1
|
Horsburgh BA, Walker GJ, Kelleher A, Lloyd AR, Bull RA, Giallonardo FD. Next-Generation Sequencing Methods for Near-Real-Time Molecular Epidemiology of HIV and HCV. Rev Med Virol 2024; 34:e70001. [PMID: 39428551 DOI: 10.1002/rmv.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The World Health Organisation has set targets of reducing the transmission of new hepatitis C (HCV) infections by 90%, and ending human immunodeficiency virus-1 (HIV) as a public health threat, by 2030. To achieve this, efficient and timely viral surveillance, and effective public health interventions, are required. Traditional epidemiological methods are largely dependent on the recognition of incident cases with symptomatic illness; acute HIV and HCV infections are commonly asymptomatic, which may lead to delays in the recognition of such new infections. Instead, for these viruses, molecular epidemiology may improve the detection of, and response to, clusters of viral transmission. Molecular epidemiology using historical datasets has highlighted key populations that may have benefitted from a timely intervention. Similar analyses performed on contemporary samples are needed to underpin the 2030 targets, but this requires the generation of a cohesive dataset of viral genome sequences in near-real-time. To generate such data, methodologies harnessing next-generation sequencing (NGS) should be utilised. Here we discuss the opportunity presented by NGS for public health surveillance of HIV and HCV, and discuss three methods that can generate sequences for such analysis. These include full-length genome amplification, utilised for analysis of HCV in the research space; tiling PCR, which was the method of choice for many diagnostic laboratories in the SARS-CoV-2 pandemic; and bait-capture hybridisation, which has been utilised in local HIV outbreaks. These techniques could be applied for near-real-time HIV and HCV surveillance, informing public health strategies that will be key to achieving 2030 targets.
Collapse
Affiliation(s)
- Bethany A Horsburgh
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Gregory J Walker
- Virology Research Laboratory, Serology and Virology Division (SAViD), Prince of Wales Hospital, Randwick, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Anthony Kelleher
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- Faculty of Medicine, The Kirby Institute, University of New South Wales, Sydney, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
2
|
Timsit S, Armand-Lefèvre L, Le Goff J, Salmona M. The clinical and epidemiological impacts of whole genomic sequencing on bacterial and virological agents. Infect Dis Now 2024; 54:104844. [PMID: 38101516 DOI: 10.1016/j.idnow.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Whole Genome Sequencing (WGS) is a molecular biology tool consisting in the sequencing of the entire genome of a given organism. Due to its ability to provide the finest available resolution of bacterial and virological genetics, it is used at several levels in the field of infectiology. On an individual scale and through application of a single technique, it enables the typological identification and characterization of strains, the characterization of plasmids, and enhanced search for resistance genes and virulence factors. On a collective scale, it enables the characterization of strains and the determination of phylogenetic links between different microorganisms during community outbreaks and healthcare-associated epidemics. The information provided by WGS enables real-time monitoring of strain-level epidemiology on a worldwide scale, and facilitates surveillance of the resistance dissemination and the introduction or emergence of pathogenic variants in humans or their environment. There are several possible approaches to completion of an entire genome. The choice of one method rather than another is essentially dictated by the matrix, either a clinical sample or a culture isolate, and the clinical objective. WGS is an advanced technology that remains costly despite a gradual decrease in its expenses, potentially hindering its implementation in certain laboratories and thus its use in routine microbiology. Even though WGS is making steady inroads as a reference method, efforts remain needed in view of so harmonizing its interpretations and decreasing the time to generation of conclusive results.
Collapse
Affiliation(s)
- Sarah Timsit
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; Service de Bactériologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Laurence Armand-Lefèvre
- Service de Bactériologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France; IAME UMR 1137, INSERM, Université Paris Cité, Paris, France
| | - Jérôme Le Goff
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; INSERM U976, Insight Team, Université Paris Cité, Paris, France
| | - Maud Salmona
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; INSERM U976, Insight Team, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Peng Y, Zong Y, Wang D, Chen J, Chen ZS, Peng F, Liu Z. Current drugs for HIV-1: from challenges to potential in HIV/AIDS. Front Pharmacol 2023; 14:1294966. [PMID: 37954841 PMCID: PMC10637376 DOI: 10.3389/fphar.2023.1294966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.
Collapse
Affiliation(s)
- Yuan Peng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanjun Zong
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dongfeng Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Jaha B, Schenkel CD, Jörimann L, Huber M, Zaheri M, Neumann K, Leemann C, Calmy A, Cavassini M, Kouyos RD, Günthard HF, Metzner KJ. Prevalence of HIV-1 drug resistance mutations in proviral DNA in the Swiss HIV Cohort Study, a retrospective study from 1995 to 2018. J Antimicrob Chemother 2023; 78:2323-2334. [PMID: 37545164 PMCID: PMC10477134 DOI: 10.1093/jac/dkad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Genotypic resistance testing (GRT) is routinely performed upon diagnosis of HIV-1 infection or during virological failure using plasma viral RNA. An alternative source for GRT could be cellular HIV-1 DNA. OBJECTIVES A substantial number of participants in the Swiss HIV Cohort Study (SHCS) never received GRT. We applied a method that enables access to the near full-length proviral HIV-1 genome without requiring detectable viraemia. METHODS Nine hundred and sixty-two PBMC specimens were received. Our two-step nested PCR protocol was applied to generate two overlapping long-range amplicons of the HIV-1 genome, sequenced by next-generation sequencing (NGS) and analysed by MinVar, a pipeline to detect drug resistance mutations (DRMs). RESULTS Six hundred and eighty-one (70.8%) of the samples were successfully amplified, sequenced and analysed by MinVar. Only partial information of the pol gene was contained in 82/681 (12%), probably due to naturally occurring deletions in the proviral sequence. All common HIV-1 subtypes were successfully sequenced. We detected at least one major DRM at high frequency (≥15%) in 331/599 (55.3%) individuals. Excluding APOBEC-signature (G-to-A mutation) DRMs, 145/599 (24.2%) individuals carried at least one major DRM. RT-inhibitor DRMs were most prevalent. The experienced time on ART was significantly longer in DRM carriers (P = 0.001) independent of inclusion or exclusion of APOBEC-signature DRMs. CONCLUSIONS We successfully applied a reliable and efficient method to analyse near full-length HIV-1 proviral DNA and investigated DRMs in individuals with undetectable or low viraemia. Additionally, our data underscore the need for new computational tools to exclude APOBEC-related hypermutated NGS sequence reads for reporting DRMs.
