1
|
Onisiforou A, Charalambous EG, Zanos P. Shattering the Amyloid Illusion: The Microbial Enigma of Alzheimer's Disease Pathogenesis-From Gut Microbiota and Viruses to Brain Biofilms. Microorganisms 2025; 13:90. [PMID: 39858858 PMCID: PMC11767882 DOI: 10.3390/microorganisms13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
For decades, Alzheimer's Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology. Although a definitive causal link remains unestablished, the collective evidence is compelling. This review explores unconventional perspectives and emerging paradigms regarding microbial involvement in AD pathogenesis, emphasizing the gut-brain axis, brain biofilms, the oral microbiome, and viral infections. Transgenic mouse models show that gut microbiota dysregulation precedes brain Aβ accumulation, emphasizing gut-brain signaling pathways. Viral infections like Herpes Simplex Virus Type 1 (HSV-1) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may lead to AD by modulating host processes like the immune system. Aβ peptide's antimicrobial function as a response to microbial infection might inadvertently promote AD. We discuss potential microbiome-based therapies as promising strategies for managing and potentially preventing AD progression. Fecal microbiota transplantation (FMT) restores gut microbial balance, reduces Aβ accumulation, and improves cognition in preclinical models. Probiotics and prebiotics reduce neuroinflammation and Aβ plaques, while antiviral therapies targeting HSV-1 and vaccines like the shingles vaccine show potential to mitigate AD pathology. Developing effective treatments requires standardized methods to identify and measure microbial infections in AD patients, enabling personalized therapies that address individual microbial contributions to AD pathogenesis. Further research is needed to clarify the interactions between microbes and Aβ, explore bacterial and viral interplay, and understand their broader effects on host processes to translate these insights into clinical interventions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Eleftheria G. Charalambous
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 1–2, Ellernholzstr., 17489 Greifswald, Germany
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| |
Collapse
|
2
|
Moreno-Corona NC, López-Ortega O, Pérez-Martínez CA, Martínez-Castillo M, De Jesús-González LA, León-Reyes G, León-Juárez M. Dynamics of the Microbiota and Its Relationship with Post-COVID-19 Syndrome. Int J Mol Sci 2023; 24:14822. [PMID: 37834270 PMCID: PMC10573029 DOI: 10.3390/ijms241914822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Coronavirus disease (COVID-19) is an infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can be asymptomatic or present with multiple organ dysfunction. Many infected individuals have chronic alterations associated with neuropsychiatric, endocrine, gastrointestinal, and musculoskeletal symptoms, even several months after disease onset, developing long-COVID or post-acute COVID-19 syndrome (PACS). Microbiota dysbiosis contributes to the onset and progression of many viral diseases, including COVID-19 and post-COVID-19 manifestations, which could serve as potential diagnostic and prognostic biomarkers. This review aimed to discuss the most recent findings on gut microbiota dysbiosis and its relationship with the sequelae of PACS. Elucidating these mechanisms could help develop personalized and non-invasive clinical strategies to identify individuals at a higher risk of experiencing severe disease progression or complications associated with PACS. Moreover, the review highlights the importance of targeting the gut microbiota composition to avoid dysbiosis and to develop possible prophylactic and therapeutic measures against COVID-19 and PACS in future studies.
Collapse
Affiliation(s)
- Nidia Carolina Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France;
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, 75015 Paris, France;
| | | | - Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), México City 16610, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico
| |
Collapse
|
3
|
Adeniyi-Ipadeola G, Nwanosike H, Ramani S. Human intestinal organoids as models to study enteric bacteria and viruses. Curr Opin Microbiol 2023; 75:102362. [PMID: 37536261 PMCID: PMC10529792 DOI: 10.1016/j.mib.2023.102362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Laboratory studies of host-microbe interactions have historically been carried out using transformed cell lines and animal models. Although much has been learned from these models, recent advances in the development of multicellular, physiologically active, human intestinal organoid (HIO) cultures are allowing unprecedented discoveries of host-microbe interactions. Here, we review recent literature using HIOs as models to investigate the pathogenesis of clinically important enteric bacteria and viruses and study commensal intestinal microbes. We also discuss limitations of current HIO culture systems and how technical advances and innovative engineering approaches are providing new directions to improve the model. The studies discussed here highlight the potential of HIOs for studying microbial pathogenesis, host-microbe interactions, and for preclinical development of therapeutics and vaccines.
