1
|
Maksim R, Buczyńska A, Sidorkiewicz I, Krętowski AJ, Sierko E. Imaging and Metabolic Diagnostic Methods in the Stage Assessment of Rectal Cancer. Cancers (Basel) 2024; 16:2553. [PMID: 39061192 PMCID: PMC11275086 DOI: 10.3390/cancers16142553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Rectal cancer (RC) is a prevalent malignancy with significant morbidity and mortality rates. The accurate staging of RC is crucial for optimal treatment planning and patient outcomes. This review aims to summarize the current literature on imaging and metabolic diagnostic methods used in the stage assessment of RC. Various imaging modalities play a pivotal role in the initial evaluation and staging of RC. These include magnetic resonance imaging (MRI), computed tomography (CT), and endorectal ultrasound (ERUS). MRI has emerged as the gold standard for local staging due to its superior soft tissue resolution and ability to assess tumor invasion depth, lymph node involvement, and the presence of extramural vascular invasion. CT imaging provides valuable information about distant metastases and helps determine the feasibility of surgical resection. ERUS aids in assessing tumor depth, perirectal lymph nodes, and sphincter involvement. Understanding the strengths and limitations of each diagnostic modality is essential for accurate staging and treatment decisions in RC. Furthermore, the integration of multiple imaging and metabolic methods, such as PET/CT or PET/MRI, can enhance diagnostic accuracy and provide valuable prognostic information. Thus, a literature review was conducted to investigate and assess the effectiveness and accuracy of diagnostic methods, both imaging and metabolic, in the stage assessment of RC.
Collapse
Affiliation(s)
- Rafał Maksim
- Department of Radiotherapy, Maria Skłodowska-Curie Białystok Oncology Center, 15-027 Bialystok, Poland;
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (A.J.K.)
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Radiotherapy I, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027 Bialystok, Poland
| |
Collapse
|
2
|
Hélaine C, Amedlous A, Toutain J, Brunaud C, Lebedev O, Marie C, Alliot C, Bernaudin M, Haddad F, Mintova S, Valable S. In vivo biodistribution and tumor uptake of [ 64Cu]-FAU nanozeolite via positron emission tomography Imaging. NANOSCALE 2024; 16:11959-11968. [PMID: 38874227 DOI: 10.1039/d3nr05947b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nanoparticles have emerged as promising theranostic tools for biomedical applications, notably in the treatment of cancers. However, to fully exploit their potential, a thorough understanding of their biodistribution is imperative. In this context, we prepared radioactive [64Cu]-exchanged faujasite nanosized zeolite ([64Cu]-FAU) to conduct positron emission tomography (PET) imaging tracking in preclinical glioblastoma models. In vivo results revealed a rapid and gradual accumulation over time of intravenously injected [64Cu]-FAU zeolite nanocrystals within the brain tumor, while no uptake in the healthy brain was observed. Although a specific tumor targeting was observed in the brain, the kinetics of uptake into tumor tissue was found to be dependent on the glioblastoma model. Indeed, our results showed a rapid uptake in U87-MG model while in U251-MG glioblastoma model tumor uptake was gradual over the time. Interestingly, a [64Cu] activity, decreasing over time, was also observed in organs of elimination such as kidney and liver without showing a difference in activity between both glioblastoma models. Ex vivo analyses confirmed the presence of zeolite nanocrystals in brain tumor with detection of both Si and Al elements originated from them. This radiolabelling strategy, performed for the first time using nanozeolites, enables precise tracking through PET imaging and confirms their accumulation within the glioblastoma. These findings further bolster the potential use of zeolite nanocrystals as valuable theranostic tools.
Collapse
Affiliation(s)
- Charly Hélaine
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Abdallah Amedlous
- Université de Caen Normandie, ENSICAEN, CNRS, Normandie Université, Laboratoire Catalyse et Spectrochimie (LCS), F-14050 Caen, France.