Collapse
Affiliation(s)
- Bashkim Jaha
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corinne D Schenkel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lisa Jörimann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Christine Leemann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Mendes Marcon CE, Schlindwein AD, Schuelter-Trevisol F. Longitudinal Assessment of Virological Failure and Antiretroviral Drug Resistance among Treatment-naive Subjects Living with HIV. Curr HIV Res 2023; 21:213-219. [PMID: 37226784 DOI: 10.2174/1570162x21666230524141239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) infection, the etiological agent of acquired immunodeficiency syndrome (AIDS), is a serious public health issue. Therapeutic measures have been successful in increasing the survival and improving the quality of life. However, some treatment-naive subjects living with HIV present resistance-associated mutations as a result of late diagnosis and/or mutant strain infections. The objective of this study was to identify the virus genotype and assess the antiretroviral resistance profile based on the results of HIV genotyping in treatment-naive subjects living with HIV, after six months of taking antiretroviral therapy. METHODS This was a prospective cohort study on treatment-naive adults living with HIV attending a specialized outpatient clinic in southern Santa Catarina State, Brazil. The participants were interviewed and had blood samples drawn. The genotypic antiretroviral drug resistance profile was examined in patients with detectable viral loads. RESULTS 65 treatment-naive subjects living with HIV were recruited for this study. After six months of taking antiretroviral therapy, resistance-associated mutations were observed in 3 (4.6%) subjects living with HIV. CONCLUSION Subtype C was identified as the circulating subtype in southern Santa Catarina State, and L10V, K103N, A98G, and Y179D were the most common mutations found in treatment-naive subjects.
Collapse
Affiliation(s)
| | - Aline Daiane Schlindwein
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Fabiana Schuelter-Trevisol
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| |
Collapse
|
6
|
Novitsky V, Nyandiko W, Vreeman R, DeLong AK, Manne A, Scanlon M, Ngeresa A, Aluoch J, Sang F, Ashimosi C, Jepkemboi E, Orido M, Hogan JW, Kantor R. Added Value of Next Generation over Sanger Sequencing in Kenyan Youth with Extensive HIV-1 Drug Resistance. Microbiol Spectr 2022; 10:e0345422. [PMID: 36445146 PMCID: PMC9769539 DOI: 10.1128/spectrum.03454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
HIV-1 drug resistance testing in children and adolescents in low-resource settings is both important and challenging. New (more sensitive) drug resistance testing technologies may improve clinical care, but evaluation of their added value is limited. We assessed the potential added value of using next-generation sequencing (NGS) over Sanger sequencing for detecting nucleoside reverse transcriptase inhibitor (NRTI) and nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutations (DRMs). Participants included 132 treatment-experienced Kenyan children and adolescents with diverse HIV-1 subtypes and with already high levels of drug resistance detected by Sanger sequencing. We examined overall and DRM-specific resistance and its predicted impact on antiretroviral therapy and evaluated the discrepancy between Sanger sequencing and six NGS thresholds (1%, 2%, 5%, 10%, 15%, and 20%). Depending on the NGS threshold, agreement between the two technologies was 62% to 88% for any DRM, 83% to 92% for NRTI DRMs, and 73% to 94% for NNRTI DRMs, with more DRMs detected at low NGS thresholds. NGS identified 96% to 100% of DRMs detected by Sanger sequencing, while Sanger identified 83% to 99% of DRMs detected by NGS. Higher discrepancy between technologies was associated with higher DRM prevalence. Even in this resistance-saturated cohort, 12% of participants had higher, potentially clinically relevant predicted resistance detected only by NGS. These findings, in a young, vulnerable Kenyan population with diverse HIV-1 subtypes and already high resistance levels, suggest potential benefits of more sensitive NGS over existing technology. Good agreement between technologies at high NGS thresholds supports their interchangeable use; however, the significance of DRMs identified at lower thresholds to patient care should be explored further. IMPORTANCE HIV-1 drug resistance in children and adolescents remains a significant problem in countries facing the highest burden of the HIV epidemic. Surveillance of HIV-1 drug resistance in children and adolescents is an important public health strategy, particularly in resource-limited settings, and yet, it is limited due mostly to cost and infrastructure constraints. Whether newer and more sensitive next-generation sequencing (NGS) adds substantial value beyond traditional Sanger sequencing in detecting HIV-1 drug resistance in real life settings remains an open and debatable question. In this paper, we attempt to address this issue by performing a comprehensive comparison of drug resistance identified by Sanger sequencing and six NGS thresholds. We conducted this study in a well-characterized, vulnerable cohort of children and adolescents living with diverse HIV-1 subtypes in Kenya and, importantly, failing antiretroviral therapy (ART) with already extensive drug resistance. Our findings suggest a potential added value of NGS over Sanger even in this unique cohort.
