1
|
Scott M, Rehn DR, Norman P, Dreuw A. Ab Initio Excited-State Electronic Circular Dichroism Spectra Exploiting the Third-Order Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator. J Phys Chem Lett 2021; 12:5132-5137. [PMID: 34030439 DOI: 10.1021/acs.jpclett.1c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Excited-state rotatory strengths are reported for the first time at a correlated ab initio level, here with the algebraic diagrammatic construction scheme of the polarization propagator up to the third order. To demonstrate the capabilities of this computational approach, the gas phase S1 electronic circular dichroism spectra of the bicyclic ketones (1R)-camphor, (1R)-norcamphor, and (1R)-fenchone have been calculated at the ADC(3) level of theory. Furthermore, the solution excited-state spectra of the energetically lowest conformer of R-(+)-1,1'-bi(2-naphthol) have been computed with inclusion of a polarizable continuum model at the ADC(2) level of theory.
Collapse
Affiliation(s)
- Mikael Scott
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Dirk R Rehn
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Scott M, Rehn DR, Coriani S, Norman P, Dreuw A. Electronic circular dichroism spectra using the algebraic diagrammatic construction schemes of the polarization propagator up to third order. J Chem Phys 2021; 154:064107. [DOI: 10.1063/5.0038315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Mikael Scott
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Dirk R. Rehn
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, DK-2800 Kongens Lyngby, Denmark
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Fiedler B, Coriani S, Friedrich J. Molecular Dipole Moments within the Incremental Scheme Using the Domain-Specific Basis-Set Approach. J Chem Theory Comput 2016; 12:3040-52. [PMID: 27300371 DOI: 10.1021/acs.jctc.6b00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present the first implementation of the fully automated incremental scheme for CCSD unrelaxed dipole moments using the domain-specific basis-set approach. Truncation parameters are varied, and the accuracy of the method is statistically analyzed for a test set of 20 molecules. The local approximations introduce small errors at second order and negligible ones at third order. For a third-order incremental CCSD expansion with a CC2 error correction, a cc-pVDZ/SV domain-specific basis set (tmain = 3.5 Bohr), and the truncation parameter f = 30 Bohr, we obtain a mean error of 0.00 mau (-0.20 mau) and a standard deviation of 1.95 mau (2.17 mau) for the total dipole moments (Cartesian components of the dipole vectors). By analyzing incremental CCSD energies, we demonstrate that the MP2 and CC2 error correction schemes are an exclusive correction for the domain-specific basis-set error. Our implementation of the incremental scheme provides fully automated computations of highly accurate dipole moments at reduced computational cost and is fully parallelized in terms of the calculation of the increments. Therefore, one can utilize the incremental scheme, on the same hardware, to extend the basis set in comparison to standard CCSD and thus obtain a better total accuracy.
Collapse
Affiliation(s)
- Benjamin Fiedler
- Institute for Chemistry, Technische Universität Chemnitz , Straße der Nationen 62, D-09111 Chemnitz, Germany
| | - Sonia Coriani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste , Via L. Giorgieri 1, I-34127 Trieste, Italy.,Aarhus Institute of Advanced Studies, Aarhus University , Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Joachim Friedrich
- Institute for Chemistry, Technische Universität Chemnitz , Straße der Nationen 62, D-09111 Chemnitz, Germany
| |
Collapse
|
4
|
Marenich AV, Olson RM, Chamberlin AC, Cramer CJ, Truhlar DG. Polarization Effects in Aqueous and Nonaqueous Solutions. J Chem Theory Comput 2015; 3:2055-67. [PMID: 26636201 DOI: 10.1021/ct7001539] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polarization effects in aqueous and nonaqueous solutions were analyzed for nine neutral and three charged organic solutes by the SM8 universal implicit solvation model and class IV partial atomic charges based on Charge Model 4M (CM4M) with the M06-2X density functional. The CM4M partial atomic charges in neutral and ionic solutes and in the corresponding clustered solutes (supersolutes), which included one solute molecule and one or two solvent molecules, were modeled in three solvents (benzene, methylene chloride, and water) and compared to those in the gas phase. The use of the supersolute approach (microsolvation) allows one to account for charge transfer from the solute to the solvent, and we find charge transfers as large as 0.06 atomic units for neutral solutes (pyridine in water) and 0.32 atomic units for ions (methoxide anion in water). Relaxation of the electronic structure of the solute in the presence of solvent increases the polarization free energy of the neutral solutes studied here, on average, by 16% in benzene, 30% in methylene chloride, and 43% in water. The increase for the ions in water averaged 43%.
