1
|
Ilić D, Vujić Đ, Buljovčić M, Živančev J, Šikoparija B, Brkić B. Beekeeping breakthrough: unveiling hive health with a portable membrane inlet mass spectrometry detection method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56610-56620. [PMID: 39283546 PMCID: PMC11422474 DOI: 10.1007/s11356-024-34957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Supporting bee populations is essential considering threats posed by human activities like pesticide usage and habitat destruction. However, the current methods for monitoring and analyzing beehives and their surrounding environments are invasive, complex, and time-consuming. These methods often rely heavily on laboratory analyses, making them difficult to implement independently in the field. This study explores the application of portable membrane inlet mass spectrometer (MIMS) for noninvasive hive analysis, demonstrating its ability to detect various compounds indicative of hive conditions and environmental stressors. In addition to the expected compounds found in beehives, such as α-bergamotene, hexadecanoic acid, heptadecane, hexadecanamide, α-bisabolol-, 9-octadecenamide, (Z) - , and benzaldehyde, unexpected compounds, pollutants, like indane (polycyclic aromatic hydrocarbon) and carbofuran (pesticide), were also detected. The MIMS detection method provides rapid, accurate, and real-time results, making it suitable for preventive measures against bee diseases and integral to environmental biomonitoring. This integration of technology represents a significant advancement in bee conservation efforts, offering hope for the future of both bees and ecosystems.
Collapse
Affiliation(s)
- Daria Ilić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21 000, Novi Sad, Serbia.
| | - Đorđe Vujić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21 000, Novi Sad, Serbia
| | - Maja Buljovčić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Jelena Živančev
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Branko Šikoparija
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21 000, Novi Sad, Serbia
| | - Boris Brkić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21 000, Novi Sad, Serbia
| |
Collapse
|
2
|
Kirova T, Tamuliene J. Numerical Studies of the Impact of Electromagnetic Field of Radiation on Valine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1814. [PMID: 36902933 PMCID: PMC10004686 DOI: 10.3390/ma16051814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
We present the results of numerical calculations of the effect of an electromagnetic field of radiation on valine, and compare them to experimental results available in the literature. We specifically focus on the effects of a magnetic field of radiation, by introducing modified basis sets, which incorporate correction coefficients to the s-, p- or only the p-orbitals, following the method of anisotropic Gaussian-type orbitals. By comparing the bond length, angle, dihedral angles, and condense-to-atom-all electrons, obtained without and with the inclusion of dipole electric and magnetic fields, we concluded that, while the charge redistribution occurs due to the electric field influence, the changes in the dipole momentum projection onto the y- and z- axes are caused by the magnetic field. At the same time, the values of the dihedral angles could vary by up to 4 degrees, due to the magnetic field effects. We further show that taking into account the magnetic field in the fragmentation processes provides better fitting of the experimentally obtained spectra: thus, numerical calculations which include magnetic field effects can serve as a tool for better predictions, as well as for analysis of the experimental outcomes.
Collapse
Affiliation(s)
- Teodora Kirova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia
| | - Jelena Tamuliene
- Institute of Theoretical Physics and Astronomy, Vilnius University, 10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Bandurin YA, Zavilopulo AN, Molnar S, Shpenik OO. Excitation of L-valine molecules by electrons and photons. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2022; 76:9. [PMID: 35069006 PMCID: PMC8761534 DOI: 10.1140/epjd/s10053-021-00331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Excitation of L-valine molecules was studied by optical spectroscopy. Optical emission spectra of the L-valine molecule and optical excitation functions of molecular bands and the Hβ spectral line were measured in the gas phase using electron impact. In the spectra of optical emission in the wavelength range of 250-500 nm, intense emission bands were found at energies of incident electrons of 30, 50 and 70 eV. Analysis of structural features of the valine molecule suggested a fragmentation scheme with the formation of excited particles in collisions with electrons. A notable feature of the presented optical excitation functions is a different growth dynamics with an increase in the energy of exciting electrons and the presence of a number of features and kinks, which are especially pronounced for λ = 305 nm and λ = 311 nm. The excitation thresholds were determined from the initial sections of the excitation functions of the most intense spectral lines by the least-squares method. The photoluminescence spectra of L-valine were measured for the first time on a Shimadzu RF-6000 spectrofluorophotometer in the spectral range of 400-800 nm for excitation wavelengths of 250, 275, 333, 351, and 380 nm.