Collapse
Affiliation(s)
- V. Novitsky
- Brown University, Providence, Rhode Island, USA
| | - W. Nyandiko
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Moi University, Eldoret, Kenya
| | - R. Vreeman
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Arnhold Institute for Global Health, New York, New York, USA
| | | | - A. Manne
- Brown University, Providence, Rhode Island, USA
| | - M. Scanlon
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Arnhold Institute for Global Health, New York, New York, USA
| | - A. Ngeresa
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - J. Aluoch
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - F. Sang
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - C. Ashimosi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - E. Jepkemboi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - M. Orido
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - J. W. Hogan
- Brown University, Providence, Rhode Island, USA
| | - R. Kantor
- Brown University, Providence, Rhode Island, USA
| | - for the RESistance in a PEdiatric CohorT (RESPECT) Study
- Brown University, Providence, Rhode Island, USA
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Moi University, Eldoret, Kenya
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Arnhold Institute for Global Health, New York, New York, USA
| |
Collapse
|
7
|
Fokam J, Ngoufack Jagni Semengue E, Molimbou E, Etame NK, Santoro MM, Takou D, Mossiang L, Meledie AP, Chenwi CA, Yagai B, Nka AD, Dambaya B, Teto G, Ka’e AC, Beloumou GA, Ndjeyep SCD, Fainguem N, Abba A, Kengni AMN, Tchouaket MCT, Bouba NP, Billong SC, Djubgang R, Saounde ET, Sosso SM, Kouanfack C, Bissek ACZK, Eben-Moussi E, Colizzi V, Perno CF, Ceccherini-Silberstein F, Ndjolo A. Evaluation of Circulating and Archived HIV-1 Integrase Drug-Resistance Variants among Patients on Third-Line ART in Cameroon: Implications for Dolutegravir-Containing Regimens in Resource-Limited Settings. Microbiol Spectr 2022; 10:e0342022. [PMID: 36259973 PMCID: PMC9769697 DOI: 10.1128/spectrum.03420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023] Open
Abstract
To ensure the long-term efficacy of dolutegravir (DTG), we evaluated the genotypic profile in viral reservoirs among patients on third-line (3L) antiretroviral therapy (ART) in Cameroon, according to prior exposure to raltegravir (RAL). A facility-based study was conducted from May through December 2021 among patients on 3L ART from HIV treatment centers in Yaoundé and Douala. Viral load was measured, and genotyping was performed on plasma RNA and proviral DNA. HIV-1 drug resistance mutations were interpreted using HIVdb.v9.1 and phylogeny analysis was performed using MEGA.v7, with P < 0.05 considered significant. Of the 12,093 patients on ART, 53 fully met our inclusion criteria. The median (IQR) age was 51 years (40 to 55 years), and the male/female ratio was 4/5. The median duration on integrase strand-transfer inhibitors (INSTI)-containing regimens was 18 months (12 to 32 months), and 15.09% (8/53) were exposed to RAL. The most administered 3L ART was TDF+3TC+DTG+DRV/r (33.96%, 18/53). Only 5.66% (3/53) had unsuppressed viremia (>1000 copies/mL). Resistance testing in proviral DNA was successful for 18/22 participants and revealed 1/18 patients (5.56%, in the RAL-arm) with archived mutations at major resistance positions (G140R and G163R). Five subtypes were identified, CRF02_AG (12/18), CRF22_01AE (3/18), A1 (1/18), G (1/18), and F2 (1/18). In Cameroon, 3L-experienced patients had a good virological response with a low level of archived mutations in the integrase. This finding underscored the use of DTG-containing ART for heavily treated patients in similar programmatic settings. However, patients with prior exposure to RAL should be closely monitored following a stratified or personalized approach to mitigate risks of INSTI-resistance, alongside pharmacovigilance. IMPORTANCE We described the analysis of the genotypes of the population within third-line antiviral therapy in Cameroon, with a focus on defining the effects of prior raltegravir (RAL) treatment and resistance mutations for current dolutegravir (DTG) treatment. While supporting the current transition to DTG-containing ART in resource-limited settings toward the achievement of the UNAIDS' goal of HIV elimination by 2030, our findings suggested that RAL-exposed patients may need a specific monitoring approach either in a stratified or personalized model of third-line ART to ensure the long-term success of DTG-containing regimens.
Collapse
Affiliation(s)
- Joseph Fokam
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- Faculty of Health Sciences, University of Buea, Buea, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroun
- National HIV Drug Resistance Working Group, Ministry of Public Health, Yaoundé, Cameroun
| | - Ezechiel Ngoufack Jagni Semengue
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- University of Rome Tor Vergata, Rome, Italy
- Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Evariste Molimbou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Naomi-Karell Etame
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroun
| | | | - Désiré Takou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
| | | | | | - Collins Ambe Chenwi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- Mvangan District Hospital, Mvangan, Cameroon
| | - Bouba Yagai
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- University of Rome Tor Vergata, Rome, Italy
| | - Alex Durand Nka
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- University of Rome Tor Vergata, Rome, Italy
- Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Beatrice Dambaya
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
| | - Georges Teto
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
| | - Aude Christelle Ka’e
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- PhD Courses in Microbiology, Immunology, Infectious Diseases and Transplants (MIMIT), University of Rome “Tor Vergata”, Rome, Italy
| | - Grâce Angong Beloumou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
| | | | - Nadine Fainguem
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- University of Rome Tor Vergata, Rome, Italy
| | - Aissatou Abba
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
| | - Aurelie Minelle Ngueko Kengni
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroun
| | - Michel Carlos Tommo Tchouaket
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroun
| | - Nounouce Pamen Bouba
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroun
- Directorate for Disease, Epidemic and Pandemic Control, Yaounde, Cameroon
| | - Serge-Clotaire Billong
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroun
- National HIV Drug Resistance Working Group, Ministry of Public Health, Yaoundé, Cameroun
- Central Technical Group, National AIDS Control Committee, Yaoundé, Cameroun
| | - Rina Djubgang
- Directorate of Pharmacy, Drug and Laboratory, Ministry of Public Health, Yaoundé, Cameroun
| | | | - Samuel Martin Sosso
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
| | - Charles Kouanfack
- Yaoundé Central Hospital, Yaoundé, Cameroun
- Faculty of Medicine and Pharmaceutical Sciences, University de Dschang, Dschang, Cameroon
| | - Anne-Cecile Zoung-Kanyi Bissek
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroun
- National HIV Drug Resistance Working Group, Ministry of Public Health, Yaoundé, Cameroun
- Division of Operational Health Research, Ministry of Public Health, Yaoundé, Cameroun
| | - Emmanuel Eben-Moussi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
| | - Vittorio Colizzi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- University of Rome Tor Vergata, Rome, Italy
- Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Carlo-Federico Perno
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- Bambino Gesu Pediatric Hospital, Rome, Italy
| | | | - Alexis Ndjolo
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Management and Care, Yaoundé, Cameroun
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroun
| |
Collapse
|
8
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
9
|
Ji H, Sandstrom P. Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing. Pathogens 2022; 11:pathogens11070739. [PMID: 35889985 PMCID: PMC9321895 DOI: 10.3390/pathogens11070739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
The close monitoring of HIV drug resistance using genotypic HIV drug resistance testing (HIVDRT) has become essential for effective HIV/AIDS management at both individual and population levels. Over the years, a broad spectrum of analytes or specimens have been applied or attempted in HIVDRT; however, the suitability and performance of these analytes in HIVDRT and the clinical relevance of the results from them may vary significantly. This article provides a focused overview of the performance, strengths, and weaknesses of various analytes while used in HIVDRT, which may inform the optimal analytes selection in different application contexts.
