1
|
Calabria FF, Guadagnino G, Cimini A, Leporace M. PET/CT Imaging of Infectious Diseases: Overview of Novel Radiopharmaceuticals. Diagnostics (Basel) 2024; 14:1043. [PMID: 38786341 PMCID: PMC11120316 DOI: 10.3390/diagnostics14101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious diseases represent one of the most common causes of hospital admission worldwide. The diagnostic work-up requires a complex clinical approach, including laboratory data, CT and MRI, other imaging tools, and microbiologic cultures. PET/CT with 18F-FDG can support the clinical diagnosis, allowing visualization of increased glucose metabolism in activated macrophages and monocytes; this tracer presents limits in differentiating between aseptic inflammation and infection. Novel PET radiopharmaceuticals have been developed to overcome these limits; 11C/18F-labeled bacterial agents, several 68Ga-labeled molecules, and white blood cells labeled with 18F-FDG are emerging PET tracers under study, showing interesting preliminary results. The best choice among these tracers can be unclear. This overview aims to discuss the most common diagnostic applications of 18F-FDG PET/CT in infectious diseases and, as a counterpoint, to describe and debate the advantages and peculiarities of the latest PET radiopharmaceuticals in the field of infectious diseases, which will probably improve the diagnosis and prognostic stratification of patients with active infectious diseases.
Collapse
Affiliation(s)
- Ferdinando F. Calabria
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Hospital, 87100 Cosenza, Italy;
| | - Giuliana Guadagnino
- Department of Infectious and Tropical Diseases, St. Annunziata Hospital, 87100 Cosenza, Italy
| | - Andrea Cimini
- Nuclear Medicine Unit, St Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Mario Leporace
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Hospital, 87100 Cosenza, Italy;
| |
Collapse
|
2
|
Fang J, Zhang J, Meng L, Li H, Xia D, Wang Y, Chen H, Liao Z, Zhuang R, Li Y, Zhang X, Guo Z. 18F-Labeled Amidobenzimidazole Analogue for Visualizing STING Expression in Tumor. Mol Pharm 2024; 21:1942-1951. [PMID: 38447198 DOI: 10.1021/acs.molpharmaceut.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The stimulator of interferon genes (STING) is pivotal in mediating STING-dependent type I interferon production, which is crucial for enhancing tumor rejection. Visualizing STING within the tumor microenvironment is valuable for STING-related treatments, yet the availability of suitable STING imaging probes is limited. In this study, we developed [18F]AlF-ABI, a novel 18F-labeled agent featuring an amidobenzimidazole core structure, for positron emission tomography (PET) imaging of STING in B16F10 and CT26 tumors. [18F]AlF-ABI was synthesized with a decay-corrected radiochemical yield of 38.0 ± 7.9% and radiochemical purity exceeding 97%. The probe exhibited a nanomolar STING binding affinity (KD = 35.6 nM). Upon administration, [18F]AlF-ABI rapidly accumulated at tumor sites, demonstrating significantly higher uptake in B16F10 tumors compared to CT26 tumors, consistent with STING immunofluorescence patterns. Specificity was further validated through in vitro cell experiments and in vivo blocking PET imaging. These findings suggest that [18F]AlF-ABI holds promise as an effective agent for visualizing STING in the tumor microenvironment.
