1
|
Zhang D, Wang J, Wu H, Chen Q. Picroside II disrupts IBDV replication via targeting VP1 polymerase. Vet Microbiol 2024; 296:110191. [PMID: 39032445 DOI: 10.1016/j.vetmic.2024.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Infectious bursal disease virus (IBDV) is a highly contagious virus with a dsRNA genome, predominantly infecting chickens and causing significant economic losses due to high mortality rates. The emergence of recombinant, novel variant, and highly virulent strains that evade current vaccines has led to frequent epidemics and outbreaks in the poultry industry. The lack of targeted antivirals for IBDV underscores the pressing requirement to develop potent therapeutic options. Within this framework, our research investigated the effectiveness of picroside II, a naturally derived iridoid glycoside, against viruses in DF-1 cells. Our findings demonstrate that picroside II significantly inhibits viral replication, with its efficacy increasing proportionally to the dosage administered. Through time-addition and antiviral duration analysis, we determined that picroside II therapeutically blocks IBDV replication, with its effects persisting for over 72 hours. Further investigation revealed that picroside II specifically inhibits the cellular replication stage of IBDV's lifecycle. Additionally, our findings indicate that picroside II impairs VP1 polymerase activity by binding to the active pocket, which significantly disrupts the interaction between VP1 and VP3. Mutations at three critical binding sites on VP1 not only impair virus replication but also hinder polymerase function and disrupt VP1-VP3 interactions. Collectively, these results demonstrate that picroside II, by inhibiting viral polymerase activity, represents a promising antiviral agent against IBDV.
Collapse
Affiliation(s)
- Donghu Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China; Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning 110001, P R China
| | - Jing Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Qili Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
2
|
Cavina L, Bouma MJ, Gironés D, Feiters MC. Orthoflaviviral Inhibitors in Clinical Trials, Preclinical In Vivo Efficacy Targeting NS2B-NS3 and Cellular Antiviral Activity via Competitive Protease Inhibition. Molecules 2024; 29:4047. [PMID: 39274895 PMCID: PMC11396989 DOI: 10.3390/molecules29174047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.
Collapse
Affiliation(s)
- Lorenzo Cavina
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Mathijs J. Bouma
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Daniel Gironés
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
- Protinhi Therapeutics, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | - Martin C. Feiters
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| |
Collapse
|
3
|
Pan Q, Chen Q, Zhang W, Jiao H, Yu L, Hu H. Structural Insights into the Dynamic Assembly of a YFV sNS1 Tetramer. Viruses 2024; 16:1212. [PMID: 39205186 PMCID: PMC11359903 DOI: 10.3390/v16081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024] Open
Abstract
Yellow fever virus (YFV) infections can cause severe diseases in humans, resulting in mass casualties in Africa and the Americas each year. Secretory NS1 (sNS1) is thought to be used as a diagnostic marker of flavivirus infections, playing an essential role in the flavivirus life cycle, but little is known about the composition and structure of YFV sNS1. Here, we present that the recombinant YFV sNS1 exists in a heterogeneous mixture of oligomerizations, predominantly in the tetrameric form. The cryoEM structures show that the YFV tetramer of sNS1 is stacked by the hydrophobic interaction between β-roll domains and greasy fingers. According to the 3D variability analysis, the tetramer is in a semi-stable state that may contain multiple conformations with dynamic changes. We believe that our study provides critical insights into the oligomerization of NS1 and will aid the development of NS1-based diagnoses and therapies.
Collapse
Affiliation(s)
- Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Qiang Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Wanqin Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| | - Lei Yu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Q.P.); (Q.C.); (W.Z.); (H.J.)
| |
Collapse
|
4
|
Anindita PD, Otsuka Y, Lattmann S, Ngo KH, Liew CW, Kang C, Harris RS, Scampavia L, Spicer TP, Luo D. A high-throughput cell-based screening method for Zika virus protease inhibitor discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100164. [PMID: 38796112 DOI: 10.1016/j.slasd.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Zika virus (ZIKV) continues to pose a significant global public health threat, with recurring regional outbreaks and potential for pandemic spread. Despite often being asymptomatic, ZIKV infections can have severe consequences, including neurological disorders and congenital abnormalities. Unfortunately, there are currently no approved vaccines or antiviral drugs for the prevention or treatment of ZIKV. One promising target for drug development is the ZIKV NS2B-NS3 protease due to its crucial role in the virus life cycle. In this study, we established a cell-based ZIKV protease inhibition assay designed for high-throughput screening (HTS). Our assay relies on the ZIKV protease's ability to cleave a cyclised firefly luciferase fused to a natural cleavage sequence between NS2B and NS3 protease within living cells. We evaluated the performance of our assay in HTS setting using the pharmacologic controls (JNJ-40418677 and MK-591) and by screening a Library of Pharmacologically Active Compounds (LOPAC). The results confirmed the feasibility of our assay for compound library screening to identify potential ZIKV protease inhibitors.