Collapse
Affiliation(s)
- Hezhao Ji
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-6521
| | - Paul Sandstrom
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada;
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Waddington C, Carey ME, Boinett CJ, Higginson E, Veeraraghavan B, Baker S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med 2022; 14:15. [PMID: 35172877 PMCID: PMC8849018 DOI: 10.1186/s13073-022-01020-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health threat, which has been largely driven by the excessive use of antimicrobials. Control measures are urgently needed to slow the trajectory of AMR but are hampered by an incomplete understanding of the interplay between pathogens, AMR encoding genes, and mobile genetic elements at a microbial level. These factors, combined with the human, animal, and environmental interactions that underlie AMR dissemination at a population level, make for a highly complex landscape. Whole-genome sequencing (WGS) and, more recently, metagenomic analyses have greatly enhanced our understanding of these processes, and these approaches are informing mitigation strategies for how we better understand and control AMR. This review explores how WGS techniques have advanced global, national, and local AMR surveillance, and how this improved understanding is being applied to inform solutions, such as novel diagnostic methods that allow antimicrobial use to be optimised and vaccination strategies for better controlling AMR. We highlight some future opportunities for AMR control informed by genomic sequencing, along with the remaining challenges that must be overcome to fully realise the potential of WGS approaches for international AMR control.
Collapse
Affiliation(s)
- Claire Waddington
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Balaji Veeraraghavan
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
11
|
Sarinoglu RC, Sili U, Hasdemir U, Aksu B, Soyletir G, Korten V. Diversity of HIV-1 subtypes and transmitted drug-resistance mutations among minority HIV-1 variants in a Turkish cohort. Curr HIV Res 2021; 20:54-62. [PMID: 34802406 DOI: 10.2174/1570162x19666211119111740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. OBJECTIVE Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. METHODS All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. RESULTS NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates. CONCLUSION The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.
Collapse
Affiliation(s)
- Rabia Can Sarinoglu
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Uluhan Sili
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul. Turkey
| | - Ufuk Hasdemir
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Burak Aksu
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Guner Soyletir
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Volkan Korten
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul. Turkey
| |
Collapse
|
12
|
Fokam J, Ngoufack Jagni Semengue E, Armenia D, Takou D, Dambaya B, Teto G, Chenwi CA, Nka AD, Beloumou GA, Ndjeyep SCD, Tchouaket MCT, Fainguem N, Sosso SM, Colizzi V, Perno CF, Ndjolo A, Ceccherini-Silberstein F, Santoro MM. High performance of integrase genotyping on diverse HIV-1 clades circulating in Cameroon: toward a successful transition to dolutegravir-based regimens in low and middle-income countries. Diagn Microbiol Infect Dis 2021; 102:115574. [PMID: 34864527 DOI: 10.1016/j.diagmicrobio.2021.115574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 11/03/2022]
Abstract
A successful transition to dolutegravir-based regimens in low and middle-income countries (LMICs) requires an integrase genotyping assay effective on diverse HIV-1 clades. We herein developed and validated an in-house integrase genotyping protocol on plasma samples from 195 HIV-infected patients in Cameroon. Median [IQR] viremia was 23,574 (518-109,235) copies/mL; 128/195 participants had ≥1000copies/mL (i.e., WHO-threshold for genotypic resistance testing in LMICs). A total of 18 viral clades were detected: 72(51.1%) CRF02_AG, 38(26.9%) pure subtypes and 31(22.0%) other recombinants. Following WHO-threshold (≥1000copies/ml), sequencing performance was 82.81%(106/128). Regarding viremia, performance was 85.00%(68/80) with ≥100,000copies/mL versus 76.67%(23/30) with 10,000 to 99,999copies/mL (P = 0.22); 83.33%(15/18) with 1,000 to 99,999copies/mL (P = 0.55); 73.68%(14/19) with 500 to 999copies/mL (P = 0.19); 50%(13/26) for 200 to 499copies/mL (P = 0.0005) and 36.36%(8/22) for <200copies/mL (P < 0.0001). The developed in-house integrase-genotyping is highly effective on both pure and recombinant viral clades, even at low-level viremia. This performance underscores its usefulness in monitoring integrase-resistance mutations and supporting the scale-up of dolutegravir-based regimens in LMICs.
Collapse
Affiliation(s)
- Joseph Fokam
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; Faculty of Health Sciences, University of Buea, Buea, Cameroon; Faculty of Medicine and biomedical Sciences, University of Yaounde I, Yaounde, Cameroon.
| | - Ezechiel Ngoufack Jagni Semengue
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; University of Rome Tor Vergata, Rome, Italy; Evangelical University of Cameroon, Bandjoun, Cameroon.
| | - Daniele Armenia
- Saint Camillus International University of Health and Medical Sciences, Rome Italy
| | - Désiré Takou
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon
| | - Béatrice Dambaya
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Georges Teto
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon
| | - Collins Ambe Chenwi
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; Faculty of Medicine and biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Alex Durand Nka
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; University of Rome Tor Vergata, Rome, Italy; Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Grâce Angong Beloumou
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon
| | - Sandrine Claire Djupsa Ndjeyep
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon
| | - Michel Carlos Tommo Tchouaket
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon
| | - Nadine Fainguem
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon
| | - Samuel Martin Sosso
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon
| | - Vittorio Colizzi
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; University of Rome Tor Vergata, Rome, Italy; Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Carlo-Federico Perno
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; Bambino Gesu Children's Hospital, Rome, Italy
| | - Alexis Ndjolo
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; Faculty of Medicine and biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | | | | |
Collapse
|
13
|
Application of next generation sequencing in HIV drug resistance studies in Africa, 2005–2019: A systematic review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Lan Y, Li L, Chen W, Deng X, Li J, Fan Q, Cai X, Cai W, Hu F. Absence of Integrase Inhibitor-Associated Resistance Among Antiretroviral Therapy-Naïve HIV-1-Infected Adults in Guangdong Province, China, in 2018. Infect Drug Resist 2020; 13:4389-4394. [PMID: 33324078 PMCID: PMC7733411 DOI: 10.2147/idr.s284917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Background Antiretroviral therapy (ART) containing an integrase strand transfer inhibitor (INSTI) plus two nucleoside reverse-transcriptase inhibitors has been recommended as a first-line regimen for ART-naïve HIV-1-infected patients in the latest Chinese Guidelines for Diagnosis and Treatment of HIV/AIDS. Objective To determine the prevalence of INSTI-related mutations among ART-naïve HIV-1-infected adults in Guangdong, China, in 2018. Methods The entire integrase gene was amplified from blood plasma. Demographic and epidemiological information was collected. INSTI mutations and antiretroviral susceptibility were interpreted using the Stanford University HIV Drug Resistance Database HIVdb program. Results Of 927 samples, 827 integrase sequences were successfully obtained. Among them, no major resistance mutations to INSTIs were identified, and four accessory mutations, including T97A (0.12%, 1/827), A128T (0.24%, 2/827), E157Q (0.85%, 7/827), and G163R (0.24%, 2/827), were found in twelve individuals. Two patient samples contained the G163R mutation conferring low-level resistance to elvitegravir and raltegravir. Conclusion The overall prevalence of INSTI mutations remains low. Drug resistance mutation testing for the detection of INSTI drug resistance mutations in HIV treatment-naïve patients should be considered due to the circulation of polymorphisms contributing to INSTI resistance and the expected increasing use of this class of drugs.
