes-Côte d'Azur, France
| |
Collapse
|