Collapse
Affiliation(s)
- Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jingru Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lingxin Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Huifeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Dongsheng Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yaoxuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Hao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Zhenhuan Liao
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
3
|
Gu F, Wu Q. Quantitation of dynamic total-body PET imaging: recent developments and future perspectives. Eur J Nucl Med Mol Imaging 2023; 50:3538-3557. [PMID: 37460750 PMCID: PMC10547641 DOI: 10.1007/s00259-023-06299-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/05/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Positron emission tomography (PET) scanning is an important diagnostic imaging technique used in disease diagnosis, therapy planning, treatment monitoring, and medical research. The standardized uptake value (SUV) obtained at a single time frame has been widely employed in clinical practice. Well beyond this simple static measure, more detailed metabolic information can be recovered from dynamic PET scans, followed by the recovery of arterial input function and application of appropriate tracer kinetic models. Many efforts have been devoted to the development of quantitative techniques over the last couple of decades. CHALLENGES The advent of new-generation total-body PET scanners characterized by ultra-high sensitivity and long axial field of view, i.e., uEXPLORER (United Imaging Healthcare), PennPET Explorer (University of Pennsylvania), and Biograph Vision Quadra (Siemens Healthineers), further stimulates valuable inspiration to derive kinetics for multiple organs simultaneously. But some emerging issues also need to be addressed, e.g., the large-scale data size and organ-specific physiology. The direct implementation of classical methods for total-body PET imaging without proper validation may lead to less accurate results. CONCLUSIONS In this contribution, the published dynamic total-body PET datasets are outlined, and several challenges/opportunities for quantitation of such types of studies are presented. An overview of the basic equation, calculation of input function (based on blood sampling, image, population or mathematical model), and kinetic analysis encompassing parametric (compartmental model, graphical plot and spectral analysis) and non-parametric (B-spline and piece-wise basis elements) approaches is provided. The discussion mainly focuses on the feasibilities, recent developments, and future perspectives of these methodologies for a diverse-tissue environment.
Collapse
Affiliation(s)
- Fengyun Gu
- School of Mathematics and Physics, North China Electric Power University, 102206, Beijing, China.
- School of Mathematical Sciences, University College Cork, T12XF62, Cork, Ireland.
| | - Qi Wu
- School of Mathematical Sciences, University College Cork, T12XF62, Cork, Ireland
| |
Collapse
|
4
|
Liu H, Sun Y, Li J, Chen Y, Liu J, Fang J, Yang H, Feng L, Peng S, Zhuang R, Guo Z, Zhang X. Development of 18F-Labeled Acridone Analogue for Tumor Imaging via Stimulator of Interferon Genes Targeting. Mol Pharm 2023. [PMID: 37243620 DOI: 10.1021/acs.molpharmaceut.3c00137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stimulator of interferon genes (STING) is a pivotal protein in the production of STING-dependent type I interferon, which has the potential to enhance tumor rejection. The visualization of STING in the tumor microenvironment is valuable for STING-related treatments, but few STING imaging probes have been reported to date. In this study, we developed a novel 18F-labeled agent ([18F]F-CRI1) with an acridone core structure for the positron emission tomography (PET) imaging of STING in CT26 tumors. The probe was successfully prepared with a nanomolar STING binding affinity of Kd = 40.62 nM. [18F]F-CRI1 accumulated quickly in the tumor sites and its uptake reached a maximum of 3.02 ± 0.42% ID/g after 1 h i.v. injection. The specificity of [18F]F-CRI1 was confirmed both in in vitro cell uptake and in vivo PET imaging by blocking studies. Our findings suggest that [18F]F-CRI1 may be a potential agent for visualizing STING in the tumor microenvironment.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuan Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingxi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongzhang Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lixia Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shilan Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Institute of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Singh SB, Bhandari S, Siwakoti S, Bhatta R, Raynor WY, Werner TJ, Alavi A, Hess S, Revheim ME. Is Imaging Bacteria with PET a Realistic Option or an Illusion? Diagnostics (Basel) 2023; 13:diagnostics13071231. [PMID: 37046449 PMCID: PMC10093025 DOI: 10.3390/diagnostics13071231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The application of [18F]-fluorodeoxyglucose ([18F]FDG) as a radiotracer to detect sites of inflammation (either due to bacterial infection or primary inflammation) has led to exploring the role of PET in visualizing bacteria directly at sites of infection. However, the results from such efforts are controversial and inconclusive so far. We aimed to assess the limitations of PET as an effective modality in the diagnosis of bacterial infections. Inflammation due to bacterial infections can be visualized by using [18F]FDG-PET. However, the non-specificity of [18F]FDG makes it undesirable to visualize bacteria as the underlying cause of inflammation. Hence, more specific radiotracers that possibly bind to or accumulate in bacteria-specific receptors or enzymes are being explored. Several radiotracers, including 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS), 6-[18F]-fluoromaltose, [11C]para-aminobenzoic acid ([11C]PABA), radiolabeled trimethoprim (11C-TMP) and its analog fluoropropyl-trimethoprim (18F-FPTMP), other radiolabeled sugars, and antimicrobial drugs have been used to image microorganisms. Unfortunately, no progress has been made in translating the results to routine human use; feasibility and other factors have constrained their success in clinical settings. In the current article, we discuss the limitations of direct bacterial visualization with PET tracers, but emphasize the important role of [18F]FDG-PET as the only option for detecting evidence of infection.
