1
|
Youssef HIA. Detection of oxalyl-CoA decarboxylase (oxc) and formyl-CoA transferase (frc) genes in novel probiotic isolates capable of oxalate degradation in vitro. Folia Microbiol (Praha) 2024; 69:423-432. [PMID: 38217756 PMCID: PMC11003902 DOI: 10.1007/s12223-024-01128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
Oxalate degradation is one of lactic acid bacteria's desirable activities. It is achieved by two enzymes, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). The current study aimed to screen 15 locally isolated lactic acid bacteria to select those with the highest oxalate degradation ability. It also aimed to amplify the genes involved in degradation. MRS broth supplemented with 20 mM sodium oxalate was used to culture the tested isolates for 72 h. This was followed by an enzymatic assay to detect remaining oxalate. All isolates showed oxalate degradation activity to variable degrees. Five isolates demonstrated high oxalate degradation, 78 to 88%. To investigate the oxalate-degradation potential of the selected isolates, they have been further tested for the presence of genes that encode for enzymes involved in oxalate catabolism, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). Three strains showed bands with the specific OXC and FRC forward and reverse primers designated as (SA-5, 9 and 37). Species-level identification revealed Loigolactobacillus bifermentans, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum. Preliminary results revealed that the tested probiotic strains harbored both oxc and frc whose products are putatively involved in oxalate catabolism. The probiotic potential of the selected strains was evaluated, and they showed high survival rates to both simulated gastric and intestinal fluids and variable degrees of antagonism against the tested Gram-positive and negative pathogens and were sensitive to clarithromycin but resistant to both metronidazole and ceftazidime. Finally, these strains could be exploited as an innovative approach to establish oxalate homeostasis in humans and prevent kidney stone formation.
Collapse
|
2
|
Mercurio M, Izzo F, Gatta GD, Salzano L, Lotrecchiano G, Saldutto P, Germinario C, Grifa C, Varricchio E, Carafa A, Di Meo MC, Langella A. May a comprehensive mineralogical study of a jackstone calculus and some other human bladder stones unveil health and environmental implications? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3297-3320. [PMID: 34529244 DOI: 10.1007/s10653-021-01083-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
This paper represents the first result of an active collaboration between the University of Sannio and the San Pio Hospital (Benevento, Italy), started in the 2018, that aims to a detailed mineralogical investigation of urinary stones of patients from Campania region. Herein, selected human bladder stones have been deeply characterized for clinical purposes and environmental biomonitoring, focusing on the importance to evaluate the concentration and distribution of undesired trace elements by means of microscopic techniques in the place of conventional wet chemical analyses. A rare bladder stone with a sea-urchin appearance, known as jackstone calculus, were also investigated (along with bladder stones made of uric acid and brushite) by means a comprehensive analytical approach, including Synchrotron X-ray Diffraction and Simultaneous Thermal Analyses. Main clinical assumptions were inferred according to the morpho-constitutional classification of bladder stones and information about patient's medical history and lifestyle. In most of the analyzed uroliths, undesired trace elements such as copper, cadmium, lead, chromium, mercury and arsenic have been detected and generally attributable to environmental pollution or contaminated food. Simultaneous occurrence of selenium and mercury should denote a methylmercury detoxification process, probably leading to the formation of a very rare HgSe compound known as tiemannite.
Collapse
Affiliation(s)
- M Mercurio
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - F Izzo
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy.
| | - Giacomo Diego Gatta
- Dipartimento Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133, Milan, Italy
| | - L Salzano
- UOC Urologia, Azienda Ospedaliera San Pio di Benevento, Via dell'Angelo 82100, Benevento, Italy
| | - G Lotrecchiano
- UOC Urologia, Azienda Ospedaliera San Pio di Benevento, Via dell'Angelo 82100, Benevento, Italy
| | - P Saldutto
- UOC Urologia, Azienda Ospedaliera San Pio di Benevento, Via dell'Angelo 82100, Benevento, Italy
| | - C Germinario
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - C Grifa
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - E Varricchio
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - A Carafa
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - Maria Chiara Di Meo
- Dipartimento di Scienze E Tecnologie, Università degli Studi del Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - A Langella
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Complesso Universitario Di Monte Sant'Angelo, Edificio 10, Via Vicinale Cupa Cintia 21, 80126, Naples, Italy
| |
Collapse
|
3
|
Beldar VG, Sidat PS, Jadhaoa MM. Ethnomedicinal Plants Used for Treatment of Urolithiasis in India: A Review. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220222100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The kidney stone is the most commonly observed and painful disease of the urinary tract in human being. Numerous intrinsic and extrinsic factors are responsible for the formation of kidney stone, for instance, age, sex, heredity (intrinsic factors) and climate, dietary, geography, mineral composition, and water intake (extrinsic factors). The kidney stones are categorized into calcium, struvite or magnesium ammonium phosphate, uric acid or urate, cystine and other types of stones based on chemical composition and pathogenesis. Due to the multifactorial nature of kidney stone disease, the patient may need to rely on complex synthetic medication. However, in ancient Indian history, there are several pieces of evidence where natural resources such as plants were used to remediation this lethal disease.
Objective:
The present review attempts to provide exhaustive information of ethnomedicinal and ethnopharmacological information of medicinal plants used for kidney stone in India.
Result:
Hitherto, there are a total of 258 ethnomedicinal plants from 90 different families reported using for kidney stone application. The majority of the plant species are associated with three important families: Asteraceae, Amaranthaceae, and Fabaceae. Most of the plants are from Andhra Pradesh (43 plants), followed by East Bengal (38), Jammu & Kashmir (36), Uttarakhand (31), Panjab (27), Mizoram (23), Karnataka (20), Maharashtra (20) and Assam (18). The commonly used plant parts for the herbal preparation are roots (21.22 %) followed by leaves/leaf (20.15 %), and sometimes complete plant (17.77 %) is used. The most commonly used method for the formulation is decoction (46.41 %) followed by powder (18.66 %) and then extracts (15.78 %) of different aerial and non-aerial parts of the plant. To date, the in-vitro and in-vivo activities against the kidney stone assessed for more than sixty ethnomedicinal plants.
Conclusion:
The present review epitomizes the ethnomedicinal information of medicinal plants used for kidney stone and pharmacological evidence for anti-urolithiasis activity. Most reported medicinal plants are not yet scientifically explored and need immediate attention before we lose some important species due to excessive deforestation for farming and industrial needs.
Collapse
Affiliation(s)
- Vishal Gokul Beldar
- Institute of Chemical Technology Mumbai Marathwada Campus, Jalna-431203, India
| | | | | |
Collapse
|
4
|
Huang Y, Zhang Y, Chi Z, Huang R, Huang H, Liu G, Zhang Y, Yang H, Lin J, Yang T, Cao S. The Handling of Oxalate in the Body and the Origin of Oxalate in Calcium Oxalate Stones. Urol Int 2019; 104:167-176. [DOI: 10.1159/000504417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 11/19/2022]
|
5
|
Önal Darilmaz D, Sönmez Ş, Beyatli Y. The effects of inulin as a prebiotic supplement and the synbiotic interactions of probiotics to improve oxalate degrading activity. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Derya Önal Darilmaz
- Department of Biotechnology and Molecular Biology; Faculty of Science and Letters; Aksaray University; 68100 Aksaray Turkey
| | - Şule Sönmez
- Department of Biology; Faculty of Science; Gazi University; 06500 Ankara Turkey
| | - Yavuz Beyatli
- Department of Biology; Faculty of Science; Gazi University; 06500 Ankara Turkey
| |
Collapse
|