Collapse
Affiliation(s)
- Yun Lan
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Weilie Chen
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xizi Deng
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Junbin Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qinghong Fan
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoli Cai
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Weiping Cai
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fengyu Hu
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Saha A, Dixit NM. Pre-existing resistance in the latent reservoir can compromise VRC01 therapy during chronic HIV-1 infection. PLoS Comput Biol 2020; 16:e1008434. [PMID: 33253162 PMCID: PMC7728175 DOI: 10.1371/journal.pcbi.1008434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/10/2020] [Accepted: 10/11/2020] [Indexed: 01/26/2023] Open
Abstract
Passive immunization with broadly neutralizing antibodies (bNAbs) of HIV-1 appears a promising strategy for eliciting long-term HIV-1 remission. When administered concomitantly with the cessation of antiretroviral therapy (ART) to patients with established viremic control, bNAb therapy is expected to prolong remission. Surprisingly, in clinical trials on chronic HIV-1 patients, the bNAb VRC01 failed to prolong remission substantially. Identifying the cause of this failure is important for improving VRC01-based therapies and unraveling potential vulnerabilities of other bNAbs. In the trials, viremia resurged rapidly in most patients despite suppressive VRC01 concentrations in circulation, suggesting that VRC01 resistance was the likely cause of failure. ART swiftly halts viral replication, precluding the development of resistance during ART. If resistance were to emerge post ART, virological breakthrough would have taken longer than without VRC01 therapy. We hypothesized therefore that VRC01-resistant strains must have been formed before ART initiation, survived ART in latently infected cells, and been activated during VRC01 therapy, causing treatment failure. Current assays preclude testing this hypothesis experimentally. We developed a mathematical model based on the hypothesis and challenged it with available clinical data. The model integrated within-host HIV-1 evolution, stochastic latency reactivation, and viral dynamics with multiple-dose VRC01 pharmacokinetics. The model predicted that single but not higher VRC01-resistant mutants would pre-exist in the latent reservoir. We constructed a virtual patient population that parsimoniously recapitulated inter-patient variations. Model predictions with this population quantitatively captured data of VRC01 failure from clinical trials, presenting strong evidence supporting the hypothesis. We attributed VRC01 failure to single-mutant VRC01-resistant proviruses in the latent reservoir triggering viral recrudescence, particularly when VRC01 was at trough levels. Pre-existing resistant proviruses in the latent reservoir may similarly compromise other bNAbs. Our study provides a framework for designing bNAb-based therapeutic protocols that would avert such failure and maximize HIV-1 remission. Antiretroviral therapy (ART) can control but not eradicate HIV-1. Stopping ART leads to rapid viral resurgence and progressive disease. ART is therefore administered lifelong. Tremendous efforts are ongoing to devise strategies that will enable stopping ART and yet prevent viral resurgence. One such strategy involves the administration of broadly neutralizing antibodies (bNAbs) of HIV-1 at the time of stopping ART. This strategy is expected to delay if not prevent viral resurgence. Surprisingly, treatment with VRC01, a potent bNAb, resulted in hardly any improvement in viral remission. In this study, we elucidate the cause of this failure. We hypothesized that VRC01-resistant strains may pre-exist in latently infected cells, which are unaffected by ART. They can thus outlast ART and get reactivated, triggering VRC01 failure. We built a detailed mathematical model based on this hypothesis and showed that it quantitatively captured observations of VRC01 failure in clinical trials on chronic HIV-1 patients. Our study thus identifies a potential vulnerability of bNAbs, namely, bNAb-resistant strains pre-existing in latently infected cells. Our model offers a framework for predicting bNAb-based treatment protocols that would preclude failure due to pre-existing resistance and maximally prolong remission.
Collapse
Affiliation(s)
- Ananya Saha
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- * E-mail:
| |
Collapse
|
16
|
Zuo L, Peng K, Hu Y, Xu Q. Genotypic Methods for HIV Drug Resistance Monitoring: The Opportunities and Challenges Faced by China. Curr HIV Res 2020; 17:225-239. [PMID: 31560290 DOI: 10.2174/1570162x17666190927154110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/05/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
AIDS is a globalized infectious disease. In 2014, UNAIDS launched a global project of "90-90-90" to end the HIV epidemic by 2030. The second and third 90 require 90% of HIV-1 infected individuals receiving antiretroviral therapy (ART) and durable virological suppression. However, wide use of ART will greatly increase the emergence and spreading of HIV drug resistance and current HIV drug resistance test (DRT) assays in China are seriously lagging behind, hindering to achieve virological suppression. Therefore, recommending an appropriate HIV DRT method is critical for HIV routine surveillance and prevention in China. In this review, we summarized the current existing HIV drug resistance genotypic testing methods around the world and discussed the advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Lulu Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212002, China.,Pathogen Discovery & Big Data Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; Shanghai 200031, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yihong Hu
- Pathogen Discovery & Big Data Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; Shanghai 200031, China
| | - Qinggang Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212002, China
| |
Collapse
|
17
|
Multi-Laboratory Comparison of Next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping. Viruses 2020; 12:v12070694. [PMID: 32605062 PMCID: PMC7411816 DOI: 10.3390/v12070694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) is increasingly used for HIV-1 drug resistance genotyping. NGS methods have the potential for a more sensitive detection of low-abundance variants (LAV) compared to standard Sanger sequencing (SS) methods. A standardized threshold for reporting LAV that generates data comparable to those derived from SS is needed to allow for the comparability of data from laboratories using NGS and SS. Ten HIV-1 specimens were tested in ten laboratories using Illumina MiSeq-based methods. The consensus sequences for each specimen using LAV thresholds of 5%, 10%, 15%, and 20% were compared to each other and to the consensus of the SS sequences (protease 4-99; reverse transcriptase 38-247). The concordance among laboratories' sequences at different thresholds was evaluated by pairwise sequence comparisons. NGS sequences generated using the 20% threshold were the most similar to the SS consensus (average 99.6% identity, range 96.1-100%), compared to 15% (99.4%, 88.5-100%), 10% (99.2%, 87.4-100%), or 5% (98.5%, 86.4-100%). The average sequence identity between laboratories using thresholds of 20%, 15%, 10%, and 5% was 99.1%, 98.7%, 98.3%, and 97.3%, respectively. Using the 20% threshold, we observed an excellent agreement between NGS and SS, but significant differences at lower thresholds. Understanding how variation in NGS methods influences sequence quality is essential for NGS-based HIV-1 drug resistance genotyping.
