1
|
Kwiatkowski P, Tabiś A, Fijałkowski K, Masiuk H, Łopusiewicz Ł, Pruss A, Sienkiewicz M, Wardach M, Kurzawski M, Guenther S, Bania J, Dołęgowska B, Wojciechowska-Koszko I. Regulatory and Enterotoxin Gene Expression and Enterotoxins Production in Staphylococcus aureus FRI913 Cultures Exposed to a Rotating Magnetic Field and trans-Anethole. Int J Mol Sci 2022; 23:6327. [PMID: 35683006 PMCID: PMC9181688 DOI: 10.3390/ijms23116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to examine the influence of a rotating magnetic field (RMF) of two different frequencies (5 and 50 Hz) on the expression of regulatory (agrA, hld, rot) and staphylococcal enterotoxin (SE-sea, sec, sel) genes as well as the production of SEs (SEA, SEC, SEL) by the Staphylococcus aureus FRI913 strain cultured on a medium supplemented with a subinhibitory concentration of trans-anethole (TA). Furthermore, a theoretical model of interactions between the bacterial medium and bacterial cells exposed to RMF was proposed. Gene expression and SEs production were measured using quantitative real-time PCR and ELISA techniques, respectively. Based on the obtained results, it was found that there were no significant differences in the expression of regulatory and SE genes in bacteria simultaneously cultured on a medium supplemented with TA and exposed to RMF at the same time in comparison to the control (unexposed to TA and RMF). In contrast, when the bacteria were cultured on a medium supplemented with TA but were not exposed to RMF or when they were exposed to RMF of 50 Hz (but not to TA), a significant increase in agrA and sea transcripts as compared to the unexposed control was found. Moreover, the decreased level of sec transcripts in bacteria cultured without TA but exposed to RMF of 50 Hz was also revealed. In turn, a significant increase in SEA and decrease in SEC and SEL production was observed in bacteria cultured on a medium supplemented with TA and simultaneously exposed to RMFs. It can be concluded, that depending on SE and regulatory genes expression as well as production of SEs, the effect exerted by the RMF and TA may be positive (i.e., manifests as the increase in SEs and/or regulatory gene expression of SEs production) or negative (i.e., manifests as the reduction in both aforementioned features) or none.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Piastow 45, 70-311 Szczecin, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Janickiego 35, 71-270 Szczecin, Poland;
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|
2
|
Impacts of Magnetic Immobilization on the Recombinant Proteins Structure Produced in Pichia pastoris System. Mol Biotechnol 2020; 63:80-89. [PMID: 33165735 DOI: 10.1007/s12033-020-00286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Pichia pastoris expression system was introduced with post-translation process similar to higher eukaryotes. Preliminary studies were performed toward process intensification and magnetic immobilization of this system. In this experiment, effects of magnetic immobilization on the structure of recombinant protein were evaluated. P. pastoris cell which express human serum albumin (HSA) was used as a model. The cells were immobilized with various concentrations of APTES coated magnetite nanoparticles. HSA production was done over 5 days induction and structure of the product was analyzed by UV-vis, fluorescence, and ATR-FTIR spectroscopy. Second derivative deconvolution method was used to analyze the secondary structure of HSA. P. pastoris cell that were immobilized with 0.5 and 1 mg/mL of nanoparticles were produced HSA with intact structure. But immobilization with 2 mg/mL of nanoparticles resulted in some modifications in the secondary structures (i.e., α-helixes and β-turns) of produced HSA. Based on these data, immobilization of P. pastoris cells with 0.5 or 1 mg/mL of nanoparticles is completely efficient for cell harvesting and has any effect on the structure of recombinant product. These findings revealed that decoration of microbial cells with high concentrations of nanoparticles has some impacts on the structure of secretory proteins.
