1
|
Obloy LM, Jockusch S, Tarnovsky AN. Shortwave infrared polymethine dyes for bioimaging: ultrafast relaxation dynamics and excited-state decay pathways. Phys Chem Chem Phys 2024; 26:24261-24278. [PMID: 38895857 DOI: 10.1039/d4cp01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Excited-state relaxation in two prototypical shortwave infrared (SWIR) polymethine dyes developed for bioimaging, heptamethine chromenylium Chrom7 and flavylium Flav7, is studied by means of femtosecond transient absorption with broadband ultraviolet-to-SWIR probing complemented by steady-state and time-resolved fluorescence and phosphorescence measurements. The relaxation processes of the dyes in dichloromethane are resolved with sub-100 fs temporal resolution using SWIR, near-IR, and visible photoexcitation. Different population members of the ground-state inhomogeneous ensemble are found to equilibrate via skeletal deformation changes with time constants of 90 fs and either 230 fs (Chrom7) and 350 fs (Flav7) followed by slower evolution matching the 1-ps timescale of diffusive solvation dynamics. Molecules excited into high-lying singlet electronic states (Sn) by visible excitation repopulate with time constants of 400 fs (Chrom7) and 450 fs (Flav7) the corresponding first excited singlet S1 states, which decay within several hundreds of picoseconds in dichloromethane and chloroform solvents. Vibrational relaxation in S1 for both Chrom7 and Flav7 in dichloromethane occurs with time constants of 350 and 800 fs for excess of vibrational energy of ∼1000 and 10 000 cm-1 deposited by near-IR and visible excitation, respectively. Two competing non-radiative processes are present in S1: temperature-independent internal conversion, and thermally-activated twisting about a carbon-carbon bond of the conjugated chain, which is substantial at room temperature but essentially nonreactive, producing traces of isomer product. Intersystem crossing in S1, and thus the triplet quantum yield, is minor. The importance of absorption bands from the excited S1 state in applications requiring high-intensity excitation conditions is discussed.
Collapse
Affiliation(s)
- Laura M Obloy
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Steffen Jockusch
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
2
|
Ma F, Yartsev A. Ultrafast photoisomerization of pinacyanol: watching an excited state reaction transiting from barrier to barrierless forms. RSC Adv 2016. [DOI: 10.1039/c6ra03299k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photoisomerization of 1,1′-diethyl-2,2′-carbocyanine iodide (pinacyanol) in alcohols was investigated by means of femtosecond time-resolved absorption spectroscopy.
Collapse
Affiliation(s)
- Fei Ma
- Chemical Physics
- Department of Chemistry
- Lund University
- Lund
- Sweden
| | - Arkady Yartsev
- Chemical Physics
- Department of Chemistry
- Lund University
- Lund
- Sweden
| |
Collapse
|
3
|
Benz[c,d]indolium-containing Monomethine Cyanine Dyes: Synthesis and Photophysical Properties. Molecules 2015; 21:E23. [PMID: 26712725 PMCID: PMC6274575 DOI: 10.3390/molecules21010023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/24/2023] Open
Abstract
Asymmetric monomethine cyanines have been extensively used as probes for nucleic acids among other biological systems. Herein we report the synthesis of seven monomethine cyanine dyes that have been successfully prepared with various heterocyclic moieties such as quinoline, benzoxazole, benzothiazole, dimethyl indole, and benz[e]indole adjoining benz[c,d]indol-1-ium, which was found to directly influence their optical and energy profiles. In this study the optical properties vs. structural changes were investigated using nuclear magnetic resonance and computational approaches. The twisted conformation unique to monomethine cyanines was exploited in DNA binding studies where the newly designed sensor displayed an increase in fluorescence when bound in the DNA grooves compared to the unbound form.
Collapse
|
4
|
Upadhyayula S, Nuñez V, Espinoza EM, Larsen JM, Bao D, Shi D, Mac JT, Anvari B, Vullev VI. Photoinduced dynamics of a cyanine dye: parallel pathways of non-radiative deactivation involving multiple excited-state twisted transients. Chem Sci 2015; 6:2237-2251. [PMID: 29449923 PMCID: PMC5701728 DOI: 10.1039/c4sc02881c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Cyanine dyes are broadly used for fluorescence imaging and other photonic applications. 3,3'-Diethylthiacyanine (THIA) is a cyanine dye composed of two identical aromatic heterocyclic moieties linked with a single methine, -CH[double bond, length as m-dash]. The torsional degrees of freedom around the methine bonds provide routes for non-radiative decay, responsible for the inherently low fluorescence quantum yields. Using transient absorption spectroscopy, we determined that upon photoexcitation, the excited state relaxes along two parallel pathways producing three excited-state transients that undergo internal conversion to the ground state. The media viscosity impedes the molecular modes of ring rotation and preferentially affects one of the pathways of non-radiative decay, exerting a dominant effect on the emission properties of THIA. Concurrently, the polarity affects the energy of the transients involved in the decay pathways and further modulates the kinetics of non-radiative deactivation.