Collapse
Affiliation(s)
- Aleksandr V Marenich
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Ryan M Olson
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Adam C Chamberlin
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Christopher J Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| |
Collapse
|
5
|
Wakabayashi M, Yokojima S, Fukaminato T, Ohtani H, Nakamura S. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism. J Chem Phys 2015; 142:154102. [PMID: 25903861 DOI: 10.1063/1.4917174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.
Collapse
Affiliation(s)
- Masamitsu Wakabayashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Yokojima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji-shi, Tokyo 192-0392, Japan
| | - Tuyoshi Fukaminato
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hiroyuki Ohtani
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shinichiro Nakamura
- RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Wakabayashi M, Yokojima S, Fukaminato T, Shiino KI, Irie M, Nakamura S. Anisotropic dissymmetry factor, g: theoretical investigation on single molecule chiroptical spectroscopy. J Phys Chem A 2014; 118:5046-57. [PMID: 24919679 DOI: 10.1021/jp409559t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A formula for an anisotropic dissymmetry factor g evaluating the chiroptical response of orientationally fixed molecules is derived. Incorporating zeroth- and first-order multipole expansion terms, it is applied to bridged triarylamine helicene molecules to examine the experimental results of single-molecule chiroptical spectroscopy. The ground- and excited-state wave functions and a series of transition moments required for the evaluation of the anisotropic g value are calculated using time-dependent density functional theory (TDDFT). The probability histograms obtained for simulated g values, uniformly sampled in regard to the direction of light propagation toward the fixed molecule, show that even for a given diastereomer, the dissymmetry factors have positive and negative values and can deviate from their averages to a considerable extent when the angle between the electric dipole transition moment and the propagation vector of the incident light is near 0 or 180°.
Collapse
Affiliation(s)
- Masamitsu Wakabayashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Wakai A, Fukasawa H, Yang C, Mori T, Inoue Y. Theoretical and Experimental Investigations of Circular Dichroism and Absolute Configuration Determination of Chiral Anthracene Photodimers. J Am Chem Soc 2012; 134:4990-7. [DOI: 10.1021/ja300522y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayako Wakai
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka University, 2-1 Yamada-oka,
Suita, Osaka 565-0871, Japan
| | - Hiroki Fukasawa
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka University, 2-1 Yamada-oka,
Suita, Osaka 565-0871, Japan
| | - Cheng Yang
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka University, 2-1 Yamada-oka,
Suita, Osaka 565-0871, Japan
| | - Tadashi Mori
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka University, 2-1 Yamada-oka,
Suita, Osaka 565-0871, Japan
| | - Yoshihisa Inoue
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka University, 2-1 Yamada-oka,
Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Severo Pereira Gomes A, Jacob CR. Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2pc90007f] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Autschbach J, Nitsch-Velasquez L, Rudolph M. Time-dependent density functional response theory for electronic chiroptical properties of chiral molecules. Top Curr Chem (Cham) 2010; 298:1-98. [PMID: 21321799 DOI: 10.1007/128_2010_72] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Methodology to calculate electronic chiroptical properties from time-dependent density functional theory (TDDFT) is outlined. Applications of TDDFT to computations of electronic circular dichroism, optical rotation, and optical rotatory dispersion are reviewed. Emphasis is put on publications from 2005 to 2010, but much of the older literature is also cited and discussed. The determination of the absolute configuration of chiral molecules by combined measurements and computations is an important application of TDDFT chiroptical methods and discussed in some detail. Raman optical activity (ROA) spectra are obtained from normal-mode derivatives of the optical rotation tensor and other linear response tensors. A few selected (ROA) benchmarks are reviewed.