Collapse
Affiliation(s)
- Shashi B Singh
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Sadikshya Bhandari
- Kathmandu University School of Medical Sciences, Dhulikhel Hospital, Dhulikhel 45200, Nepal
| | - Shisir Siwakoti
- Kathmandu University School of Medical Sciences, Dhulikhel Hospital, Dhulikhel 45200, Nepal
| | - Rabi Bhatta
- Universal College of Medical Sciences, Bhairahawa 32900, Nepal
| | - William Y Raynor
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB #404, New Brunswick, NJ 08901, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Soren Hess
- Department of Radiology and Nuclear Medicine, Hospital Southwest Jutland, 6700 Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, 0424 Oslo, Norway
- Division for Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Norway and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
6
|
Parghane RV, Basu S. PET-CTBased Quantitative Parameters for Assessment of Treatment Response and Disease Activity in Cancer and Noncancerous Disorders. PET Clin 2022; 17:465-478. [PMID: 35717102 DOI: 10.1016/j.cpet.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The various semiquantitative and quantitative PET-CT parameters provide measurement of disease activity and assessment of treatment response in the PET-CT studies. These include standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), and total metabolic tumor volume (TMTV). Thresholding and adaptive thresholding methods are commonly used algorithms for the evaluation of global disease activity. Readily available commercial software frequently in-built with the current generation PET-CT scanners for providing easy, less time consuming, highly reproducible, and more accurate measurement of global disease activity on PET-CT imaging in evaluation of malignant as well as benign disorders.
Collapse
Affiliation(s)
- Rahul V Parghane
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
7
|
Molecular imaging in atherosclerosis. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
As atherosclerosis is a prominent cause of morbidity and mortality, early detection of atherosclerotic plaques is vital to prevent complications. Imaging plays a significant role in this goal. Molecular imaging and structural imaging detect different phases of atherosclerotic progression. In this review, we explain the relation between these types of imaging with the physiopathology of plaques, along with their advantages and disadvantages. We also discuss in detail the most commonly used positron emission tomography (PET) radiotracers for atherosclerosis imaging.
Method
A comprehensive search was conducted to extract articles related to imaging of atherosclerosis in PubMed, Google Scholar, and Web of Science. The obtained papers were reviewed regarding precise relation with our topic. Among the search keywords utilized were "atherosclerosis imaging", "atherosclerosis structural imaging", "atherosclerosis CT scan" "positron emission tomography", "PET imaging", "18F-NaF", "18F-FDG", and "atherosclerosis calcification."
Result
Although structural imaging such as computed tomography (CT) offers essential information regarding plaque structure and morphologic features, these modalities can only detect macroscopic alterations that occur later in the disease’s progression, when the changes are frequently irreversible. Molecular imaging modalities like PET, on the other hand, have the advantage of detecting microscopic changes and allow us to treat these plaques before irreversible changes occur. The two most commonly used tracers in PET imaging of atherosclerosis are 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG). While there are limitations in the use of 18F-FDG for the detection of atherosclerosis in coronary arteries due to physiological uptake in myocardium and high luminal blood pool activity of 18F-FDG, 18F-NaF PET is less affected and can be utilized to analyze the coronary arteries in addition to the peripheral vasculature.