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Oleg Lebedev
- Université de Caen Normandie, ENSICAEN, CNRS, Normandie Université, Laboratoire de Cristallographie et Science des Matériaux (CRISMAT), F-14050 Caen, France
| | - Charlotte Marie
- UAR3408/US50, Université de Caen Normandie, CNRS, INSERM, CEA, GIP CYCERON, F-14000 Caen, France
| | - Cyrille Alliot
- CRCI2NA, Inserm, CNRS, Nantes Université, F-44007 Nantes Cedex 1, France
- GIP ARRONAX, F-44800 Saint-Herblain, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| | - Ferid Haddad
- GIP ARRONAX, F-44800 Saint-Herblain, France
- IMT Atlantique, Nantes Université, CNRS, Subatech, F-44000 Nantes, France
| | - Svetlana Mintova
- Université de Caen Normandie, ENSICAEN, CNRS, Normandie Université, Laboratoire Catalyse et Spectrochimie (LCS), F-14050 Caen, France.
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France.
| |
Collapse
|
3
|
Lamba M, Singh PR, Bandyopadhyay A, Goswami A. Synthetic 18F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Med Chem 2024; 15:1899-1920. [PMID: 38911154 PMCID: PMC11187557 DOI: 10.1039/d4md00033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
The concept of positron emission tomography (PET) based imaging was developed more than 40 years ago. It has been a widely adopted technique for detecting and staging numerous diseases in clinical settings, particularly cancer, neuro- and cardio-diseases. Here, we reviewed the evolution of PET and its advantages over other imaging modalities in clinical settings. Primarily, this review discusses recent advances in the synthesis of 18F radiolabeled biomolecules in light of the widely accepted performance for effective PET. The discussion particularly emphasizes the 18F-labeling chemistry of carbohydrates, lipids, amino acids, oligonucleotides, peptides, and protein molecules, which have shown promise for PET imaging in recent decades. In addition, we have deliberated on how 18F-labeled biomolecules enable the detection of metabolic changes at the cellular level and the selective imaging of gross anatomical localization via PET imaging. In the end, the review discusses the future perspective of PET imaging to control disease in clinical settings. We firmly believe that collaborative multidisciplinary research will further widen the comprehensive applications of PET approaches in the clinical management of cancer and other pathological outcomes.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| |
Collapse
|
4
|
Monsef A, Sheikhzadeh P, Steiner JR, Sadeghi F, Yazdani M, Ghafarian P. Optimizing scan time and bayesian penalized likelihood reconstruction algorithm in copper-64 PET/CT imaging: a phantom study. Biomed Phys Eng Express 2024; 10:045019. [PMID: 38608316 DOI: 10.1088/2057-1976/ad3e00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Objectives: The aim of this study was to evaluate Cu-64 PET phantom image quality using Bayesian Penalized Likelihood (BPL) and Ordered Subset Expectation Maximum with point-spread function modeling (OSEM-PSF) reconstruction algorithms. In the BPL, the regularization parameterβwas varied to identify the optimum value for image quality. In the OSEM-PSF, the effect of acquisition time was evaluated to assess the feasibility of shortened scan duration.Methods: A NEMA IEC PET body phantom was filled with known activities of water soluble Cu-64. The phantom was imaged on a PET/CT scanner and was reconstructed using BPL and OSEM-PSF algorithms. For the BPL reconstruction, variousβvalues (150, 250, 350, 450, and 550) were evaluated. For the OSEM-PSF algorithm, reconstructions were performed using list-mode data intervals ranging from 7.5 to 240 s. Image quality was assessed by evaluating the signal to noise ratio (SNR), contrast to noise ratio (CNR), and background variability (BV).Results: The SNR and CNR were higher in images reconstructed with BPL compared to OSEM-PSF. Both the SNR and CNR increased with increasingβ, peaking atβ= 550. The CNR for allβ, sphere sizes and tumor-to-background ratios (TBRs) satisfied the Rose criterion for image detectability (CNR > 5). BPL reconstructed images withβ= 550 demonstrated the highest improvement in image quality. For OSEM-PSF reconstructed images with list-mode data duration ≥ 120 s, the noise level and CNR were not significantly different from the baseline 240 s list-mode data duration.Conclusions: BPL reconstruction improved Cu-64 PET phantom image quality by increasing SNR and CNR relative to OSEM-PSF reconstruction. Additionally, this study demonstrated scan time can be reduced from 240 to 120 s when using OSEM-PSF reconstruction while maintaining similar image quality. This study provides baseline data that may guide future studies aimed to improve clinical Cu-64 imaging.
