1
|
Gutierrez-Huerta CA, Quiroz-Delfi G, Faleel FDM, Beyer AM. Impaired endothelial function contributes to cardiac dysfunction: role of mitochondrial dynamics. Am J Physiol Heart Circ Physiol 2025; 328:H29-H36. [PMID: 39560973 DOI: 10.1152/ajpheart.00531.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The endothelial microvasculature is essential for the regulation of vasodilation and vasoconstriction, and improved functioning of the endothelium is linked to improved outcomes for individuals with coronary artery disease (CAD). People with endothelial dysfunction exhibit a loss of nitric oxide (NO)-mediated vasodilation, achieving vasodilation instead through mitochondria-derived H2O2. Mitochondrial dynamics is an important autoregulatory mechanism that contributes to mitochondrial and endothelial homeostasis and plays a role in the formation of reactive oxygen species (ROS), including H2O2. Dysregulation of mitochondrial dynamics leads to increased ROS production, decreased ATP production, impaired metabolism, activation of pathological signal transduction, impaired calcium sensing, and inflammation. We hypothesize that dysregulation of endothelial mitochondrial dynamics plays a crucial role in the endothelial microvascular dysfunction seen in individuals with CAD. Therefore, proper regulation of endothelial mitochondrial dynamics may be a suitable treatment for individuals with endothelial microvascular dysfunction, and we furthermore postulate that improving this microvascular dysfunction will directly improve outcomes for those with CAD.
Collapse
Affiliation(s)
- Cristhian A Gutierrez-Huerta
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Giovanni Quiroz-Delfi
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | | | - Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cancer Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Liu X, Yang H, Ni J, Zheng X, Song Z, Gao F, Wang Q. Copper(II)-Tannic Acid@Cu with In Situ Grown Gold Nanoparticles as a Bifunctional Matrix for Facile Construction of Label-Free and Ultrasensitive Electrochemical cTnI Immunosensor. ACS APPLIED BIO MATERIALS 2024; 7:5258-5267. [PMID: 39103296 DOI: 10.1021/acsabm.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Sensitive detection of cardiac troponin I (cTnI) is of great significance in the diagnosis of a fatal acute myocardial infarction. A redox-active nanocomposite of copper(II)-tannic acid@Cu (CuTA@Cu) was herein prepared on the surface of a glassy carbon electrode by electrochemical deposition of metallic copper combined with a metal stripping strategy. Then, HAuCl4 was in situ reduced to gold nanoparticles (AuNPs) by strong reductive catechol groups in the TA ligand. The AuNPs/CuTA@Cu composite was further utilized as a bifunctional matrix for the immobilization of the cTnI antibody (anti-cTnI), producing an electrochemical immunosensor. Electrochemical tests show that the immunoreaction between anti-cTnI and target cTnI can cause a significant reduction of the electrochemical signal of CuTA@Cu. It can be attributed to the insulating characteristic of the immunocomplex and its barrier effect to the electrolyte ion diffusion. From the signal changes of CuTA@Cu, cTnI can be analyzed in a wide range from 10 fg mL-1 to 10 ng mL-1, with an ultralow detection limit of 0.65 fg mL-1. The spiked recovery assays show that the immunosensor is reliable for cTnI determination in human serum samples, demonstrating its promising application in the early clinical diagnosis of myocardial infarction.
Collapse
Affiliation(s)
- Xianxin Liu
- Department of Chemistry, Chemical Engineering and Environmental, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Haizhu Yang
- Department of Chemistry, Chemical Engineering and Environmental, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Jiancong Ni
- Department of Chemistry, Chemical Engineering and Environmental, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Xuan Zheng
- Department of Chemistry, Chemical Engineering and Environmental, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Zhiping Song
- Department of Chemistry, Chemical Engineering and Environmental, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Feng Gao
- Department of Chemistry, Chemical Engineering and Environmental, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Qingxiang Wang
- Department of Chemistry, Chemical Engineering and Environmental, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| |
Collapse
|
3
|
Ye Z, Lu X, Zhu M, Bi L, Yang F, Zhou B, Xu D, Yao L. STING-Targeted PET Imaging for Specific Detection and Therapeutic Monitoring of Myocarditis. Mol Pharm 2024; 21:2865-2877. [PMID: 38666508 DOI: 10.1021/acs.molpharmaceut.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.