Conclusion
Molecular imaging with PET/CT has become a useful tool in the early detection of atherosclerosis. 18F-NaF PET/CT shows promise in the early global assessment of atherosclerosis, but further prospective studies are needed to confirm its role in this area.
Collapse
|
8
|
Song X, Qian P, Zheng J, Jiang Y, Xia K, Traughber B, Wu D, Muzic RF. mDixon-based synthetic CT generation via transfer and patch learning. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2020.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Alavi A, Werner TJ, Høilund-Carlsen PF. What can be and what cannot be accomplished with PET to detect and characterize atherosclerotic plaques. J Nucl Cardiol 2018; 25:2012-2015. [PMID: 28695405 DOI: 10.1007/s12350-017-0977-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
10
|
Moghbel M, Al-Zaghal A, Werner TJ, Constantinescu CM, Høilund-Carlsen PF, Alavi A. The Role of PET in Evaluating Atherosclerosis: A Critical Review. Semin Nucl Med 2018; 48:488-497. [DOI: 10.1053/j.semnuclmed.2018.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Bellinge JW, Francis RJ, Majeed K, Watts GF, Schultz CJ. In search of the vulnerable patient or the vulnerable plaque: 18F-sodium fluoride positron emission tomography for cardiovascular risk stratification. J Nucl Cardiol 2018; 25:1774-1783. [PMID: 29992525 DOI: 10.1007/s12350-018-1360-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) remains a leading cause of death. Preventative therapies that reduce CVD are most effective when targeted to individuals at high risk. Current risk stratification tools have only modest prognostic capabilities, resulting in over-treatment of low-risk individuals and under-treatment of high-risk individuals. Improved methods of CVD risk stratification are required. Molecular imaging offers a novel approach to CVD risk stratification. In particular, 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) has shown promise in the detection of both high-risk atherosclerotic plaque features and vascular calcification activity, which predicts future development of new vascular calcium deposits. The rate of change of coronary calcium scores, measured by serial computed tomography scans over a 2-year period, is a strong predictor of CVD risk. Vascular calcification activity, as measured with 18F-NaF PET, has the potential to provide prognostic information similar to consecutive coronary calcium scoring, with a single-time-point convenience. However, owing to the rapid motion and small size of the coronary arteries, new solutions are required to address the traditional limitations of PET imaging. Two different methods of coronary PET analysis have been independently proposed and here we compare their respective strengths, weaknesses, and the potential for clinical translation.
Collapse
Affiliation(s)
- Jamie W Bellinge
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia.
- School of Medicine, University of Western Australia, Perth, Australia.
| | - Roslyn J Francis
- School of Medicine, University of Western Australia, Perth, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Kamran Majeed
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Carl J Schultz
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
What Can Be and What Cannot Be Accomplished With PET: Rectifying Ongoing Misconceptions. Clin Nucl Med 2018; 42:603-605. [PMID: 28570374 DOI: 10.1097/rlu.0000000000001695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Abstract
Early diagnosis and therapy increasingly operate at the cellular, molecular, or even at the genetic level. As diagnostic techniques transition from the systems to the molecular level, the role of multimodality molecular imaging becomes increasingly important. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are powerful techniques for in vivo molecular imaging. The inability of PET to provide anatomical information is a major limitation of standalone PET systems. Combining PET and CT proved to be clinically relevant and successfully reduced this limitation by providing the anatomical information required for localization of metabolic abnormalities. However, this technology still lacks the excellent soft-tissue contrast provided by MRI. Standalone MRI systems reveal structure and function but cannot provide insight into the physiology and/or the pathology at the molecular level. The combination of PET and MRI, enabling truly simultaneous acquisition, bridges the gap between molecular and systems diagnosis. MRI and PET offer richly complementary functionality and sensitivity; fusion into a combined system offering simultaneous acquisition will capitalize the strengths of each, providing a hybrid technology that is greatly superior to the sum of its parts. A combined PET/MRI system provides both the anatomical and structural description of MRI simultaneously with the quantitative capabilities of PET. In addition, such a system would allow exploiting the power of MR spectroscopy (MRS) to measure the regional biochemical content and to assess the metabolic status or the presence of neoplasia and other diseases in specific tissue areas. This paper briefly summarizes state-of-the-art developments and latest advances in dedicated hybrid PET/MRI instrumentation. Future prospects and potential clinical applications of this technology will also be discussed.