Collapse
Affiliation(s)
- Abbas Monsef
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, United States of America
- Department of Radiology, University of Minnesota Medical School, Minneapolis, United States of America
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph R Steiner
- Department of Radiology, University of Minnesota Medical School, Minneapolis, United States of America
| | - Fatemeh Sadeghi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Marcus C, Muzahir S, Subramaniam RM. Quarter Century PET/Computed Tomography Transformation of Oncology: Neuroendocrine Tumors. PET Clin 2024; 19:187-196. [PMID: 38160070 DOI: 10.1016/j.cpet.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Significant improvement in molecular imaging and theranostics in the management of neuroendocrine tumors (NETs) has been made in the last few decades. Somatostatin receptor-targeted PET imaging outperforms conventional, planar, and single-photon emission computed tomography imaging and is indicated in the evaluation of these patients when available, resulting in a significant impact on staging, treatment response assessment, and restaging of these patients. Radionuclide therapy can have an impact on patient outcome in metastatic disease when not many treatment options are available.
Collapse
Affiliation(s)
- Charles Marcus
- Division of Nuclear Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road Northeast, E163, Atlanta, GA 30322, USA.
| | - Saima Muzahir
- Division of Nuclear Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road Northeast, E163, Atlanta, GA 30322, USA
| | - Rathan M Subramaniam
- Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, 160 Oxford Street, Darlinghurst, New South Wales 2010, Australia; Department of Radiology, Duke University, Durham, NC, USA; Department of Medicine, Otago Medical School, The University of Otago, New Zealand
| |
Collapse
|
6
|
Pinto CIG, Branco ADM, Bucar S, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Evaluation of the theranostic potential of [ 64Cu]CuCl 2 in glioblastoma spheroids. EJNMMI Res 2024; 14:26. [PMID: 38453813 PMCID: PMC10920519 DOI: 10.1186/s13550-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS). RESULTS Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu. CONCLUSIONS Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.
Collapse
Affiliation(s)
- Catarina I G Pinto
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - André D M Branco
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa and Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
7
|
Trencsényi G, Képes Z. Scandium-44: Diagnostic Feasibility in Tumor-Related Angiogenesis. Int J Mol Sci 2023; 24:ijms24087400. [PMID: 37108559 PMCID: PMC10138813 DOI: 10.3390/ijms24087400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in novel radionuclides other than gallium-68 (68Ga) or copper-64 (64Cu) to establish selective radiotracers for the imaging of tumour-associated neo-angiogenesis. Given its ideal decay characteristics (Eβ+average: 632 KeV) and a half-life (T1/2 = 3.97 h) that is well matched to the pharmacokinetic profile of small molecules targeting angiogenesis, scandium-44 (44Sc) has gained meaningful attention as a promising radiometal for positron emission tomography (PET) imaging. More recently, intensive research has been centered around the investigation of 44Sc-labelled angiogenesis-directed radiopharmaceuticals. Previous studies dealt with the evaluation of 44Sc-appended avb3 integrin-affine Arg-Gly-Asp (RGD) tripeptides, GRPR-selective aminobenzoyl-bombesin analogue (AMBA), and hypoxia-associated nitroimidazole derivatives in the identification of various cancers using experimental tumour models. Given the tumour-related hypoxia- and angiogenesis-targeting capability of these PET probes, 44Sc seems to be a strong competitor of the currently used positron emitters in radiotracer development. In this review, we summarize the preliminary preclinical achievements with 44Sc-labelled angiogenesis-specific molecular probes.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Chhabra A, Thakur ML. Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/ 67Cu, Can Be a Budding Hot Duo. Biomedicines 2022; 10:2787. [PMID: 36359312 PMCID: PMC9687163 DOI: 10.3390/biomedicines10112787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 08/26/2023] Open