Collapse
|
18
|
Chrysostomou AC, Topcu C, Stylianou DC, Hezka J, Kostrikis LG. Development of a new comprehensive HIV-1 genotypic drug resistance assay for all commercially available reverse transcriptase, protease and integrase inhibitors in patients infected with group M HIV-1 strains. INFECTION GENETICS AND EVOLUTION 2020; 81:104243. [PMID: 32061896 DOI: 10.1016/j.meegid.2020.104243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022]
Abstract
Comprehensive PCR assays for the genotypic drug resistance analysis of all HIV-1 antiretroviral agents (reverse transcriptase, protease and integrase inhibitors) are increasingly in demand due to introduction of integrase inhibitors in the first line regimens and the increasing presence of non-B HIV-1 clades around the world. This study focused on the development and evaluation of a new PCR-based assay for the amplification and sequencing of the entire HIV-1 pol region of major circulating group M HIV-1 strains in Europe for genotypic drug resistance analysis. The comprehensive touchdown PCR assay developed in this study utilized HIV-1 RNA extracted from the plasma of blood samples of consenting HIV-1 infected patients in Cyprus, collected from 2017 to 2019. The HIV-1 pol region was amplified by touchdown PCR for both the primary RT-PCR and the secondary PCR steps. Successful PCR amplicons were determined by population DNA sequencing, using the Sanger method and the genotypic drug resistance analysis was performed with the Stanford University HIV Drug Resistance Database Program. The newly developed assay successfully amplified the entire HIV-1 pol region (2844 nucleotides long) of 141 out of 144 samples of group M HIV-1 subtypes and recombinant strains of the Cyprus HIV-1 Transmission Cohort Study (CHICS) isolated from 2017 to 2019 and genotypic analyses were conducted for all currently available HIV-1 reverse transcriptase, protease and integrase inhibitors. The drug resistance, epidemiological and demographic data of these study subjects will be expanded upon in the CHICS (L.G. Kostrikis et al., manuscript in preparation for publication). The newly developed HIV-1 genotypic drug resistance assay would benefit clinical settings, and research focusing on the world-wide spread of HIV-1 drug-resistant strains, especially in geographic regions characterized by polyphyletic HIV-1 infections.
Collapse
Affiliation(s)
- Andreas C Chrysostomou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia 2109, Nicosia, Cyprus
| | - Cicek Topcu
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia 2109, Nicosia, Cyprus
| | - Dora C Stylianou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia 2109, Nicosia, Cyprus
| | - Johana Hezka
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia 2109, Nicosia, Cyprus
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia 2109, Nicosia, Cyprus.
| |
Collapse
|
19
|
Cuypers L, Thijssen M, Shakibzadeh A, Sabahi F, Ravanshad M, Pourkarim MR. Next-generation sequencing for the clinical management of hepatitis C virus infections: does one test fits all purposes? Crit Rev Clin Lab Sci 2019; 56:420-434. [PMID: 31317801 DOI: 10.1080/10408363.2019.1637394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the prospect of viral cure is higher than ever for individuals infected with the hepatitis C virus (HCV) due to ground-breaking progress in antiviral treatment, success rates are still negatively influenced by HCV's high genetic variability. This genetic diversity is represented in the circulation of various genotypes and subtypes, mixed infections, recombinant forms and the presence of numerous drug resistant variants among infected individuals. Common misclassifications by commercial genotyping assays in combination with the limitations of currently used targeted population sequencing approaches have encouraged researchers to exploit alternative methods for the clinical management of HCV infections. Next-generation sequencing (NGS), a revolutionary and powerful tool with a variety of applications in clinical virology, can characterize viral diversity and depict viral dynamics in an ultra-wide and ultra-deep manner. The level of detail it provides makes it the method of choice for the diagnosis and clinical assessment of HCV infections. The sequence library provided by NGS is of a higher magnitude and sensitivity than data generated by conventional methods. Therefore, these technologies are helpful to guide clinical practice and at the same time highly valuable for epidemiological studies. The decreasing costs of NGS to determine genotypes, mixed infections, recombinant strains and drug resistant variants will soon make it feasible to employ NGS in clinical laboratories, to assist in the daily care of patients with HCV.
Collapse
Affiliation(s)
- Lize Cuypers
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Arash Shakibzadeh
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mahmoud Reza Pourkarim
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| |
Collapse
|
20
|
Abstract
Viruses, which are the most abundant biological entities on the planet, have been regarded as the "dark matter" of biology in the sense that despite their ubiquity and frequent presence in large numbers, their detection and analysis are not always straightforward. The majority of them are very small (falling under the limit of 0.5 μm), and collectively, they are extraordinarily diverse. In fact, the majority of the genetic diversity on the planet is found in the so-called virosphere, or the world of viruses. Furthermore, the most frequent viral agents of disease in humans display an RNA genome, and frequently evolve very fast, due to the fact that most of their polymerases are devoid of proofreading activity. Therefore, their detection, genetic characterization, and epidemiological surveillance are rather challenging. This review (part of the Curated Collection on Advances in Molecular Epidemiology of Infectious Diseases) describes many of the methods that, throughout the last few decades, have been used for viral detection and analysis. Despite the challenge of having to deal with high genetic diversity, the majority of these methods still depend on the amplification of viral genomic sequences, using sequence-specific or sequence-independent approaches, exploring thermal profiles or a single nucleic acid amplification temperature. Furthermore, viral populations, and especially those with RNA genomes, are not usually genetically uniform but encompass swarms of genetically related, though distinct, viral genomes known as viral quasispecies. Therefore, sequence analysis of viral amplicons needs to take this fact into consideration, as it constitutes a potential analytic problem. Possible technical approaches to deal with it are also described here. *This article is part of a curated collection.