Collapse
|
3
|
Nizhelska O, Marynchenko L, Makara V, Naumenko S, Kurylyuk A. The Stabilizing Effect of Magnetic Field for the Shape of Yeast Cells Saccharomyces cerevisiae on Silicon Surface. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2018. [DOI: 10.20535/ibb.2018.2.4.151881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
4
|
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 2017; 40:237-248. [PMID: 29181762 DOI: 10.1007/s10529-017-2477-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022]
Abstract
Bacterial cell immobilization is a novel technique used in many areas of biosciences and biotechnology. Iron oxide nanoparticles have attracted much attention in bacterial cell immobilization due to their unique properties such as superparamagnetism, large surface area to volume ratio, biocompatibility and easy separation methodology. Adhesion is the basis behind many immobilization techniques and various types of interactions determine bacterial adhesion. Efficiency of bacterial cell immobilization using iron oxide nanoparticles (IONs) generally depends on the physicochemical properties of the IONs and surface properties of bacterial cells as well as environmental/culture conditions. Bacteria exhibit various metabolic responses upon interaction with IONs, and the potential applications of iron oxide nanoparticles in bacterial cell immobilization will be discussed in this work.
Collapse
Affiliation(s)
- Dinali Ranmadugala
- Faculty of Science & Engineering, University of Waikato, Hamilton, New Zealand
| | - Alireza Ebrahiminezhad
- Department of Medical Biotechnology, School of Medicine, and Noncommunicable Diseases Research Centre, Fasa University of Medical Sciences, Fasa, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- Faculty of Science & Engineering, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
5
|
Kiprono SJ, Ullah MW, Yang G. Encapsulation of E. coli in biomimetic and Fe 3O 4-doped hydrogel: structural and viability analyses. Appl Microbiol Biotechnol 2017; 102:933-944. [PMID: 29170808 DOI: 10.1007/s00253-017-8625-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023]
Abstract
The current study reports the modification of prokaryotic microorganism through a single-layer technique by using different polyanions/cations and doping with magnetic (Fe3O4) nanoparticles. Briefly, individual Escherichia coli cells were encapsulated through deposition of 1% sodium alginate as first layer followed by depositing precipitate layers of calcium chloride, disodium hydrogen phosphate, and Fe3O4 nanoparticles. Surface and cross sectional analysis of modified E. coli cells by field emission scanning electron microscope (FE-SEM) confirmed the synthesis of varying sizes of artificial shells around the microbial cells while the deposition of Fe3O4 nanoparticles was confirmed by transmission electron microscope (TEM). Thermogravimetric analysis (TGA) showed the deposition of 58 wt% of Fe3O4 nanoparticles on E. coli cell surface. Chemical structure analysis by Fourier transform infrared (FTIR) spectroscopy confirmed the presence of characteristic functional groups of deposited reagents in the hydrogel capsule. Zeta potential analysis of hydrogel capsule showed moderate stability with a surface charge of - 21 mV. Growth and viability analysis by Alamar Blue assay indicated marked increase in the reduction of resazurin blue (> 100%) by the modified E. coli indicating their viability. The movement and control of magnetized E. coli cells were manipulated using external permanent magnetic field as observed with optical microscope images. The surface-modified cells can find potential applications in bioremediation, biodegradation, and catalysis and can be used as biosorbents.
Collapse
Affiliation(s)
- Sabella Jelimo Kiprono
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, 190-50100, Kenya
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China. .,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Safarik I, Pospiskova K, Baldikova E, Safarikova M. Development of advanced biorefinery concepts using magnetically responsive materials. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Konnova SA, Lvov YM, Fakhrullin RF. Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12552-12558. [PMID: 27280755 DOI: 10.1021/acs.langmuir.6b01743] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The modified polyelectrolyte-magnetite nanocoating was applied to functionalize the cell walls of oil decomposing bacteria Alcanivorax borkumensis. Cationic coacervate of poly(allylamine) and 20 nm iron oxide nanoparticles allowed for a rapid single-step encapsulation process exploiting electrostatic interaction with bacteria surfaces. The bacteria were covered with rough 70-100-nm-thick shells of magnetite loosely bound to the surface through polycations. This encapsulation allowed for external manipulations of A. borkumensis with magnetic field, as demonstrated by magnetically facilitated cell displacement on the agar substrate. Magnetic coating was naturally removed after multiple cell proliferations providing next generations of the cell in the native nonmagnetic form. The discharged biosurfactant vesicles indicating the bacterial functionality (150 ± 50 nm lipid micelles) were visualized with atomic force microscopy in the bacterial biofilms.