Collapse
Affiliation(s)
- Grace Adeniyi-Ipadeola
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Hephzibah Nwanosike
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Xie J, Li H, Zhang X, Yang T, Yue M, Zhang Y, Chen S, Cui N, Yuan C, Li J, Zhu SJ, Liu W. Akkermansia muciniphila protects mice against an emerging tick-borne viral pathogen. Nat Microbiol 2023; 8:91-106. [PMID: 36604506 DOI: 10.1038/s41564-022-01279-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/26/2022] [Indexed: 01/07/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by a phlebovirus in the Bunyaviridae family. Infection can result in systemic inflammatory response syndrome with a high fatality rate, and there are currently no treatments or vaccines available. The microbiota has been implicated in host susceptibility to systemic viral infection and disease outcomes, but whether the gut microbiota is implicated in severe fever with thrombocytopenia syndrome virus (SFTSV) infection is unknown. Here, we analysed faecal and serum samples from patients with SFTS using 16S ribosomal RNA-sequencing and untargeted metabolomics, respectively. We found that the gut commensal Akkermansia muciniphila increased in relative abundance over the course of infection and was reduced in samples from deceased patients. Using germ-free or oral antibiotic-treated mice, we found that A. muciniphila produces the β-carboline alkaloid harmaline, which protects against SFTSV infection by suppressing NF-κB-mediated systemic inflammation. Harmaline indirectly modulated the virus-induced inflammatory response by specifically enhancing bile acid-CoA: amino acid N-acyltransferase expression in hepatic cells to increase conjugated primary bile acids, glycochenodeoxycholic acid and taurochenodeoxycholic acid. These bile acids induced transmembrane G-protein coupled receptor-5-dependent anti-inflammatory responses. These results indicate the probiotic potential of A. muciniphila in mitigating SFTSV infection.
Collapse
Affiliation(s)
- Jinyan Xie
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Mengjia Yue
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Yunfa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shuxian Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Ning Cui
- The 990 Hospital, People's Liberation Army, Xinyang, P. R. China
| | - Chun Yuan
- The 990 Hospital, People's Liberation Army, Xinyang, P. R. China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shu Jeffrey Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China.
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
- School of Public Health, Peking University, Beijing, P. R. China.
| |
Collapse
|
5
|
Domínguez-Avila JA, Salazar-López NJ, Montiel-Herrera M, Martínez-Martínez A, Villegas-Ochoa MA, González-Aguilar GA. Phenolic compounds can induce systemic and central immunomodulation, which result in a neuroprotective effect. J Food Biochem 2022; 46:e14260. [PMID: 35633197 DOI: 10.1111/jfbc.14260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 01/13/2023]
Abstract
Inflammation may negatively impact health, particularly that of the central nervous system. Phenolic compounds are bioactive molecules present in fruits and vegetables with potential anti-inflammatory effects. The purpose of the present work is to review the immunomodulatory bioactivities of phenolic compounds in the periphery and in the central nervous system. Results show that various types of phenolics are able to counter diet- or pathogen-induced systemic inflammation (among others) in various models. In vitro data show significant effects of flavonoids and phenolic acids in particular; similar bioactivities were reported in vivo, when administering them as pure compounds or from fruit and vegetable extracts that contain them. In the central nervous system, phenolics counter chronic inflammation and aggressive acute inflammatory processes, such as ischemic events, when administered preemptively and even therapeutically. We therefore conclude that the immunomodulatory potential of phenolic compounds can maintain an adequate immune response; their regular consumption should therefore be prioritized in order to maintain health. PRACTICAL APPLICATIONS: The immune response must be carefully regulated in order to avoid its deleterious effects. The present work highlights how phenolic compounds, dietary components ubiquitous in everyday diet, are able to maintain it within an adequate range. As humans are exposed to more proinflammatory stimuli (inadequate dietary pattern, mental stress, environmental pollution, chronic diseases, etc.), it becomes necessary to counter them, and consuming adequate amounts of foods that contain compounds with this ability is a rather simple strategy. Thus, the present work highlights how fruits and vegetables can help to maintain an adequate immune response that can preserve systemic health and that of the central nervous system. Furthermore, specific compounds contained in them can also be ideal candidates for additional in-depth studies, which can potentially lead to the development of potent, targeted, and safe anti-inflammatory molecules.
Collapse
Affiliation(s)
| | - Norma J Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.,Universidad Autónoma de Baja California, Facultad de Medicina Mexicali, Mexicali, Mexico
| | | | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Mexico
| | | | | |
Collapse
|
6
|
Yin HC, Liu ZD, Zhang WW, Yang QZ, Yu TF, Jiang XJ. Chicken intestinal microbiota modulation of resistance to nephropathogenic infectious bronchitis virus infection through IFN-I. MICROBIOME 2022; 10:162. [PMID: 36192807 PMCID: PMC9527382 DOI: 10.1186/s40168-022-01348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mammalian intestinal microbiomes are necessary for antagonizing systemic viral infections. However, very few studies have identified whether poultry commensal bacteria play a crucial role in protecting against systemic viral infections. Nephropathogenic infectious bronchitis virus (IBV) is a pathogenic coronavirus that causes high morbidity and multiorgan infection tropism in chickens. RESULTS In this study, we used broad-spectrum oral antibiotics (ABX) to treat specific pathogen free (SPF) chickens to deplete the microbiota before infection with nephropathogenic IBV to analyze the impact of microbiota on IBV infections in vivo. Depletion of the SPF chicken microbiota increases pathogenicity and viral burden following IBV infection. The gnotobiotic chicken infection model further demonstrated that intestinal microbes are resistant to nephropathogenic IBV infection. In addition, ABX-treated chickens showed a severe reduction in macrophage activation, impaired type I IFN production, and IFN-stimulated gene expression in peripheral blood mononuclear cells and the spleen. Lactobacillus isolated from SPF chickens could restore microbiota-depleted chicken macrophage activation and the IFNAR-dependent type I IFN response to limit IBV infection. Furthermore, exopolysaccharide metabolites of Lactobacillus spp. could induce IFN-β. CONCLUSIONS This study revealed the resistance mechanism of SPF chicken intestinal microbiota to nephropathogenic IBV infection, providing new ideas for preventing and controlling nephropathogenic IBV. Video abstract.