Collapse
|
21
|
Nucleic acid testing and molecular characterization of HIV infections. Eur J Clin Microbiol Infect Dis 2019; 38:829-842. [PMID: 30798399 DOI: 10.1007/s10096-019-03515-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/14/2019] [Indexed: 01/21/2023]
Abstract
Significant advances have been made in the molecular assays used for the detection of human immunodeficiency virus (HIV), which are crucial in preventing HIV transmission and monitoring disease progression. Molecular assays for HIV diagnosis have now reached a high degree of specificity, sensitivity and reproducibility, and have less operator involvement to minimize risk of contamination. Furthermore, analyses have been developed for the characterization of host gene polymorphisms and host responses to better identify and monitor HIV-1 infections in the clinic. Currently, molecular technologies including HIV quantitative and qualitative assays are mainly based on the polymerase chain reaction (PCR), transcription-mediated amplification (TMA), nucleic acid sequence-based amplification (NASBA), and branched chain (b) DNA methods and widely used for HIV detection and characterization, such as blood screening, point-of-care testing (POCT), pediatric diagnosis, acute HIV infection (AHI), HIV drug resistance testing, antiretroviral (AR) susceptibility testing, host genome polymorphism testing, and host response analysis. This review summarizes the development and the potential utility of molecular assays used to detect and characterize HIV infections.
Collapse
|
22
|
Abstract
The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge,
United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Brittany Rife Magalis
- Institute for Genomics and Evolutionary Medicine, Temple University,
Philadelphia, PA
| | | |
Collapse
|
23
|
Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing. J Clin Microbiol 2018; 56:JCM.00105-18. [PMID: 29618499 DOI: 10.1128/jcm.00105-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 11/20/2022] Open
Abstract
The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.
Collapse
|
24
|
A Bioinformatic Pipeline for Monitoring of the Mutational Stability of Viral Drug Targets with Deep-Sequencing Technology. Viruses 2017; 9:v9120357. [PMID: 29168754 PMCID: PMC5744132 DOI: 10.3390/v9120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022] Open
Abstract
The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.
Collapse
|
25
|
Weber IT, Harrison RW. Decoding HIV resistance: from genotype to therapy. Future Med Chem 2017; 9:1529-1538. [PMID: 28791894 PMCID: PMC5694023 DOI: 10.4155/fmc-2017-0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 01/14/2023] Open
Abstract
Genetic variation in HIV poses a major challenge for prevention and treatment of the AIDS pandemic. Resistance occurs by mutations in the target proteins that lower affinity for the drug or alter the protein dynamics, thereby enabling viral replication in the presence of the drug. Due to the prevalence of drug-resistant strains, monitoring the genotype of the infecting virus is recommended. Computational approaches for predicting resistance from genotype data and guiding therapy are discussed. Many prediction methods rely on rules derived from known resistance-associated mutations, however, statistical or machine learning can improve the classification accuracy and assess unknown mutations. Adding classifiers such as information on the atomic structure of the protein can further enhance the predictions.
Collapse
Affiliation(s)
- Irene T Weber
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA
| | - Robert W Harrison
- Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
26
|
Multimethod Longitudinal HIV Drug Resistance Analysis in Antiretroviral-Therapy-Naive Patients. J Clin Microbiol 2017; 55:2785-2800. [PMID: 28659324 DOI: 10.1128/jcm.00634-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
The global intensification of antiretroviral therapy (ART) can lead to increased rates of HIV drug resistance (HIVDR) mutations in treated and also in ART-naive patients. ART-naive HIV-1-infected patients from Cameroon were subjected to a multimethod HIVDR analysis using amplification-refractory mutation system (ARMS)-PCR, Sanger sequencing, and longitudinal next-generation sequencing (NGS) to determine their profiles for the mutations K103N, Y181C, K65R, M184V, and T215F/Y. We processed 66 ART-naive HIV-1-positive patients with highly diverse subtypes that underlined the predominance of CRF02_AG and the increasing rate of F2 and other recombinant forms in Cameroon. We compared three resistance testing methods for 5 major mutation sites. Using Sanger sequencing, the overall prevalence of HIVDR mutations was 7.6% (5/66) and included all studied mutations except K65R. Comparing ARMS-PCR with Sanger sequencing as a reference, we obtained a sensitivity of 100% (5/5) and a specificity of 95% (58/61), caused by three false-positive calls with ARMS-PCR. For 32/66 samples, we obtained NGS data and we observed two additional mismatches made up of minority variants (7% and 18%) that might not be clinically relevant. Longitudinal NGS analyses revealed changes in HIVDR mutations in all five positive subjects that could not be attributed to treatment. In one of these cases, superinfection led to the temporary masking of a resistant virus. HIVDR mutations can be sensitively detected by ARMS-PCR and sequencing methods with comparable performances. Longitudinal changes in HIVDR mutations have to be considered even in the absence of treatment.
Collapse
|
27
|
Shagin DA, Turchaninova MA, Shagina IA, Shugay M, Zaretsky AR, Zueva OI, Bolotin DA, Lukyanov S, Chudakov DM. Application of nonsense-mediated primer exclusion (NOPE) for preparation of unique molecular barcoded libraries. BMC Genomics 2017; 18:440. [PMID: 28583065 PMCID: PMC5460480 DOI: 10.1186/s12864-017-3815-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background Recently we proposed efficient method to exclude undesirable primers at any stage of amplification reaction, here termed NOPE (NOnsense-mediated Primer Exclusion). According to this method, added oligonucleotide overlapping with the 3′-end of unwanted amplification primer (NOPE oligo) simultaneously provides a template for its elongation. This elongation disrupts specificity of unwanted primer, preventing its further participation in PCR. The suggested approach allows to rationally manage the course of PCR reactions in order to facilitate analysis of complex DNA mixtures as well as to perform multistage PCR bypassing intermediate purification steps. Results Here we apply NOPE method to DNA library preparation for the high-throughput sequencing (HTS) with the PCR-based introduction of unique molecular identifiers (UMI). We show that NOPE oligo efficiently neutralizes UMI-containing oligonucleotides after introduction of UMI into sample DNA molecules, thus allowing to proceed with further amplification steps without purification and associated loss of starting material. At the same time, NOPE oligo does not affect the efficiency of target PCR amplification. Conclusion We describe a simple, robust and cheap modification of UMI-labeled HTS libraries preparation procedure, that allows to bypass purification step and thus to preserve starting material which may be limited, e.g. circulating tumor DNA, circulating fetal DNA, or small amounts of isolated cells of interest. Furthermore, demonstrated simplicity and robustness of NOPE method should make it popular in various PCR protocols.