Collapse
Affiliation(s)
- Yu. A. Bandurin
- Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, 88017 Ukraine
| | - A. N. Zavilopulo
- Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, 88017 Ukraine
| | - Sh. Molnar
- Ukrainian-Hungarian Educational-Scientific Institute of Uzhhorod National University, Uzhhorod, 88000 Ukraine
| | - O. O. Shpenik
- Ukrainian-Hungarian Educational-Scientific Institute of Uzhhorod National University, Uzhhorod, 88000 Ukraine
| |
Collapse
|
4
|
da Silva FF, Cunha T, Rebelo A, Gil A, Calhorda MJ, García G, Ingólfsson O, Limão-Vieira P. Electron-Transfer-Induced Side-Chain Cleavage in Tryptophan Facilitated through Potassium-Induced Transition-State Stabilization in the Gas Phase. J Phys Chem A 2021; 125:2324-2333. [DOI: 10.1021/acs.jpca.1c00690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filipe Ferreira da Silva
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tiago Cunha
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Andre Rebelo
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Adrià Gil
- BioISI -Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, E-20018 Donostia − San Sebastián, Euskadi, Spain
| | - Maria José Calhorda
- BioISI -Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - Oddur Ingólfsson
- Chemistry and Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Sloan-Dennison S, Zoltowski CM, El-Khoury PZ, Schultz ZD. Surface Enhanced Raman Scattering Selectivity in Proteins Arises from Electron Capture and Resonant Enhancement of Radical Species. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:9548-9558. [PMID: 32542105 PMCID: PMC7295139 DOI: 10.1021/acs.jpcc.0c01436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmon-enhanced Raman scattering is a powerful approach to detecting and characterizing proteins in live and dynamic biological systems. However, the selective detection/enhancement of specific residues as well as spectral diffusion and fluctuations have complicated the interpretation of enhanced Raman spectra and images of biological matter. In this work, we demonstrate that the amino acid tryptophan (Trp) can capture an electron from an excited plasmon, which generates a radical anion that is resonantly enhanced: a visible excited electronic state slides into resonance upon charging. This surface enhanced resonance Raman scattering (SERRS) mechanism explains the persistence of Trp signatures in the SERS and TERS spectra of proteins. Evidence for this picture includes the observation of visible resonances in the UV-Vis extinction spectrum, changes in the ground state vibrational spectrum, and plasmon-resonance dependent behavior. DFT calculations support the experimental observations. The behavior observed from the free Trp molecule is shown to explain the SERS spectrum of the Trp-cage protein. In effect, resonant Raman scattering from radicals formed through plasmonic excitation represents an under-investigated mechanism that may be exploited for chemical sensing applications.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Chelsea M. Zoltowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Patrick Z. El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
- corresponding author
| |
Collapse
|
6
|
Meißner R, Feketeová L, Bayer A, Postler J, Limão‐Vieira P, Denifl S. Positive and negative ions of the amino acid histidine formed in low-energy electron collisions. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:802-816. [PMID: 31410948 PMCID: PMC6916310 DOI: 10.1002/jms.4427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 05/28/2023]
Abstract
Histidine is an aromatic amino acid crucial for the biological functioning of proteins and enzymes. When biological matter is exposed to ionising radiation, highly energetic particles interact with the surrounding tissue which leads to efficient formation of low-energy electrons. In the present study, the interaction of low-energy electrons with gas-phase histidine is studied at a molecular level in order to extend the knowledge of electron-induced reactions with amino acids. We report both on the formation of positive ions formed by electron ionisation and negative ions induced by electron attachment. The experimental data were complemented by quantum chemical calculations. Specifically, the free energies for possible fragmentation reactions were derived for the τ and the π tautomer of histidine to get insight into the structures of the formed ions and the corresponding neutrals. We report the experimental ionisation energy of (8.48 ± 0.03) eV for histidine which is in good agreement with the calculated vertical ionisation energy. In the case of negative ions, the dehydrogenated parent anion is the anion with the highest mass observed upon dissociative electron attachment. The comparison of experimental and computational results was also performed in view of a possible thermal decomposition of histidine during the experiments, since the sample was sublimated in the experiment by resistive heating of an oven. Overall, the present study demonstrates the effects of electrons as secondary particles in the chemical degradation of histidine. The reactions induced by those electrons differ when comparing positive and negative ion formation. While for negative ions, simple bond cleav ages prevail, the observed fragment cations exhibit partly restructuring of the molecule during the dissociation process.