Collapse
Affiliation(s)
- Svetlana A Konnova
- Bionanotechnology Lab, Kazan Federal University , Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Yuri M Lvov
- Bionanotechnology Lab, Kazan Federal University , Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
- Institute for Micromanufacturing, Louisiana Tech University , Ruston, Louisiana 71272, United States
| | - Rawil F Fakhrullin
- Bionanotechnology Lab, Kazan Federal University , Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| |
Collapse
|
8
|
Application of magneto‐responsive Oenococcus oeni for the malolactic fermentation in wine. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Abstract
Magnetic solid phase extraction has been used as pretreatment technique for the analysis of several compounds because of its advantages when it is compared with classic methods. This methodology is based on the use of magnetic solids as adsorbents for preconcentration of different analytes from complex matrices. Magnetic solid phase extraction minimizes the use of additional steps such as precipitation, centrifugation, and filtration which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique which were applied in food analysis.
Collapse
|
11
|
Urusov AE, Petrakova AV, Vozniak MV, Zherdev AV, Dzantiev BB. Rapid immunoenzyme assay of aflatoxin B1 using magnetic nanoparticles. SENSORS 2014; 14:21843-57. [PMID: 25412219 PMCID: PMC4279564 DOI: 10.3390/s141121843] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 02/02/2023]
Abstract
The main limitations of microplate-based enzyme immunoassays are the prolonged incubations necessary to facilitate heterogeneous interactions, the complex matrix and poorly soluble antigens, and the significant sample dilutions often required because of the presence of organic extractants. This study presents the use of antibody immobilization on the surface of magnetic particles to overcome these limitations in the detection of the mycotoxin, aflatoxin B1. Features of the proposed system are a high degree of nanoparticle dispersion and methodologically simple immobilization of the antibodies by adsorption. Reactions between the immobilized antibodies with native and labeled antigens are conducted in solution, thereby reducing the interaction period to 5 min without impairing the analytical outcome. Adsorption of immunoglobulins on the surface of magnetic nanoparticles increases their stability in aqueous-organic media, thus minimizing the degree of sample dilution required. Testing barley and maize extracts demonstrated a limit of aflatoxin B1 detection equal to 20 pg/mL and total assay duration of 20 min. Using this method, only the 3-fold dilution of the initial methanol/water (60/40) extraction mixture in the microplate wells is necessary. The proposed pseudo-homogeneous approach could be applied toward immunodetection of a wide range of compounds.
Collapse
Affiliation(s)
- Alexandr E Urusov
- Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Alina V Petrakova
- Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Maxim V Vozniak
- IL Test-Pushchino Ltd., Gruzovaya Street 1g, Pushchino 142290, Moscow Region, Russia.
| | - Anatoly V Zherdev
- Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Boris B Dzantiev
- Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
12
|
Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. Applications of biosynthesized metallic nanoparticles - a review. Acta Biomater 2014; 10:4023-42. [PMID: 24925045 DOI: 10.1016/j.actbio.2014.05.022] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/13/2014] [Accepted: 05/21/2014] [Indexed: 02/08/2023]
Abstract
We present a comprehensive review of the applications of biosynthesized metallic nanoparticles (NPs). The biosynthesis of metallic NPs is the subject of a number of recent reviews, which focus on the various "bottom-up" biofabrication methods and characterization of the final products. Numerous applications exploit the advantages of biosynthesis over chemical or physical NP syntheses, including lower capital and operating expenses, reduced environmental impacts, and superior biocompatibility and stability of the NP products. The key applications reviewed here include biomedical applications, especially antimicrobial applications, but also imaging applications, catalytic applications such as reduction of environmental contaminants, and electrochemical applications including sensing. The discussion of each application is augmented with a critical review of the potential for continued development.
Collapse
|
13
|
Safarik I, Pospiskova K, Maderova Z, Baldikova E, Horska K, Safarikova M. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells. Yeast 2014; 32:239-43. [PMID: 24753015 DOI: 10.1002/yea.3017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/21/2014] [Accepted: 04/11/2014] [Indexed: 11/12/2022] Open
Abstract
An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one-pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes.