Collapse
Affiliation(s)
- Dmitriy A Shagin
- Pirogov Russian National Research Medical University, Moscow, Russia.,Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Maria A Turchaninova
- Pirogov Russian National Research Medical University, Moscow, Russia.,Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Irina A Shagina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Mikhail Shugay
- Pirogov Russian National Research Medical University, Moscow, Russia.,Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrew R Zaretsky
- Pirogov Russian National Research Medical University, Moscow, Russia.,Evrogen JSC, Moscow, Russia
| | - Olga I Zueva
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy A Bolotin
- Pirogov Russian National Research Medical University, Moscow, Russia.,Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy M Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia. .,Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic. .,Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
28
|
MAGERI: Computational pipeline for molecular-barcoded targeted resequencing. PLoS Comput Biol 2017; 13:e1005480. [PMID: 28475621 PMCID: PMC5419444 DOI: 10.1371/journal.pcbi.1005480] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.
Collapse
|
29
|
Abstract
Whole-genome sequencing (WGS) of pathogens is becoming increasingly important not only for basic research but also for clinical science and practice. In virology, WGS is important for the development of novel treatments and vaccines, and for increasing the power of molecular epidemiology and evolutionary genomics. In this Opinion article, we suggest that WGS of viruses in a clinical setting will become increasingly important for patient care. We give an overview of different WGS methods that are used in virology and summarize their advantages and disadvantages. Although there are only partially addressed technical, financial and ethical issues in regard to the clinical application of viral WGS, this technique provides important insights into virus transmission, evolution and pathogenesis.
Collapse
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Infection, UK; and the Division of Biological Anthropology, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, University of Cambridge, Cambridge CB2 3QG, UK.,
- and the Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK.,
| | - Mathew A. Beale
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
- and at Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,
| |
Collapse
|
30
|
Parikh UM, McCormick K, van Zyl G, Mellors JW. Future technologies for monitoring HIV drug resistance and cure. Curr Opin HIV AIDS 2017; 12:182-189. [PMID: 28059958 PMCID: PMC6738332 DOI: 10.1097/coh.0000000000000344] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Sensitive, scalable and affordable assays are critically needed for monitoring the success of interventions for preventing, treating and attempting to cure HIV infection. This review evaluates current and emerging technologies that are applicable for both surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist despite antiretroviral therapy and are obstacles to curing HIV infection. RECENT FINDINGS Next-generation sequencing (NGS) has the potential to be adapted into high-throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact proviruses and to characterize HIV integration sites and clonal expansions of infected cells. SUMMARY Current population genotyping methods for resistance monitoring are high cost and low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried blood spots), has considerable potential to broaden global surveillance and patient monitoring for HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of experimental 'curative' interventions on HIV reservoirs.
Collapse
Affiliation(s)
- Urvi M Parikh
- aDivision of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA bDivision of Medical Virology, Stellenbosch University and NHLS Tygerberg, Cape Town, South Africa
| | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To review current data on HIV-1 resistance arising from the use of fixed dose combination tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) for preexposure prophylaxis (PrEP) to prevent HIV-1 infection. RECENT FINDINGS Resistance to tenofovir (TNV) or FTC is infrequently selected by TDF/FTC PrEP if started before HIV-1 infection has occurred, but is much more common when inadvertently started during undiagnosed acute infection. Mathematical modeling predicts that the number of HIV-1 infections averted by the use of PrEP far exceeds the increase in drug-resistant infections that could occur from PrEP. Studies in macaques show that TNV-resistant virus but not FTC-resistant virus can cause breakthrough infection despite TDF/FTC PrEP. FTC resistance with M184 V/I occurs more frequently than TFV resistance with K65R in seroconverters from clinical trials of TDF/FTC PrEP. SUMMARY The benefit of preventing HIV-1 infections with TDF/FTC PrEP far outweighs the risk of drug-resistant infection, provided PrEP is not started in persons with undiagnosed HIV-1 infection. We should respect but not fear HIV-1 resistance from TDF/FTC PrEP and recognize that most TNV or FTC resistance will arise from its use for antiretroviral therapy (ART). Preventing ART failure or detecting it early is most important for preventing the spread of HIV-1 resistance to TDF/FTC and preserving its effectiveness for both PrEP and ART.
Collapse
|
32
|
Paraskevis D, Nikolopoulos GK, Magiorkinis G, Hodges-Mameletzis I, Hatzakis A. The application of HIV molecular epidemiology to public health. INFECTION GENETICS AND EVOLUTION 2016; 46:159-168. [PMID: 27312102 DOI: 10.1016/j.meegid.2016.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
HIV is responsible for one of the largest viral pandemics in human history. Despite a concerted global response for prevention and treatment, the virus persists. Thus, urgent public health action, utilizing novel interventions, is needed to prevent future transmission events, critical to eliminating HIV. For public health planning to prove effective and successful, we need to understand the dynamics of regional epidemics and to intervene appropriately. HIV molecular epidemiology tools as implemented in phylogenetic, phylodynamic and phylogeographic analyses have proven to be powerful tools in public health planning across many studies. Numerous applications with HIV suggest that molecular methods alone or in combination with mathematical modelling can provide inferences about the transmission dynamics, critical epidemiological parameters (prevalence, incidence, effective number of infections, Re, generation times, time between infection and diagnosis), or the spatiotemporal characteristics of epidemics. Molecular tools have been used to assess the impact of an intervention and outbreak investigation which are of great public health relevance. In some settings, molecular sequence data may be more readily available than HIV surveillance data, and can therefore allow for molecular analyses to be conducted more easily. Nonetheless, classic methods have an integral role in monitoring and evaluation of public health programmes, and should supplement emerging techniques from the field of molecular epidemiology. Importantly, molecular epidemiology remains a promising approach in responding to viral diseases.
Collapse
Affiliation(s)
- D Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - G K Nikolopoulos
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| | - G Magiorkinis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, United Kingdom
| | | | - A Hatzakis
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| |
Collapse
|
33
|
Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing. Viruses 2016; 8:v8010012. [PMID: 26751471 PMCID: PMC4728572 DOI: 10.3390/v8010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure—from nucleic acid extraction to sequencing—should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping.
Collapse
|
34
|
Can we design drugs for HIV/AIDS that are less susceptible to resistance? Future Med Chem 2015; 7:2301-4. [DOI: 10.4155/fmc.15.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|