Collapse
Affiliation(s)
- Rebecca Meißner
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of PhysicsUniversidade NOVA de Lisboa2829‐516CaparicaPortugal
| | - Linda Feketeová
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822Université de Lyon, Université Claude Bernard Lyon 143 Bd du 11 novembre 191869622VilleurbanneFrance
| | - Andreas Bayer
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Johannes Postler
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Paulo Limão‐Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of PhysicsUniversidade NOVA de Lisboa2829‐516CaparicaPortugal
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
7
|
Pshenichnyuk SA, Modelli A, Komolov AS. Interconnections between dissociative electron attachment and electron-driven biological processes. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1461347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanislav A. Pshenichnyuk
- Institute of Molecule and Crystal Physics – Subdivision of the Ufa Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Alberto Modelli
- Dipartimento di Chimica ‘G. Ciamician’, Università di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca in Scienze Ambientali, Ravenna, Italy
| | - Alexei S. Komolov
- Department of Solid State Electronics, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
8
|
Pshenichnyuk SA, Modelli A, Jones D, Lazneva EF, Komolov AS. Low-Energy Electron Interaction with Melatonin and Related Compounds. J Phys Chem B 2017; 121:3965-3974. [PMID: 28394598 DOI: 10.1021/acs.jpcb.7b01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The electron attaching properties and fragmentation of temporary negative ions of melatonin and its biosynthetic precursor tryptophan are studied in vacuo using dissociative electron attachment (DEA) spectroscopy. The experimental findings are interpreted in silico with the support of Hartree-Fock and density functional theory calculations of empty orbital energies and symmetries, and evaluation of the electron affinities of the indolic molecules under investigation. The only fragment anions formed by DEA to melatonin at incident electron energies below 2 eV are associated with the elimination of a hydrogen atom (energetically favored from the NH site of the pyrrole ring, leaving the ring intact) or a CH3· radical from the temporary molecular negative ion. Opening of the pyrrole ring of melatonin is not detected over the whole electron energy range of 0-14 eV. The DEA spectra of l- and d-tryptophan are almost identical under the present experimental conditions. The adiabatic electron affinity of melatonin is predicted to be -0.49 eV at the B3LYP/6-31+G(d) level, indicating that the DEA mechanism in melatonin is likely to be present in most life forms given the availability of low energy electrons in living systems in both plant and animal kingdoms. In particular, H atom donation usually associated with free-radical scavenging activity can be stimulated by electron attachment and N-H bond cleavage at electron energies around 1 eV.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences , Prospeκt Oktyabrya 151, 450075 Ufa, Russia.,St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician″, Università di Bologna , via Selmi 2, 40126 Bologna, Italy.,Centro Interdipartimentale di Ricerca in Scienze Ambientali , via S. Alberto 163, 48123 Ravenna, Italy
| | - Derek Jones
- ISOF, Istituto per la Sintesi Organica e la Fotoreattività , C.N.R., via Gobetti 101, 40129 Bologna, Italy
| | - Eleonora F Lazneva
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alexei S Komolov
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Muftakhov MV, Shchukin PV. Resonant electron capture by aspartame and aspartic acid molecules. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2577-2584. [PMID: 27614095 DOI: 10.1002/rcm.7738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. METHODS The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. RESULTS Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. CONCLUSIONS The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M V Muftakhov
- Institute of Molecule and Crystal Physics, Ufa Research Centre of Russian Academy of Sciences, Prospect Octyabrya 151, Ufa, Russia
| | - P V Shchukin
- Institute of Molecule and Crystal Physics, Ufa Research Centre of Russian Academy of Sciences, Prospect Octyabrya 151, Ufa, Russia
| |