Collapse
Affiliation(s)
- Srigokul Upadhyayula
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA
| | - Vicente Nuñez
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Eli M Espinoza
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
| | - Jillian M Larsen
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Duoduo Bao
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Dewen Shi
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Jenny T Mac
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA
| | - Bahman Anvari
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Valentine I Vullev
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Materials Science and Engineering Program , University of California , Riverside , CA 92521 , USA
| |
Collapse
|
5
|
Cao J, Wu T, Hu C, Liu T, Sun W, Fan J, Peng X. The nature of the different environmental sensitivity of symmetrical and unsymmetrical cyanine dyes: an experimental and theoretical study. Phys Chem Chem Phys 2013; 14:13702-8. [PMID: 22968489 DOI: 10.1039/c2cp42122d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Symmetrical and unsymmetrical cyanine dyes are used in different applications due to their different fluorogenic behaviors toward bio-macromolecules and micro-environments. In the present paper, computational studies on these dyes reveal that the potential energy of the electronic excited state is controlled by C-C bond rotational motion, which causes mainly nonradiative deactivation, according to the activation energies for the rotation. The rotations of different C-C bonds in the molecules have quite different rotational activation energies. Symmetrical dyes (Cy) possess an obviously higher rotating energy barrier as well as a larger energy gap compared to unsymmetrical dyes (TO). The C-C bond rotation close to the quinoline moiety of unsymmetrical thiazole orange (TO) allows the dye to possess the lowest energy barrier and also the lowest energy gap. This rotation plays a major role in reducing fluorescence quantum yields and providing a low fluorescent background in the free states of the unsymmetrical cyanine dyes. The results might provide a foundation for the interpretation of the behavior of the dyes and are useful for the future design of new cyanine fluorophores.
Collapse
Affiliation(s)
- Jianfang Cao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Weigel A, Pfaffe M, Sajadi M, Mahrwald R, Improta R, Barone V, Polli D, Cerullo G, Ernsting NP, Santoro F. Barrierless photoisomerisation of the “simplest cyanine”: Joining computational and femtosecond optical spectroscopies to trace the full reaction path. Phys Chem Chem Phys 2012; 14:13350-64. [DOI: 10.1039/c2cp41522d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Dietzek B, Fey S, Matute RA, González L, Schmitt M, Popp J, Yartsev A, Hermann G. Wavelength-dependent photoproduct formation of phycocyanobilin in solution – Indications for competing reaction pathways. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.08.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Jee AY, Park S, Lee M. Light-induced isomerization dynamics of a cyanine dye in the modulus-controlled regime. Phys Chem Chem Phys 2011; 13:15227-32. [PMID: 21769327 DOI: 10.1039/c1cp20835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trans-cis isomerization of an excited molecule converts light energy into mechanical motion, which interacts cooperatively with its surroundings. To understand such a photodynamic process in solids, we investigated the internal twisting motion of 1,1'-diethyl-2,2'-cyanine iodide (DCI) in a series of poly(alkyl methacrylate) (PAMA) polymers by measuring the Young's moduli of the polymers with atomic force microscopy nanoindentation and the fluorescence lifetimes of the dye with time-correlated single photon counting. We found that the isomerization rate constant obtained from the average lifetime correlated well with the mechanical property of the matrix. Our results show that the light-induced molecular motion lies in the modulus-controlled regime in which the polymer matrix not only provides a rigid environment for the dynamics of the molecules but also participates actively in the motion. The concept of elastic modulus may be applicable to molecular rotor dynamics in any synthetic polymer and, in principle, can be extended to biopolymers such as proteins or DNA.
Collapse
Affiliation(s)
- Ah-Young Jee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | |
Collapse
|
11
|
Dietzek B, Tarnovsky AN, Yartsev A. Visualizing overdamped wavepacket motion: Excited-state isomerization of pseudocyanine in viscous solvents. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|