Collapse
Affiliation(s)
- Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland.
| | | |
Collapse
|
14
|
Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011; 52:1914-22. [PMID: 22080447 DOI: 10.2967/jnumed.111.092726] [Citation(s) in RCA: 582] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The recently released Biograph mMR is the first commercially available integrated whole-body PET/MR scanner. There are considerable advantages to integrating both modalities in a single scanner that enables truly simultaneous acquisition. However, there are also concerns about the possible degradation of both PET and MR performance in an integrated system. This paper evaluates the performance of the Biograph mMR during independent and simultaneous acquisition of PET and morphologic MR data. METHODS The NEMA NU 2-2007 protocol was followed for studying the PET performance. The following measurements were performed: spatial resolution; scatter fraction, count losses, and randoms; sensitivity; accuracy of the correction for count losses and randoms; and image quality. The quality control manual of the American College of Radiology was followed for studying the MR performance. The following measurements were performed: geometric accuracy, spatial resolution, low-contrast detectability, signal-to-noise ratio, static field (B(0)) homogeneity, radiofrequency field (B(1)) homogeneity, and radiofrequency noise. RESULTS An average spatial resolution of 4.3 mm in full width at half maximum was measured at 1 cm offset from the center of the field of view. The system sensitivity was 15.0 kcps/MBq along the center of the scanner. The scatter fraction was 37.9%, and the peak noise-equivalent count rate was 184 kcps at 23.1 kBq/mL. The maximum absolute value of the relative count rate error due to dead-time losses and randoms was 5.5%. The average residual error in scatter and attenuation correction was 12.1%. All MR parameters were within the tolerances defined by the American College of Radiology. B(0) inhomogeneities below 1 ppm were measured in a 120-mm radius. B(1) homogeneity and signal-to-noise ratio were equivalent to those of a standard MR scanner. No radiofrequency interference was detected. CONCLUSION These results compare favorably with other state-of-the-art PET/CT and PET/MR scanners, indicating that the integration of the PET detectors in the MR scanner and their operation within the magnetic field do not have a perceptible impact on the overall performance. The MR subsystem performs essentially like a standalone system. However, further work is necessary to evaluate the more advanced MR applications, such as functional imaging and spectroscopy.
Collapse
Affiliation(s)
- Gaspar Delso
- Nuklearmedizin, Klinikum Rechts der Isar, Technische Universität München, München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zaidi H, Prasad R. Advances in multimodality molecular imaging. J Med Phys 2011; 34:122-8. [PMID: 20098557 PMCID: PMC2807675 DOI: 10.4103/0971-6203.54844] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 01/16/2009] [Accepted: 01/31/2009] [Indexed: 11/12/2022] Open
Abstract
Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed.
Collapse
Affiliation(s)
- Habib Zaidi
- Geneva University Hospital, Division of Nuclear Medicine, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
16
|
Abstract
Carcinoma of unknown primary (CUP) is defined as histologically proven metastatic disease that, after a complete diagnostic work-up, yields no primary detectable tumor. CUP is one of the ten most frequent cancers, with overall poor outcome. Detection of the unknown primary tumor is of crucial importance in this scenario, since it might help to select and offer definitive treatment, which, in turn, may improve patient prognosis. Additional diagnostic work-up, usually consisting of a combination of several radiological and endoscopic investigations and serum tumor marker studies, can be time consuming, expensive, and pose a significant burden to the patient. The final diagnostic yield of these tests is often limited. Combined positron emission tomography/computed tomography (PET/CT), using the radiotracer (18)F-fluoro-2-deoxyglucose (FDG), may be of great value in the management of patients with CUP for the detection of primary tumors. This chapter gives a brief introduction to the syndrome of CUP, followed by an outline of the rationale, use, and utility of FDG-PET/CT in CUP, and concludes with a discussion on the challenges and future directions in the diagnostic management of patients with CUP.