Collapse
Affiliation(s)
- Hai-Chang Yin
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Zhen-Dong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Wei-Wei Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Qing-Zhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Tian-Fei Yu
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
| | - Xin-Jie Jiang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
7
|
Bhar S, Zhao G, Bartel JD, Sterchele H, Del Mazo A, Emerson LE, Edelmann MJ, Jones MK. Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses. Front Immunol 2022; 13:909949. [PMID: 35990695 PMCID: PMC9386532 DOI: 10.3389/fimmu.2022.909949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human norovirus is the primary cause of non-bacterial gastroenteritis globally and is the second leading cause of diarrheal deaths in children in developing countries. However, effective therapeutics which prevent or clear norovirus infection are not yet available due to a lack of understanding regarding norovirus pathogenesis. Evidence shows that noroviruses can bind to the surface of commensal bacteria, and the presence of these bacteria alters both acute and persistent murine norovirus infection through the modulation of host immune responses. Interestingly, norovirus-bacterial interactions also affect the bacteria by inducing bacterial stress responses and increasing the production of bacterial extracellular vesicles. Given the established ability of these vesicles to easily cross the intestinal barriers, enter the lamina propria, and modulate host responses, we hypothesized that bacterial extracellular vesicles influence murine norovirus infection through modulation of the antiviral immune response. In this study, we show that murine norovirus can attach to purified bacterial vesicles, facilitating co-inoculation of target cells with both virus and vesicle. Furthermore, we have found that when murine noroviruses and vesicles are used to co-inoculate macrophages, viral infection is reduced compared to virus infection alone. Specifically, co-inoculation with bacterial vesicles results in higher production and release of pro-inflammatory cytokines in response to viral infection. Ultimately, given that murine norovirus infection increases bacterial vesicle production in vivo, these data indicate that bacterial vesicles may serve as a mechanism by which murine norovirus infection is ultimately controlled and limited to a short-term disease.
Collapse
|
8
|
Bao S, Wang H, Li W, Ji L, Wang X, Shen Q, Yang S, Zhou C, Zhang W. Dynamic alterations of the mice gut virome after Coxsackievirus B3 infection. J Med Virol 2022; 94:4959-4969. [PMID: 35718835 DOI: 10.1002/jmv.27946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The gut microbiome plays an essential role in the human health and dysbiosis has been implicated in numerous diseases. Coxsackievirus B3 infects millions of humans yearly and yet limited research has explored dynamic alterations of the gut virome after infection. Here, we established the mouse model of Coxsackievirus B3 infection and collected fecal samples at several time points to investigate alterations of the gut virome using viral metagenomic analysis. We found that the mice virome was dominated by Caudovirales and Microviridae, and phylogenetic analyses showed that both Caudovirales and Microviridae had high diversity. The gut virome had significant variations with the increase of Caudovirales and the decrease of Microviridae after infection. We proposed that Caudovirales and Microviridae may be biomarkers for the Coxsackievirus infection process. This study provides a reference for the dynamic changes of the gut virome after human Enterovirus infection, which may help guide the rational drug use in clinical treatment and provide new ideas for preventing Enterovirus infection.
Collapse
Affiliation(s)
- Siwen Bao
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Likai Ji
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Wen Zhang
- Department of Microbiology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Peters CE, Carette JE. Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 2021; 13:v13020166. [PMID: 33499355 PMCID: PMC7911124 DOI: 10.3390/v13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses are among the most common human infectious agents. While infections are often mild, the severe neuropathogenesis associated with recent outbreaks of emerging non-polio enteroviruses, such as EV-A71 and EV-D68, highlights their continuing threat to public health. In recent years, our understanding of how non-polio enteroviruses co-opt cellular pathways has greatly increased, revealing intricate host-virus relationships. In this review, we focus on newly identified mechanisms by which enteroviruses hijack the cellular machinery to promote their replication and spread, and address their potential for the development of host-directed therapeutics. Specifically, we discuss newly identified cellular receptors and their contribution to neurotropism and spread, host factors required for viral entry and replication, and recent insights into lipid acquisition and replication organelle biogenesis. The comprehensive knowledge of common cellular pathways required by enteroviruses could expose vulnerabilities amenable for host-directed therapeutics against a broad spectrum of enteroviruses. Since this will likely include newly arising strains, it will better prepare us for future epidemics. Moreover, identifying host proteins specific to neurovirulent strains may allow us to better understand factors contributing to the neurotropism of these viruses.
Collapse
|