Collapse
Affiliation(s)
- Paulina Duhita Anindita
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Yuka Otsuka
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, FL, United States
| | - Simon Lattmann
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Khac Huy Ngo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - CongBao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States
| | - Louis Scampavia
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, FL, United States
| | - Timothy P Spicer
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, FL, United States.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore.
| |
Collapse
|
5
|
Feng Y. Recent advances in the study of zika virus structure, drug targets, and inhibitors. Front Pharmacol 2024; 15:1418516. [PMID: 39011504 PMCID: PMC11246971 DOI: 10.3389/fphar.2024.1418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Zika Virus (ZIKV) is a positive-strand RNA virus that can lead to Guillain-Barré syndrome or encephalitis in some individuals and hence presents a serious public health risk. Since the first outbreak of ZIKV in Brazil in 2015, no effective clinical inhibitors have been developed, making the development of effective ZIKV drugs an urgent issue that needs to be addressed. ZIKV belongs to the Flaviviridae family, and its structure includes three structural proteins, namely, capsular (C), premembrane (prM), and envelope (E) proteins, as well as seven nonstructural proteins, namely, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. To provide a reference for the development of future ZIKV drugs, this paper reviews the structure of the ZIKV based on recent literature reports, analyzes the potential therapeutic targets of various proteins, and proposes feasible drug design strategies. Additionally, this paper reviews and classifies the latest research progress on several protease inhibitors, such as E protein inhibitors, NS2B-NS3 inhibitors, and NS5 inhibitors, so that researchers can quickly understand the current status of development and the interconnections among these inhibitors.
Collapse
Affiliation(s)
- Yingqi Feng
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
6
|
Alvin Chew BL, Pan Q, Hu H, Luo D. Structural biology of flavivirus NS1 protein and its antibody complexes. Antiviral Res 2024; 227:105915. [PMID: 38777094 DOI: 10.1016/j.antiviral.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore, 636921; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921.
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore, 636921; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921; National Centre for Infectious Diseases, Singapore, 308442, Singapore.
| |
Collapse
|
7
|
Surya W, Honey SS, Torres J. Flavivirus Zika NS4A protein forms large oligomers in liposomes and in mild detergent. Sci Rep 2024; 14:12533. [PMID: 38822066 PMCID: PMC11143224 DOI: 10.1038/s41598-024-63407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
In flaviviruses such as Dengue or Zika, non-structural (NS) NS4A protein forms homo-oligomers, participates in membrane remodelling and is critical for virulence. In both viruses, mature NS4A has the same length and three predicted hydrophobic domains. The oligomers formed by Dengue NS4A are reported to be small (n = 2, 3), based on denaturing SDS gels, but no high-resolution structure of a flavivirus NS4A protein is available, and the size of the oligomer in lipid membranes is not known. Herein we show that crosslinking Zika NS4A protein in lipid membranes results in oligomers at least up to hexamers. Further, sedimentation velocity shows that NS4A in mild detergent C14-betaine appears to be in fast equilibrium between at least two species, where one is smaller, and the other larger, than a trimer or a tetramer. Consistently, sedimentation equilibrium data was best fitted to a model involving an equilibrium between dimers (n = 2) and hexamers (n = 6). Overall, the large, at least hexameric, oligomers obtained herein in liposomes and in mild detergent are more likely to represent the forms of NS4A present in cell membranes.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Shwe Sin Honey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
8
|
Alhazmi AY, Khan FR, Rehman ZU, Hazazi A, Alotaibi BS, Alharthi NS, Alhuthali HM, Aba Alkhayl FF, Alshehri FF, Alkhoshaiban A, Al-Otaibi F. Structural and energetic analysis of NS5 protein inhibition by small molecules in Japanese encephalitis virus using machine learning and steered molecular dynamics approach. J Biomol Struct Dyn 2024:1-18. [PMID: 38407246 DOI: 10.1080/07391102.2024.2316767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