Collapse
Affiliation(s)
- Ivo Safarik
- Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
14
|
Park JH, Yang SH, Lee J, Ko EH, Hong D, Choi IS. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2001-2010. [PMID: 24452932 DOI: 10.1002/adma.201304568] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Indexed: 06/03/2023]
Abstract
The chronological progresses in single-cell nanocoating are described. The historical developments in the field are divided into biotemplating, cytocompatible nanocoating, and cells in nano-nutshells, depending on the main research focuses. Each subfield is discussed in conjunction with the others, regarding how and why to manipulate living cells by nanocoating at the single-cell level.
Collapse
Affiliation(s)
- Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry KAIST, Daejeon, 305-701, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Li Y, Du X, Wu C, Liu X, Wang X, Xu P. An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. NANOSCALE RESEARCH LETTERS 2013; 8:522. [PMID: 24330511 PMCID: PMC3874645 DOI: 10.1186/1556-276x-8-522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/04/2013] [Indexed: 05/24/2023]
Abstract
Magnetic modification of microbial cells enables to prepare smart biocomposites in bioremediation. In this study, we constructed an efficient biocomposite by assembling Fe3O4 nanoparticles onto the surface of Sphingomonas sp. XLDN2-5 cells. The average particle size of Fe3O4 nanoparticles was about 20 nm with 45.5 emu g-1 saturation magnetization. The morphology of Sphingomonas sp. XLDN2-5 cells before and after Fe3O4 nanoparticle loading was verified by scanning electron microscopy and transmission electronic microscopy. Compared with free cells, the microbial cell/Fe3O4 biocomposite had the same biodegradation activity but exhibited remarkable reusability. The degradation activity of the microbial cell/Fe3O4 biocomposite increased gradually during recycling processes. Additionally, the microbial cell/Fe3O4 biocomposite could be easily separated and recycled by an external magnetic field due to the super-paramagnetic properties of Fe3O4 nanoparticle coating. These results indicated that magnetically modified microbial cells provide a promising technique for improving biocatalysts used in the biodegradation of hazardous compounds.
Collapse
Affiliation(s)
- Yufei Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Xiaoyu Du
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Chao Wu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Xueying Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Ping Xu
- Present address: State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
16
|
Pereira L, Mehboob F, Stams AJM, Mota MM, Rijnaarts HHM, Alves MM. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol 2013; 35:114-28. [DOI: 10.3109/07388551.2013.819484] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Pospiskova K, Prochazkova G, Safarik I. One-step magnetic modification of yeast cells by microwave-synthesized iron oxide microparticles. Lett Appl Microbiol 2013; 56:456-61. [DOI: 10.1111/lam.12069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/30/2022]
Affiliation(s)
- K. Pospiskova
- Department of Biochemistry; Faculty of Science; Palacky University; Olomouc Czech Republic
| | - G. Prochazkova
- Department of Biotechnology; Institute of Chemical Technology; Prague Czech Republic
| | - I. Safarik
- Department of Nanobiotechnology; Institute of Nanobiology and Structural Biology of GCRC; Ceske Budejovice Czech Republic
- Regional Centre of Advanced Technologies and Materials; Palacky University; Olomouc Czech Republic
| |
Collapse
|
18
|
Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 146:63-73. [PMID: 23422514 DOI: 10.1016/j.jconhyd.2012.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/30/2012] [Accepted: 12/16/2012] [Indexed: 05/21/2023]
Abstract
The removal of hexavalent chromium [Cr (VI)], an important ground water pollutant by phyto-inspired Fe(0)/Fe(3)O(4) nanocomposite-modified cells of Yarrowia lipolytica (NCIM 3589 and NCIM 3590), was investigated. Electron microscopy and magnetometer studies indicated an effective modification of yeast cell surfaces by the nanocomposites. The effect of pH, temperature, agitation speed, contact time and initial metal ion concentration on the removal of Cr (VI) was determined. The specific uptake values at pH 2.0 were 186.32±3.17 and 137.31±4.53 mg g(-1) for NCIM 3589 and NCIM 3590, respectively, when 1000 mg L(-1) of metal ion concentrations were used. The equilibrium data fitted to Scatchard, Langmuir and linearized Freundlich models suggesting that adsorption played a role in the removal of Cr (VI) ions. The surface modified yeast cells displayed higher values of Langmuir and Scatchard coefficients than the unmodified cells indicating that the former were more efficient in Cr (VI) removal. The enhanced detoxification of Cr (VI) ions by this composite material could be attributed to the reductive power of the Fe(0)/Fe(3)O(4) nanocomposites as well the yeast cell surface functional groups.
