1
|
Zhang L, Biesold GM, Zhao C, Xu H, Lin Z. Necklace-Like Nanostructures: From Fabrication, Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200776. [PMID: 35749232 DOI: 10.1002/adma.202200776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The shape-controlled synthesis of nanocrystals remains a hot research topic in nanotechnology. Particularly, the fabrication of 1D structures such as wires, rods, belts, and tubes has been an interesting and important subject within nanoscience in the last few decades. 1D necklace-like micro/nanostructures are a sophisticated geometry that has attracted increasing attention due to their anisotropic and periodic structure, intrinsic high surface area, abundant transport channels, exposure of each component to the surface, and multiscale roughness of the surface. These characteristics enable their unique electrical, optical, and catalytic properties. This review provides a comprehensive summary of the advanced research progress on the fabrication strategies, novel properties, and various applications of necklace-like structures. It begins with the main fabrication methods of necklace-like structures and subsequently details a variety of their properties and applications. It concludes with the authors' perspectives on future research and development of the necklace-like structures.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chunyan Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Wang Q, Li X, Ma X, Li Z, Yang Y. Activation of the MoS 2 Basal Plane to Enhance CO Hydrogenation to Methane Activity Through Increasing S Vacancies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7741-7755. [PMID: 35112567 DOI: 10.1021/acsami.1c18291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The active site of MoS2 is usually located at the edge of crystalline MoS2, which has a lower proportion than that from the basal plane, limiting the hydrogenation activity. Therefore, activating the basal plane of MoS2 is expected to greatly enhance the hydrogenation activity. Herein, we prepared a series of MoS2 catalysts by acidolysis of ammonium tetrathiomolybdate and subsequently pyrolyzing at high temperature with different atmospheres. Through analysis, we found that the prepared MoS2 catalysts were curved, which was different from commercial MoS2. Through X-ray diffraction, transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy characterization, it was found that the MoS2 catalyst pyrolyzed under a N2 atmosphere had a larger number of S-vacancies than the MoS2 catalysts under a H2 atmosphere. In addition, temperature-programmed reduction results showed that the Mo-S bond energy was decreased with the increasing content of S-vacancies, which might be related to bending. Sulfur-resistant methanation results indicated that the curved MoS2 exhibited increased CO conversion with the increasing S vacancies. Furthermore, density functional theory calculation was used to simulate the generation of S vacancy and numbers of S vacancies. It was found that with the generation of S vacancy, three unsaturated coordination Mo atoms were exposed around one S vacancy and became new active sites, resulting in enhanced activity. What is more, the higher methanation activity was attributed not only from more S vacancies but also from the decreased activation energy for CO hydrogenation activation.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xin Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhenhua Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | | |
Collapse
|
3
|
Influence of Pluronic® P123 Addition in the Synthesis of Bulk Ni Promoted MoS2 Catalyst. Application to the Selective Hydrodesulfurization of Sulfur Model Molecules Representative of FCC Gasoline. Catalysts 2019. [DOI: 10.3390/catal9100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A way to improve hydrotreatment processes is to enhance the intrinsic activity of Ni or Co promoted MoS2 catalysts that are commonly used in such reactions. The aim of this work was to investigate the impact of the presence of Pluronic® P123 as a structuring agent during the synthesis of Ni promoted MoS2 catalysts (named NiMoS) in water at room temperature. A series of analyses, i.e., X-ray diffraction (XRD), chemical analysis, inductively coupled plasma mass spectrometry (ICP-MS), nitrogen adsorption-desorption isotherms, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), helped in characterizing the NiMoS-P123 and NiMoS catalysts, the latter being prepared in the absence of polymer. Both compounds contained MoS2 phase (~85 atomic% considering Mo atoms), a similar amount of mixed Ni-Mo-S phase (40–50% considering Ni) and some amount of NiS and Ni-oxidized impurity phases. The main differences between the two catalysts were a much larger specific surface area (126 m2·g−1 instead of 31 m²·g−1) and a better dispersion of the active phase as shown by the lower slab stacking (2.7 instead of 4.8) for NiMoS-P123, and the presence of C in NiMoS-P123 (9.4 wt.% instead of 0.6 wt.%), indicating an incomplete decomposition of the polymer during thermal treatment. Thanks to its larger specific surface area and lower slab stacking and therefore modification of active Mo site properties, the compound prepared in the presence of Pluronic® P123 exhibits a strong increase of the catalytic activity expressed per Mo atom for the transformation of 3-methylthiophene. Such improvement in catalytic activity was not observed for the transformation of benzothiophene likely due to poisonous residual carbon which results from the presence of Pluronic® P123 during the synthesis.
Collapse
|
4
|
Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1677-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Synthesis of chain-like MoS2 nanoparticles in W/O reverse microemulsion and application in photocatalysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5339-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Enyashin AN. Theoretical Studies of Inorganic Fullerenes and Fullerene-Like Nanoparticles. Isr J Chem 2010. [DOI: 10.1002/ijch.201000058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Abstract
Transition metal sulfides are scientifically and technologically important materials. This review summarizes recent progress on the synthetic fabrication of transition metal sulfides nanocrystals with controlled shape, size, and surface functionality. Special attention is paid to the case of MoS2 nanoparticles, where organic (surfactant, polymer), inorganic (support, promoter, doping) compounds and intercalation chemistry are applied.
Collapse
|
8
|
Yu H, Liu Y, Brock SL. Synthesis of Discrete and Dispersible MoS2 Nanocrystals. Inorg Chem 2008; 47:1428-34. [DOI: 10.1021/ic701020s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongtao Yu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Yi Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Stephanie L. Brock
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
9
|
|
10
|
Bar-Sadan M, Enyashin AN, Gemming S, Popovitz-Biro R, Hong SY, Prior Y, Tenne R, Seifert G. Structure and stability of molybdenum sulfide fullerenes. J Phys Chem B 2007; 110:25399-410. [PMID: 17165987 DOI: 10.1021/jp0644560] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MoS2 nanooctahedra are believed to be the smallest stable closed-cage structures of MoS2, i.e., the genuine inorganic fullerenes. Here a combination of experiments and density functional tight binding calculations with molecular dynamics annealing are used to elucidate the structures and electronic properties of octahedral MoS2 fullerenes. Through the use of these calculations MoS2 octahedra were found to be stable beyond nMo > 100 but with the loss of 12 sulfur atoms in the six corners. In contrast to bulk and nanotubular MoS2, which are semiconductors, the Fermi level of the nanooctahedra is situated within the band, thus making them metallic-like. A model is used for extending the calculations to much larger sizes. These model calculations show that, in agreement with experiment, the multiwall nanooctahedra are stable over a limited size range of 104-105 atoms, whereupon they are converted into multiwall MoS2 nanoparticles with a quasi-spherical shape. On the experimental side, targets of MoS2 and MoSe2 were laser-ablated and analyzed mostly through transmission electron microscopy. This analysis shows that, in qualitative agreement with the theoretical analysis, multilayer nanooctahedra of MoS2 with 1000-25 000 atoms (Mo + S) are stable. Furthermore, this and previous work show that beyond approximately 105 atoms fullerene-like structures with quasi-spherical forms and 30-100 layers become stable. Laser-ablated WS2 samples yielded much less faceted and sometimes spherically symmetric nanocages.
Collapse
Affiliation(s)
- M Bar-Sadan
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
11
|
|