One of the viral diseases that affect millions of people around the world, particularly in developing countries, is Japanese encephalitis (JE). In this study, the conserved protein of this virus, that is, non-structural protein 5 (NS5), was used as a target protein for this study, and a compound library of 749 antiviral molecules was screened against NS5. The current study employed machine learning-based virtual screening combined with molecular docking. Here, three hits (24360, 123519051 and 213039) had lower binding energies (< -8 kcal/mol) than the control, S-Adenosyl-L-homocysteine (SAH). All the compounds showed significant H-bond interactions with functional residues, which were also observed by the control. Molecular dynamics simulation, MM/GBSA for binding free energy analysis, principal component analysis and free energy landscape were also performed to study the stability of the complex formation. All three compounds had similar root mean square deviation trends, which were comparable to the control, SAH. Post-MD, the 123519051-receptor complex had the highest number of H-bonds (4 to 5) after the control, out of which three exhibited the highest percentage occupancy (50%, 24% and 79%). Both docking and MD, 123519051 showed an H-bond with the residue Gly111, which was also found for the control-protein complex. 123519051 showed the lowest binding free energy with ΔGbind of -89 kJ/mol. Steered molecular dynamics depicted that 123519051 had the maximum magnitude of dissociation (1436.43 kJ/mol/nm), which was more than the control, validating its stable complex formation. This study concluded that 123519051 is a binder and could inhibit the protein NS5 of JE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdulfattah Y Alhazmi
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences - AlQuwayiyah, Shaqra University, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences - AlQuwayiyah, Shaqra University, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory. College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudia Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | | | - Faisal Al-Otaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Saudi Arabia
| |
Collapse
|
9
|
Monath TP. Japanese Encephalitis: Risk of Emergence in the United States and the Resulting Impact. Viruses 2023; 16:54. [PMID: 38257754 PMCID: PMC10820346 DOI: 10.3390/v16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Japanese encephalitis virus is a mosquito-borne member of the Flaviviridae family. JEV is the leading cause of viral encephalitis in Asia and is characterized by encephalitis, high lethality, and neurological sequelae in survivors. The virus also causes severe disease in swine, which are an amplifying host in the transmission cycle, and in horses. US agricultural authorities have recently recognized the threat to the swine industry and initiated preparedness activities. Other mosquito-borne viruses exotic to the Western Hemisphere have been introduced and established in recent years, including West Nile, Zika, and chikungunya viruses, and JEV has recently invaded continental Australia for the first time. These events amply illustrate the potential threat of JEV to US health security. Susceptible indigenous mosquito vectors, birds, feral and domestic pigs, and possibly bats, constitute the receptive ecological ingredients for the spread of JEV in the US. Fortunately, unlike the other virus invaders mentioned above, an inactivated whole virus JE vaccine (IXIARO®) has been approved by the US Food and Drug Administration for human use in advance of a public health emergency, but there is no veterinary vaccine. This paper describes the risks and potential consequences of the introduction of JEV into the US, the need to integrate planning for such an event in public health policy, and the requirement for additional countermeasures, including antiviral drugs and an improved single dose vaccine that elicits durable immunity in both humans and livestock.
Collapse
Affiliation(s)
- Thomas P Monath
- Quigley BioPharma LLC, 114 Water Tower Plaza No. 1042, Leominster, MA 01453, USA
| |
Collapse
|
10
|
Zhang S, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Zhang L, Yu Y, Chen S, Cheng A. Secretory pathways and multiple functions of nonstructural protein 1 in flavivirus infection. Front Immunol 2023; 14:1205002. [PMID: 37520540 PMCID: PMC10372224 DOI: 10.3389/fimmu.2023.1205002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The genus Flavivirus contains a wide variety of viruses that cause severe disease in humans, including dengue virus, yellow fever virus, Zika virus, West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus. Nonstructural protein 1 (NS1) is a glycoprotein that encodes a 352-amino-acid polypeptide and has a molecular weight of 46-55 kDa depending on its glycosylation status. NS1 is highly conserved among multiple flaviviruses and occurs in distinct forms, including a dimeric form within the endoplasmic reticulum, a cell-associated form on the plasma membrane, or a secreted hexameric form (sNS1) trafficked to the extracellular matrix. Intracellular dimeric NS1 interacts with other NSs to participate in viral replication and virion maturation, while extracellular sNS1 plays a critical role in immune evasion, flavivirus pathogenesis and interactions with natural vectors. In this review, we provide an overview of recent research progress on flavivirus NS1, including research on the structural details, the secretory pathways in mammalian and mosquito cells and the multiple functions in viral replication, immune evasion, pathogenesis and interaction with natural hosts, drawing together the previous data to determine the properties of this protein.
Collapse
Affiliation(s)
- Senzhao Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
11
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|