Collapse
|
10
|
Formation of negative ions via resonant low-energy electron capture by cysteine and cystine methyl esters. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1352-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Feketeová L, Khairallah GN, O'Hair RAJ, Nielsen SB. Gas-phase fragmentation of deprotonated tryptophan and its clusters [Trpn -H]- induced by different activation methods. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1395-1402. [PMID: 26147479 DOI: 10.1002/rcm.7233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
RATIONALE Non-covalent amino acid clusters are the subject of intense research in diverse areas including peptide bond formation studies or the determination of proton affinities or methylating abilities of amino acids. However, most of the research has focused on positive ions and little is known about anionic clusters. METHODS Fragmentation reactions of deprotonated tryptophan (Trp), [Trp-H](-) and Trp singly deprotonated non-covalently bound clusters [Trp(n) -H](-), n = 2, 3, 4, were investigated using low-energy collision-induced dissociation (CID) with He atoms, high-energy CID with Na atoms, and electron-induced dissociation (EID) with 20-35 eV electrons. Fragmentation of the monomeric Trp anion, where all labile hydrogens were exchanged for deuterium [d(4) -Trp-D](-), was investigated using low-energy CID and EID, in order to shed light on the dissociation mechanisms. RESULTS The main fragmentation channel for Trp cluster anions, [Trp(n) -H](-), n >1, is the loss of the neutral monomer. The fragmentation of the deprotonated Trp monomer induced by electrons resembles the fragmentation induced by high-energy collisions through electronic excitation of the parent. However, the excitation must precede in a different way, shown through only monomer loss from larger clusters, n >1, in case of EID, but intracluster chemistry in the case of high-energy CID. CONCLUSIONS The anion of the indole ring C(8)H(6) N(-) has been identified in the product ion spectra of [Trp(n) -H](-) using all activation methods, thus providing a diagnostic marker ion. No evidence was found for formation of peptide bonds as a route to prebiotic peptides in the fragmentation reactions of these singly deprotonated Trp cluster ions.
Collapse
Affiliation(s)
- Linda Feketeová
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
- Université de Lyon, 69003 Lyon, France; Université Claude Bernard Lyon1; Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR5822, 69622 Villeurbanne, France
| | - George N Khairallah
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Richard A J O'Hair
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, 8000, Denmark
| |
Collapse
|
12
|
|
13
|
Alizadeh E, Sanche L. Precursors of solvated electrons in radiobiological physics and chemistry. Chem Rev 2012; 112:5578-602. [PMID: 22724633 DOI: 10.1021/cr300063r] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elahe Alizadeh
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | | |
Collapse
|
14
|
Muftakhov MV, Shchukin PV. Fragmentation of valine and proline in resonant free electron capture reactions. Russ Chem Bull 2011. [DOI: 10.1007/s11172-011-0298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
|
16
|
Ptasińska S, Li Z, Mason NJ, Sanche L. Damage to amino acid-nucleotide pairs induced by 1 eV electrons. Phys Chem Chem Phys 2010; 12:9367-72. [PMID: 20563347 PMCID: PMC3828173 DOI: 10.1039/b926267a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the role of two selected amino acids, glycine and arginine, on damage induced to a short chain of single stranded DNA, the tetramer GCAT, during 1 eV electron exposure. At this energy, DNA has a high cross section for DNA damage via exclusively dissociative electron attachment. Surprisingly, at low ratios of glycine:GCAT, an increase in the total fragmentation yield is observed, whilst at higher ratios, glycine and arginine appear to protect DNA from the direct action of electrons. In addition, binding energies were calculated by molecular modelling of the interactions between these amino acids and either nucleobases or nucleotides. These binding energies appear to be related to the ability of amino acids to protect DNA against low energy electron damage.
Collapse
Affiliation(s)
- Sylwia Ptasińska
- Department of Physics & Astronomy, The Open University, Milton Keynes, UK MK7 6AA.
