1
|
Feng JY, Lee YP, Witek HA, Hsu PJ, Kuo JL, Ebata T. Structures of Pyridine-Water Clusters Studied with Infrared-Vacuum Ultraviolet Spectroscopy. J Phys Chem A 2021; 125:7489-7501. [PMID: 34406765 DOI: 10.1021/acs.jpca.1c05782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The infrared (IR) spectra of the O-H stretching vibrations of pyridine-water clusters (Pyd)m(H2O)n, with m, n = 1-4, have been investigated with infrared-vacuum ultraviolet (VUV) spectroscopy under a jet-cooled condition. The time-of-flight mass spectrum of (Pyd)m(H2O)n+ by VUV ionization at ∼9 eV showed an unusual intensity pattern with very weak ion signals for m = 1 and 2 and stronger signals for m ≥ 3. This unusual mass pattern was explained by a drastic structural change of (Pyd)m(H2O)n upon the VUV ionization, which was followed by the elimination of water molecules. Among the recorded IR spectra, only one spectrum monitored, (Pyd)2+ cation, showed a well-resolved structure. The spectrum was analyzed by comparing with the simulated ones of possible stable isomers of (Pyd)2(H2O)n, which were obtained with quantum-chemical calculations. Most of the calculated (Pyd)2(H2O)n clusters had the characteristic structure in which H2O or (H2O)2 forms a hydrogen-bonded bridge between two pyridines to form the π-stacked (Pyd)2, and an additional H2O molecule(s) extends the H-bonded network. The π-stacked (Pyd)2(H2O)n moiety is very stable and is thought to exist as a local structure in a pyridine/water mixed solution. The Fermi resonance between the O-H stretch fundamentals and the overtones of the O-H bending vibrations in (Pyd)m(H2O)n was found to be less pronounced in the case of (Pyd)m(NH3)n studied previously.
Collapse
Affiliation(s)
- Jun-Ying Feng
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Center for Emergent Functional Matter Sciences, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Henryk A Witek
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Takayuki Ebata
- Department of Applied Chemistry and Institute for Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
2
|
Nagasaka M, Yuzawa H, Kosugi N. Soft X-ray Absorption Spectroscopy of Liquids for Understanding Chemical Processes in Solution. ANAL SCI 2020; 36:95-105. [PMID: 31708561 DOI: 10.2116/analsci.19r005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Soft X-ray absorption spectroscopy (XAS) involving excitation processes of a core electron to unoccupied states is an effective method to study local structures around excited C, N, and O atoms in liquid samples. Since soft X-rays are strongly absorbed by air and liquid itself, we have developed transmission-type liquid flow cells, where the absorbance of liquid samples can be easily reduced and optimized by controlling the liquid thickness. By using the transmission-mode XAS techniques, we have investigated local structures of several liquid samples such as concentration dependence of aqueous pyridine solutions and unexpected temperature-dependent structural changes in liquid benzene from the precise energy shift measurements in XAS spectra with the help of molecular dynamics simulation and inner-shell calculations. These XAS techniques are also applied to in situ/operando observation of chemical processes in solutions such as catalytic and electrochemical reactions.
Collapse
Affiliation(s)
- Masanari Nagasaka
- Institute for Molecular Science.,SOKENDAI (The Graduate University for Advanced Studies)
| | | | - Nobuhiro Kosugi
- Institute for Molecular Science.,SOKENDAI (The Graduate University for Advanced Studies)
| |
Collapse
|
3
|
Nagasaka M, Yuzawa H, Kosugi N. Intermolecular Interactions of Pyridine in Liquid Phase and Aqueous Solution Studied by Soft X-ray Absorption Spectroscopy. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Intermolecular interactions of pyridine in liquid and in aqueous solution are studied by using soft X-ray absorption spectroscopy (XAS) at the C, N, and O K-edges. XAS of liquid pyridine shows that the N 1s→π* peak is blue shifted and the C 1s→π* peak of the meta and para sites is red shifted, respectively, as compared with XAS of pyridine gas. These shifts in liquid are smaller than those in clusters, indicating that the intermolecular interaction of liquid pyridine is weaker than that of pyridine cluster, as supported by the combination of quantum chemical calculations of the core excitation and molecular dynamics simulations of the liquid structure. On the other hand, XAS spectra of aqueous pyridine solutions (C5H5N)x(H2O)1−x
measured at different molar fractions show that in the pyridine rich region, x>0.7, the C and N 1s→π* peak energies are not so different from pure liquid pyridine (x=1.0). In this region, antiparallel displaced structures of pyridine molecules are dominant as in pure pyridine liquid. In the O K-edge XAS, the pre-edge peaks sensitive to the hydrogen bond (HB) network of water molecules show the red shift of −0.15 eV from that of bulk water, indicating that small water clusters with no large-scale HB network are formed in the gap space of structured pyridine molecules. In the water rich region, 0.7>x, the N 1s→π* peaks and the O 1s pre-edge peaks are blue shifted, and the C 1s→π* peaks of the meta and para sites are red-shifted by increasing molar fraction of water. The HB network of bulk water is dominant, but quantum chemical calculations indicate that small pyridine clusters with the HB interaction between the H atom in water and the N atom in pyridine are still existent even in very dilute pyridine solutions.