Abstract
Prostate cancer (PCa) is one of the preeminent causes of mortality in men worldwide. Theragnostic, a combination of therapy and diagnostic, using radionuclide pairs to diagnose and treat disease, has been shown to be a promising approach for combating PCa. In PCa patients, bone is one of the most common sites of metastases, and about 90% of patients develop bone metastases. This review focuses on (i) clinically translated theragnostic radionuclide pairs for the management of PCa, (ii) radionuclide therapy of bone metastases in PCa, and (iii) a special emphasis on emerging theragnostic radionuclide pair, Copper-64/Copper-67 (64Cu/67Cu) for managing the disease.
Collapse
Affiliation(s)
- Anupriya Chhabra
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mathew L. Thakur
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Earley DF, Esteban Flores J, Guillou A, Holland JP. Photoactivatable bis(thiosemicarbazone) derivatives for copper-64 radiotracer synthesis. Dalton Trans 2022; 51:5041-5052. [PMID: 35285835 PMCID: PMC8962981 DOI: 10.1039/d2dt00209d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, copper-64 and copper-67 have been considered as a useful theranostic pair in nuclear medicine, due to their favourable and complementary decay properties. As 67Cu and 64Cu are chemically identical, development of both existing and new bifunctional chelators for 64Cu imaging agents can be readily adapted for the 67Cu-radionuclide. In this study, we explored the use of photoactivatable copper chelators based on the asymmetric bis(thiosemicarbazone) scaffold, H2ATSM/en, for the photoradiolabelling of protein. Photoactivatable 64CuATSM-derivatives were prepared by both direct synthesis and transmetallation from the corresponding natZn complex. Then, irradiation with UV light in the presence of a protein of interest in a pH buffered aqueous solution afforded the 64Cu-labelled protein conjugates in decay-corrected radiochemical yield of 86.9 ± 1.0% via the transmetallation method and 35.3 ± 1.7% from the direct radiolabelling method. This study successfully demonstrates the viability of photochemically induced conjugation methods for the development of copper-based radiotracers for potential applications in diagnostic positron emission tomography (PET) imaging and targeted radionuclide therapy. In recent years, copper-64 and copper-67 have been considered as a useful theranostic pair in nuclear medicine. Here, we report a photochemically-mediated approach for radiolabelling biologically relevant protein with copper radionuclides.![]()
Collapse
Affiliation(s)
- Daniel F Earley
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Jose Esteban Flores
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
10
|
Tzror-Azankot C, Betzer O, Sadan T, Motiei M, Rahimipour S, Atkins A, Popovtzer A, Popovtzer R. Glucose-Functionalized Liposomes for Reducing False Positives in Cancer Diagnosis. ACS NANO 2021; 15:1301-1309. [PMID: 33356143 DOI: 10.1021/acsnano.0c08530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) is a powerful tool for cancer detection, staging, and follow-up. However, 18F-FDG-PET imaging has high rates of false positives, as it cannot distinguish between tumor and inflammation regions that both feature increased glucose metabolic activity. In the present study, we engineered liposomes coated with glucose and the chelator dodecane tetraacetic acid (DOTA) complexed with copper, to serve as a diagnostic technology for differentiating between cancer and inflammation. This liposome technology is based on FDA-approved materials and enables complexation with metal cations and radionuclides. We found that these liposomes were preferentially uptaken by cancer cell lines with high metabolic activity, mediated via glucose transporter-1. In vivo, these liposomes were avidly uptaken by tumors, as compared to liposomes without glucose coating. Moreover, in a combined tumor-inflammation mouse model, these liposomes accumulated in the tumor tissue and not in the inflammation region. Thus, this technology shows high specificity for tumors while evading inflammation and has potential for rapid translation to the clinic and integration with existing PET imaging systems, for effective reduction of false positives in cancer diagnosis.