| | | | | | | |
Collapse
|
17
|
Shchukin PV, Muftakhov MV, Morré J, Deinzer ML, Vasil’ev YV. High resolution mass analysis of N- and C-terminal negative ions resulting from resonance electron capture by aliphatic amino acids. J Chem Phys 2010; 132:234306. [DOI: 10.1063/1.3436719] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Martin I, Langer J, Illenberger E. Reactions in Fluorinated Acetic Acid Esters Triggered by Slow Electrons: Bond Cleavages, Hydrogen Transfer Reactions and Loss of Halocarbons. Z PHYS CHEM 2009. [DOI: 10.1524/zpch.2008.5382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Low energy electron induced reactions in the four fluorinated acetic acid esters CF3COOCH3, CF3COOC2H5, CF3COOCH2CF3 and CH3COOCH2CF3 are studied by means of a crossed electron-molecular beam experiment and mass spectrometric detection of the anions. All target molecules exhibit a prominent resonance located near 1 eV which is subjected to a variety of unimolecular reactions. The observation of the carboxylate anion CF3COO–/CH3COO– indicates rupture of the O−R ester bond, which in turn demonstrates that the prominent cleavage of the O−H bond recently observed in trifluoroacetic acid and acetic acid is not blocked when O−H is replaced by O−R (R=−CH3, −C2H5, −CH2CF3). In CF3COOCH3 and CF3COOC2H5 an ion of the form CF2COO– is generated which is identified to arise from a complex reaction involving multiple bond cleavages and substantial rearrangement in the transitory negative ion ultimately generating CH3F and C2H5F, respectively, as neutral counterpart. A fragment ion of the type (M-H)– (M: target molecule), i.e. loss of a neutral hydrogen atom, is only observed in CH3COOCH2CF3 which directly demonstrates that dehydrogenation selectively occurs at the CH3 site.
Collapse
|
19
|
Abdoul-Carime H, König-Lehmann C, Kopyra J, Farizon B, Farizon M, Illenberger E. Dissociative electron attachment to amino-acids: The case of Leucine. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Vasil’ev YV, Figard BJ, Barofsky DF, Deinzer ML. Resonant electron capture by some amino acids esters. J Am Chem Soc 2007; 268:106-121. [PMID: 19838328 PMCID: PMC2762707 DOI: 10.1016/j.ijms.2007.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Resonant electron capture by Gly, Ala and Phe esters have shown that the most efficient negative ion (NI) fragmentations are associated with the C-termini. A new mechanism for the negative ion-forming processes at energies lower than those associated with the pi*(OO) shape resonance involves coupling between dipole-bound and valence negative ion states of the same symmetry for amino acid conformers with high permanent dipoles. The interaction avoids crossing of the NI states and instead leads to formation of two adiabatic potential energy surfaces. Underivatized amino acids most effectively fragment from the bottom adiabatic surface via generation of [M-H](-) carboxylate anions by hydrogen-atom tunneling through the barrier; fragmentation of the their esters with formation of analogues [M-X](-) NIs occurs through the upper adiabatic state without penetration of the barrier in which the energy of the valence sigma*OX resonance exceeds the bond dissociation energy of the neutral molecule. Low and high temperature resonant electron capture experiments point to the importance of conformational preferences of the amino acids for optimum dissociation of the parent NIs in the gas phase.
Collapse
Affiliation(s)
- Yury V. Vasil’ev
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
- Department of Physics, Bashkir State Agricultural University, Ufa, Russia
| | - Benjamin J. Figard
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | | | - Max L. Deinzer
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
21
|
Scheer AM, Mozejko P, Gallup GA, Burrow PD. Total dissociative electron attachment cross sections of selected amino acids. J Chem Phys 2007; 126:174301. [PMID: 17492857 DOI: 10.1063/1.2727460] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Total dissociative electron attachment cross sections are presented for the amino acids, glycine, alanine, proline, phenylalanine, and tryptophan, at energies below the first ionization energy. Cross section magnitudes were determined by observation of positive ion production and normalization to ionization cross sections calculated using the binary-encounter-Bethe method. The prominent 1.2 eV feature in the cross sections of the amino acids and the closely related HCOOH molecule is widely attributed to the attachment into the -COOH pi* orbital. The authors discuss evidence that direct attachment to the lowest sigma* orbital may instead be responsible. A close correlation between the energies of the core-excited anion states of glycine, alanine, and proline and the ionization energies of the neutral molecules is found. A prominent feature in the total dissociative electron attachment cross section of these compounds is absent in previous studies using mass analysis, suggesting that the missing fragment is energetic H-.
Collapse
Affiliation(s)
- A M Scheer
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA
| | | | | | | |
Collapse
|