Collapse
Affiliation(s)
- Masanari Nagasaka
- Institute for Molecular Science and SOKENDAI (Graduate University for Advanced Studies) , Myodaiji, Okazaki 444-8585 , Japan
| | - Hayato Yuzawa
- Institute for Molecular Science , Myodaiji, Okazaki 444-8585 , Japan
| | - Nobuhiro Kosugi
- Institute for Molecular Science and SOKENDAI (Graduate University for Advanced Studies) , Myodaiji, Okazaki 444-8585 , Japan
| |
Collapse
|
4
|
Pagliai M, Mancini G, Carnimeo I, De Mitri N, Barone V. Electronic absorption spectra of pyridine and nicotine in aqueous solution with a combined molecular dynamics and polarizable QM/MM approach. J Comput Chem 2017; 38:319-335. [PMID: 27910109 PMCID: PMC6680224 DOI: 10.1002/jcc.24683] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023]
Abstract
The electronic absorption spectra of pyridine and nicotine in aqueous solution have been computed using a multistep approach. The computational protocol consists in studying the solute solvation with accurate molecular dynamics simulations, characterizing the hydrogen bond interactions, and calculating electronic transitions for a series of configurations extracted from the molecular dynamics trajectories with a polarizable QM/MM scheme based on the fluctuating charge model. Molecular dynamics simulations and electronic transition calculations have been performed on both pyridine and nicotine. Furthermore, the contributions of solute vibrational effect on electronic absorption spectra have been taken into account in the so called vertical gradient approximation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Pagliai
- Scuola Normale SuperiorePiazza dei Cavalieri 7PisaI‐56126Italy
| | | | - Ivan Carnimeo
- Scuola Normale SuperiorePiazza dei Cavalieri 7PisaI‐56126Italy
- Compunet, Istituto Italiano di Tecnologia (IIT)via Morego 30GenovaI‐16163Italy
| | - Nicola De Mitri
- Scuola Normale SuperiorePiazza dei Cavalieri 7PisaI‐56126Italy
- Present address:
Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWU.K.
| | - Vincenzo Barone
- Scuola Normale SuperiorePiazza dei Cavalieri 7PisaI‐56126Italy
| |
Collapse
|
5
|
Mason PE, Neilson GW, Price DL, Saboungi ML, Brady JW. A new structural technique for examining ion-neutral association in aqueous solution. Faraday Discuss 2013; 160:161-70; discussion 207-24. [DOI: 10.1039/c2fd20081c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Mason PE, Wernersson E, Jungwirth P. Accurate Description of Aqueous Carbonate Ions: An Effective Polarization Model Verified by Neutron Scattering. J Phys Chem B 2012; 116:8145-53. [DOI: 10.1021/jp3008267] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip E. Mason
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610
Prague 6, Czech Republic
| | - Erik Wernersson
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610
Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610
Prague 6, Czech Republic
| |
Collapse
|
7
|
Kameda Y, Amo Y, Usuki T. Hydration structure of pyridine molecule studied by neutron diffraction with isotopic substitution method. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Mason PE, Dempsey CE, Neilson GW, Kline SR, Brady JW. Preferential interactions of guanidinum ions with aromatic groups over aliphatic groups. J Am Chem Soc 2010; 131:16689-96. [PMID: 19874022 DOI: 10.1021/ja903478s] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small angle neutron scattering (SANS) and molecular dynamics (MD) simulations were used to characterize the long-range structuring (aggregation) of aqueous solutions of isopropanol (IPA) and pyridine and the effect on structuring of guanidinium chloride (GdmCl). These solutes serve as highly soluble analogs of the nonpolar aliphatic (IPA) and aromatic (pyridine) side chains of proteins. SANS data showed that isopropanol and pyridine both form clusters in water resulting from interaction between nonpolar groups of the solutes, with pyridine aggregation producing longer-range structuring than isopropanol in 3 m solutions. Addition of GdmCl at 3 m concentration considerably reduced pyridine aggregation but had no effect on isopropanol aggregation. MD simulations of these solutions support the conclusion that long-range structuring involves hydrophobic solute interactions and that Gdm(+) interacts with the planar pyridine group to suppress pyridine-pyridine interactions in solution. Hydrophobic interactions involving the aliphatic groups of isopropanol were unaffected by GdmCl, indicating that the planar and weakly hydrated Gdm(+) cation cannot make productive interactions with the highly curved or "lumpy" aliphatic groups of this solute. These observations support the conclusion that the effects of Gdm(+) ions on protein-stabilizing interactions involving aromatic amino acid side chains make significant contributions to the denaturant activity of GdmCl, whereas interactions with the "lumpy" aliphatic side chains are likely to be less important.
Collapse
Affiliation(s)
- Philip E Mason
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
9
|
Pagliai M, Bellucci L, Muniz-Miranda M, Cardini G, Schettino V. A combined Raman, DFT and MD study of the solvation dynamics and the adsorption process of pyridine in silver hydrosols. Phys Chem Chem Phys 2006; 8:171-8. [PMID: 16482258 DOI: 10.1039/b509976e] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of pyridine onto silver colloids has been investigated by Raman spectroscopy experiments and by ab initio DFT and MP2 calculations. The solvation dynamics of the pyridine in water has been studied by a molecular dynamics simulation. The results are compared with the latest available experimental and theoretical data. It is found that the pyridine is essentially hydrogen bonded to one solvent molecule. Calculations based on pyridine-water and pyridine-Ag(+) complexes allow the reproduction of the experimentally observed Raman features and explain the adsorption process of the ligand in silver hydrosols.
Collapse
Affiliation(s)
- Marco Pagliai
- Laboratorio di Spettroscopia Molecolare, Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | | | | | | | | |
Collapse
|