Collapse
Affiliation(s)
- Ashit Rao
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Robatjazi SM, Shojaosadati SA, Khalilzadeh R, Farahani EV, Balochi N. Immobilization of magnetic modified Flavobacterium ATCC 27551 using magnetic field and evaluation of the enzyme stability of immobilized bacteria. BIORESOURCE TECHNOLOGY 2012; 104:6-11. [PMID: 22154747 DOI: 10.1016/j.biortech.2011.11.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
The magnetic modified Flavobacterium sp. was prepared by covalently binding carboxylate-modified magnetic nanoparticles, and also, ionic adsorption of magnetic Fe(3)O(4) nanoparticles on the cell surface. The magnetic modified bacteria were immobilized by both internal and external magnetic fields. The pH stability and inherent resistance of the enzyme activity of the immobilized bacteria under acidic and alkaline conditions were increased. Immobilization of the magnetic modified bacteria using an external magnetic field improved the enzyme thermal stability. The results revealed that immobilization of the magnetic modified bacteria by an external magnetic field keeps 50% of the enzyme activity after 23.4, 16.6 and 6 h of incubation at 55 °C for the covalently binding of magnetic nanoparticles, the ionic adsorption of magnetic nanoparticles and the free cells, respectively. The results demonstrated the negative effect of various magnetic beads on the enzyme thermal stability of immobilized magnetic modified bacteria using an internal magnetic field.
Collapse
Affiliation(s)
- Seyed Mortaza Robatjazi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | | | | | | | | |
Collapse
|
21
|
Uzun L, Sağlam N, Safarikova M, Safarik I, Denizli A. Copper Biosorption on Magnetically Modified Yeast Cells Under Magnetic Field. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2010.541400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Dias AMGC, Hussain A, Marcos AS, Roque ACA. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 2010; 29:142-55. [PMID: 20959138 DOI: 10.1016/j.biotechadv.2010.10.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/29/2010] [Accepted: 10/11/2010] [Indexed: 11/27/2022]
Abstract
Iron oxide magnetic nanoparticles (MNPs) alone are suitable for a broad spectrum of applications, but the low stability and heterogeneous size distribution in aqueous medium represent major setbacks. These setbacks can however be reduced or diminished through the coating of MNPs with various polymers, especially biopolymers such as polysaccharides. Polysaccharides are biocompatible, non-toxic and renewable; in addition, they possess chemical groups that permit further functionalization of the MNPs. Multifunctional entities can be created through decoration with specific molecules e.g. proteins, peptides, drugs, antibodies, biomimetic ligands, transfection agents, cells, and other ligands. This development opens a whole range of applications for iron oxide nanoparticles. In this review the properties of magnetic structures composed of MNPs and several polysaccharides (Agarose, Alginate, Carrageenan, Chitosan, Dextran, Heparin, Gum Arabic, Pullulan and Starch) will be discussed, in view of their recent and future biomedical and biotechnological applications.
Collapse
Affiliation(s)
- A M G C Dias
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | |
Collapse
|
23
|
Robatjazi SM, Shojaosadati SA, Khalilzadeh R, Farahani EV. Optimization of the covalent coupling and ionic adsorption of magnetic nanoparticles onFlavobacteriumATCC 27551 using the Taguchi method. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242422.2010.516390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Hristov J. Magnetic field assisted fluidization – a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses. REV CHEM ENG 2010. [DOI: 10.1515/revce.2010.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
|