Collapse
Affiliation(s)
- Zhou Ye
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Xin Lu
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Manman Zhu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Fan Yang
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Bin Zhou
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Duo Xu
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
4
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
5
|
Qazi SU, Ansari MHUH, Ghazanfar S, Ghazanfar SS, Farooq M. Comparison of Acute Effects of E-cigarettes With and Without Nicotine and Tobacco Cigarettes on Hemodynamic and Endothelial Parameters: A Systematic Review and Meta-analysis. High Blood Press Cardiovasc Prev 2024; 31:225-237. [PMID: 38668958 DOI: 10.1007/s40292-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
INTRODUCTION Smoke from traditional cigarettes and e-cigarette aerosols have distinct chemical compositions that may impact blood pressure (BP) and heart rate (HR) differently. AIMS This study compared the impact of nicotine-containing e-cigarettes (EC+) versus nicotine-free (EC-) on BP, HR and endothelial markers, and assessed if EC+ posed fewer risks than tobacco cigarettes (TC). METHODS Electronic databases were searched from inception until November 2023 for studies reporting changes in systolic and diastolic BP (SBP, DBP) and HR and endothelial parameters before and after the use of EC+, EC- and TC. Data were analyzed using weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS Fifteen studies (n = 752) were included in our meta-analysis. We demonstrate that EC+ significantly increased systolic BP (WMD = 3.41, 95% CI [0.1,6.73], p = 0.04], diastolic BP (WMD = 3.42, 95% CI [1.75, 5.09]; p < 0.01], and HR (WMD = 5.36 BPM, 95% CI [1.87, 8.85]; p < 0.01) compared to EC-. However, EC+ was observed to cause less detrimental effect on SBP (WMD = - 4.72 mmHg, 95% CI [- 6.58, - 2.86], p < 0.01), and HR (WMD = - 3.11 BPM, 95% CI [- 4.54, - 1.68]; p < 0.01) as compared to TC with no difference on DBP (WMD = - 1.14 mmHg, 95% CI [- 2.38, 0.1]; p = 0.07). EC+ also led to greater deterioration of endothelial parameters as compared to EC- but to a lesser degree as compared to TC. CONCLUSION EC+ shows greater impairment in hemodynamic and endothelial parameters than EC- but less than TC. Additional studies are needed to evaluate prolonged effects of EC use.
Collapse
Affiliation(s)
- Shurjeel Uddin Qazi
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Shamas Ghazanfar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Minaam Farooq
- Department of Neurological Surgery, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
6
|
Safhi AY, Albariqi AH, Sabei FY, Alsalhi A, Khalil FMA, Waheed A, Arbi FM, White A, Anthony S, Alissa M. Journey into tomorrow: cardiovascular wellbeing transformed by nano-scale innovations. Curr Probl Cardiol 2024; 49:102428. [PMID: 38311274 DOI: 10.1016/j.cpcardiol.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Worldwide, cardiovascular diseases (CVDs) account for the vast majority of deaths and place enormous financial strains on healthcare systems. Gold nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes, and lipids are innovative nanomaterials promising in tackling CVDs. In the setting of CVDs, these nanomaterials actively impact cellular responses due to their distinctive properties, including surface energy and topographies. Opportunities to more precisely target CVDs have arisen due to recent developments in nanomaterial science, which have introduced fresh approaches. An in-depth familiarity with the illness and its targeted mechanisms is necessary to use nanomaterials in CVDs effectively. We support the academic community's efforts to prioritize Nano-technological techniques in addressing risk factors linked with cardiovascular diseases, acknowledging the far-reaching effects of these conditions. The significant impact of nanotechnology on the early detection and treatment of cardiovascular diseases highlights the critical need for novel approaches to this pressing health problem, which is affecting people worldwide.
Collapse
Affiliation(s)
- Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Collage of Science and Art, Department of Biology, Mohayil Asir Abha 61421, Saudi Arabia
| | | | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Alexandra White
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, PR China
| | - Stefan Anthony
- Cardiovascular Center of Excellence at Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Suleman M, Khan SU, Hussain T, Khan MU, Shamsul Hassan S, Majid M, Khan SU, Shehzad Khan M, Shan Ahmad RU, Arif M, Ahmad Z, Crovella S, Anthony S. Cardiovascular challenges in the era of antiretroviral therapy for AIDS/ HIV: A comprehensive review of research advancements, pathophysiological insights, and future directions. Curr Probl Cardiol 2024; 49:102353. [PMID: 38128638 DOI: 10.1016/j.cpcardiol.2023.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Cardiovascular disease, particularly coronary heart disease, is becoming more common among those living with HIV. Individuals with HIV face an increased susceptibility to myocardial infarction, also known as a heart attack, as compared to the general population in developed countries. This heightened risk can be attributed mainly to the presence of effective antiretroviral drugs and the resulting longer lifespan. Some cardiac issues linked to non-antiretroviral medications, including myocarditis, endocarditis, cardiomyopathy with dilation, pulmonary hypertension, and oedema of the heart, may affect those not undergoing highly active antiretroviral therapy (ART). Impaired immune function and systemic inflammation are significant contributors to this phenomenon after initiating highly aggressive antiretroviral treatment ART. It is becoming more challenging to determine the best course of treatment for HIV-associated cardiomyopathy due to new research suggesting that protease inhibitors might have a negative impact on the development of HF. Currently, the primary focus of research on ART medications is centered on the cardiovascular adverse effects of nucleoside reverse transcriptase inhibitors and protease inhibitors. This review paper thoroughly evaluates the advancements achieved in cardiovascular disease research and explores the potential implications for prospects. Additionally, it considers the field's future prospects while examining how ART might be altered and its clinical applications.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Khyber Pakhtunkhwa 22080, Pakistan
| | - Talib Hussain
- Women Dental College Abbottabad, KPK 22020, Pakistan
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 PR China
| | - Syed Shamsul Hassan
- Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC),Hangzhou 310002, PR China
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad 45550, Pakistan
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, HKSAR, Hong Kong
| | - Rafi U Shan Ahmad
- Department of Biomedical Engineering, City university of Hong Kong, Kowloon City, HKSAR, Hong Kong
| | - Muhammad Arif
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zubair Ahmad
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sergio Crovella
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Stefan Anthony
- Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC),Hangzhou 310002, PR China.
| |
Collapse
|