Collapse
Affiliation(s)
- Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, New York, NY, USA.
| | | | | |
Collapse
|
10
|
Cui G, Ai Y, Fang W. Conical Intersection Is Responsible for the Fluorescence Disappearance below 365 nm in Cyclopropanone. J Phys Chem A 2009; 114:730-4. [DOI: 10.1021/jp908936u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ganglong Cui
- Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuejie Ai
- Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| | - Weihai Fang
- Chemistry College, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
11
|
Autschbach J. Computing chiroptical properties with first-principles theoretical methods: Background and illustrative examples. Chirality 2009; 21 Suppl 1:E116-52. [DOI: 10.1002/chir.20789] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Hassey-Paradise R, Cyphersmith A, Tilley AM, Mortsolf T, Basak D, Venkataraman D, Barnes MD. Dissymmetries in fluorescence excitation and emission from single chiral molecules. Chirality 2009; 21 Suppl 1:E265-76. [DOI: 10.1002/chir.20809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Krykunov M, Autschbach J. Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory. J Chem Phys 2007; 126:024101. [PMID: 17228937 DOI: 10.1063/1.2423007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report implementations and results of time-dependent density functional calculations (i) of the frequency-dependent magnetic dipole-magnetic dipole polarizability, (ii) of the (observable) translationally invariant linear magnetic response, and (iii) of a linear intensity differential (LID) which includes the dynamic dipole magnetizability. The density functional calculations utilized density fitting. For achieving gauge-origin independence we have employed time-periodic magnetic-field-dependent basis functions as well as the dipole velocity gauge, and have included explicit density-fit related derivatives of the Coulomb potential. We present the results of calculations of static and dynamic magnetic dipole-magnetic dipole polarizabilities for a set of small molecules, the LID for the SF6 molecule, and dispersion curves for M-hexahelicene of the origin invariant linear magnetic response as well as of three dynamic polarizabilities: magnetic dipole-magnetic dipole, electric dipole-electric dipole, and electric dipole-magnetic dipole. We have also performed comparison of the linear magnetic response and magnetic dipole-magnetic dipole polarizability over a wide range of frequencies for H2O and SF6.
Collapse
Affiliation(s)
- Mykhaylo Krykunov
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
| | | |
Collapse
|
14
|
Krykunov M, Autschbach J. Calculation of origin-independent optical rotation tensor components in approximate time-dependent density functional theory. J Chem Phys 2006; 125:34102. [PMID: 16863339 DOI: 10.1063/1.2210474] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We outline an implementation of the origin-independent optical rotation tensor, which includes electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability. The method is based on approximate time-dependent density functional theory. We utilize time-periodic magnetic-field-dependent basis functions as well as a modified velocity-gauge formulation of dynamic polarizability tensors in order to obtain a gauge-origin independence. To ensure gauge-origin independence of the results within a given numerical accuracy, density fit coefficient derivatives are employed. A damping constant has been introduced into the linear response equations to treat both resonance and nonresonance regions of optical activity. We present calculations for trans-2,3-dimethyloxirane and derivatives thereof as well as calculations for androst-4,17-dien-3-one. In the Appendix, we derive the equivalence between the common-gauge origin and gauge-including atomic orbitals formulations for the optical rotation tensor in time-dependent DFT.
Collapse
Affiliation(s)
- Mykhaylo Krykunov
- Department of Chemistry, State University of New York at Buffalo, 312 Natural Sciences Complex, Buffalo, NY 14260-3000, USA
| | | |
Collapse
|
15
|
Affiliation(s)
- Jacopo Tomasi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy.
| | | | | |
Collapse
|
16
|
Coupled cluster calculations of the optical rotation of S-propylene oxide in gas phase and solution. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.11.082] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|