Collapse
Affiliation(s)
- Thomas C Kwee
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
17
|
Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010; 37:2165-87. [PMID: 20336455 DOI: 10.1007/s00259-010-1423-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/20/2010] [Indexed: 12/23/2022]
Abstract
Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed.
Collapse
Affiliation(s)
- Habib Zaidi
- Geneva University Hospital, Geneva 4, Switzerland.
| | | |
Collapse
|
18
|
Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009; 16:1108-33. [PMID: 19427800 DOI: 10.1016/j.acra.2009.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 01/01/2023]
Abstract
The role of positron emission tomography (PET) during the past decade has evolved rapidly from that of a pure research tool to a methodology of enormous clinical potential. (18)F-fluorodeoxyglucose (FDG)-PET is currently the most widely used probe in the diagnosis, staging, assessment of tumor response to treatment, and radiation therapy planning because metabolic changes generally precede the more conventionally measured parameter of change in tumor size. Data accumulated rapidly during the last decade, thus validating the efficacy of FDG imaging and many other tracers in a wide variety of malignant tumors with sensitivities and specificities often in the high 90 percentile range. As a result, PET/computed tomography (CT) had a significant impact on the management of patients because it obviated the need for further evaluation, guided further diagnostic procedures, and assisted in planning therapy for a considerable number of patients. On the other hand, the progress in radiation therapy technology has been enormous during the last two decades, now offering the possibility to plan highly conformal radiation dose distributions through the use of sophisticated beam targeting techniques such as intensity-modulated radiation therapy (IMRT) using tomotherapy, volumetric modulated arc therapy, and many other promising technologies for sculpted three-dimensional (3D) dose distribution. The foundation of molecular imaging-guided radiation therapy lies in the use of advanced imaging technology for improved definition of tumor target volumes, thus relating the absorbed dose information to image-based patient representations. This review documents technological advancements in the field concentrating on the conceptual role of molecular PET/CT imaging in radiation therapy treatment planning and related image processing issues with special emphasis on segmentation of medical images for the purpose of defining target volumes. There is still much more work to be done and many of the techniques reviewed are themselves not yet widely implemented in clinical settings.
Collapse
|
19
|
Navigating beyond the 6th dimension: a challenge in the era of multi-parametric molecular imaging. Eur J Nucl Med Mol Imaging 2009; 36:1025-8. [DOI: 10.1007/s00259-009-1095-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Abstract
Multiple biomedical imaging techniques are used in all phases of cancer management. Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, structural, metabolic and functional information. Integration with other diagnostic tools such as in vitro tissue and fluids analysis assists in clinical decision-making. Hybrid imaging techniques are able to supply complementary information for improved staging and therapy planning. Image guided and targeted minimally invasive therapy has the promise to improve outcome and reduce collateral effects. Early detection of cancer through screening based on imaging is probably the major contributor to a reduction in mortality for certain cancers. Targeted imaging of receptors, gene therapy expression and cancer stem cells are research activities that will translate into clinical use in the next decade. Technological developments will increase imaging speed to match that of physiological processes. Targeted imaging and therapeutic agents will be developed in tandem through close collaboration between academia and biotechnology, information technology and pharmaceutical industries.
Collapse
Affiliation(s)
- Leonard Fass
- GE Healthcare, 352 Buckingham Avenue, Slough, SL1 4ER, UK.
| |
Collapse
|
21
|
|