Collapse
Affiliation(s)
- Chen Tzror-Azankot
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Oshra Betzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Sadan
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Aron Popovtzer
- Sharett Institute of Oncology, Hadassah Hebrew Medical Center, Jerusalem 9112001, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
11
|
van der Meulen NP, Hasler R, Blanc A, Farkas R, Benešová M, Talip Z, Müller C, Schibli R. Implementation of a new separation method to produce qualitatively improved 64
Cu. J Labelled Comp Radiopharm 2019; 62:460-470. [DOI: 10.1002/jlcr.3730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Nicholas P. van der Meulen
- Laboratory of Radiochemistry; Paul Scherrer Institute; Villigen-PSI Switzerland
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Roger Hasler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Renata Farkas
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| |
Collapse
|
12
|
Wehbe M, Leung AWY, Abrams MJ, Orvig C, Bally MB. A Perspective - can copper complexes be developed as a novel class of therapeutics? Dalton Trans 2018; 46:10758-10773. [PMID: 28702645 DOI: 10.1039/c7dt01955f] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although copper-ligand complexes appear to be promising as a new class of therapeutics, other than the family of copper(ii) coordination compounds referred to as casiopeínas these compounds have yet to reach the clinic for human use. The pharmaceutical challenges associated with developing copper-based therapeutics will be presented in this article along with a discussion of the potential for high-throughput chemistry, computer-aided drug design, and nanotechnology to address the development of this important class of drug candidates.
Collapse
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | |
Collapse
|
13
|
Ghosh S, Das T, D Sarma H, Dash A. The potential of radiolabeled chemotherapeutics in tumor diagnosis: Preliminary investigations with 68 Ga-gemcitabine. Drug Dev Res 2018; 79:111-118. [PMID: 29380405 DOI: 10.1002/ddr.21423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 11/11/2022]
Abstract
Preclinical Research & Development Gemcitabine, a nucleoside analog, is a well-known chemotherapeutic drug that is used either alone or with other agents to treat a wide variety of cancers. The aim of the present work was to evaluate the potential of 68 Ga-labeled gemcitabine for its application in positron emission tomography (PET) imaging of tumorous lesions. Gemcitabine was coupled with p-NCS-benzyl-DOTA in order to facilitate radiolabeling with 68 Ga. The gemcitabine-p-NCS-benzyl-DOTA was radiolabeled with 68 Ga, obtained from a 68 Ge/68 Ga radionuclide generator. The radiolabeled product was characterized by high performance liquid chromatography (HPLC) and its tumor specificity was evaluated by biodistribution studies in Swiss mice bearing fibrosarcoma tumors. Preliminary bioevaluation study showed good tumor uptake within 1 hr post-administration [2.5% Injected Activity (IA) per g of tumor] with rapid renal clearance (>90% IA) and a high tumor to muscle ratio. 68 Ga-gemcitabine may have potential as a PET agent for tumor imaging.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haladhar D Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
14
|
do Carmo SJC, Alves VHP, Alves F, Abrunhosa AJ. Fast and cost-effective cyclotron production of61Cu using anatZn liquid target: an opportunity for radiopharmaceutical production and R&D. Dalton Trans 2017; 46:14556-14560. [DOI: 10.1039/c7dt01836c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following our previous work on the production of radiometals, such as64Cu and68Ga, through the irradiation of liquid targets using a medical cyclotron, we describe in this paper a technique to produce61Cu through the irradiation of natural zinc using a liquid target.
Collapse
Affiliation(s)
- S. J. C. do Carmo
- ICNAS – Produção
- University of Coimbra
- Pólo das Ciências da Saúde
- 3000-548 Coimbra
- Portugal
| | - V. H. P. Alves
- ICNAS – Produção
- University of Coimbra
- Pólo das Ciências da Saúde
- 3000-548 Coimbra
- Portugal
| | - F. Alves
- ICNAS – Institute for Nuclear Sciences Applied to Health; University of Coimbra; Pólo das Ciências da Saúde
- 3000-548 Coimbra
- Portugal
| | - A. J. Abrunhosa
- ICNAS – Institute for Nuclear Sciences Applied to Health; University of Coimbra; Pólo das Ciências da Saúde
- 3000-548 Coimbra
- Portugal
| |
Collapse
|
15
|
Ferreira CDA, Fuscaldi LL, Townsend DM, Rubello D, Barros ALBD. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 2016; 87:58-72. [PMID: 28040598 DOI: 10.1016/j.biopha.2016.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
Despite efforts, cancer is still one of the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths each year, according to the World Health Organization. Among the strategies to reduce cancer progression and improving its management, implementing early detection technologies is crucial. Based on the fact that several types of cancer cells overexpress surface receptors, small molecule ligands, such as peptides, have been developed to allow tumor identification at earlier stages. Allied with imaging techniques such as PET and SPECT, radiolabeled peptides play a pivotal role in nuclear medicine. Bombesin, a peptide of 14 amino acids, is an amphibian homolog to the mammalian gastrin-releasing peptide (GRP), that has been extensively studied as a targeting ligand for diagnosis and therapy of GRP positive tumors, such as breast, pancreas, lungs and prostate cancers. In this context, herein we provide a review of reported bombesin derivatives radiolabeled with a multitude of radioactive isotopes for diagnostic purposes in the preclinical setting. Moreover, since animal models are highly relevant for assessing the potential of clinical translation of this radiopeptides, a brief report of the currently used GRP-positive tumor-bearing animal models is described.
Collapse
Affiliation(s)
| | - Leonardo Lima Fuscaldi
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, NeuroRadiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André Luís Branco de Barros
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
16
|
Wais U, Jackson AW, He T, Zhang H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. NANOSCALE 2016; 8:1746-1769. [PMID: 26731460 DOI: 10.1039/c5nr07161e] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
During the last few decades the nanomedicine sector has emerged as a feasible and effective solution to the problems faced by the high percentage of poorly water-soluble drugs. Decreasing the size of such drug compounds to the nanoscale can significantly change their physical properties, which lays the foundation for the use of nanomedicine for pharmaceutical applications. Various techniques have been developed to produce poorly water-soluble drug nanoparticles, mainly to address the poor water-soluble issues but also for the efficient and targeted delivery of such drugs. These techniques can be generally categorized into top-down, bottom-up and encapsulation approaches. Among them, the top-down approaches have been the main choice for industrial preparation of drug nanoparticles while other methods are actively investigated by researchers. In this review, we aim to give a comprehensive overview and latest progress of the top-down, bottom-up, and encapsulation methods for the preparation of poorly water-soluble drug nanoparticles and how solvents and additives can be selected for these methods. In addition to the more industrially applied top-down approaches, the review is focused more on bottom-up and encapsulation methods, particularly covering supercritical fluid-related methods, cryogenic techniques, and encapsulation with dendrimers and responsive block copolymers. Some of the approved and mostly used nanodrug formulations on the market are also covered to demonstrate the applications of poorly water-soluble drug nanoparticles. This review is complete with perspectives on the development and challenges of fabrication techniques for more effective nanomedicine.
Collapse
Affiliation(s)
- Ulrike Wais
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK. and Institute of Chemical and Engineering Science, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Alexander W Jackson
- Institute of Chemical and Engineering Science, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China.
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|