1
|
Tao Z, Qiu T, Bhati M, Bian X, Duston T, Rawlinson J, Littlejohn RG, Subotnik JE. Practical phase-space electronic Hamiltonians for ab initio dynamics. J Chem Phys 2024; 160:124101. [PMID: 38526114 DOI: 10.1063/5.0192084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
Modern electronic structure theory is built around the Born-Oppenheimer approximation and the construction of an electronic Hamiltonian Ĥel(X) that depends on the nuclear position X (and not the nuclear momentum P). In this article, using the well-known theory of electron translation (Γ') and rotational (Γ″) factors to couple electronic transitions to nuclear motion, we construct a practical phase-space electronic Hamiltonian that depends on both nuclear position and momentum, ĤPS(X,P). While classical Born-Oppenheimer dynamics that run along the eigensurfaces of the operator Ĥel(X) can recover many nuclear properties correctly, we present some evidence that motion along the eigensurfaces of ĤPS(X,P) can better capture both nuclear and electronic properties (including the elusive electronic momentum studied by Nafie). Moreover, only the latter (as opposed to the former) conserves the total linear and angular momentum in general.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tian Qiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mansi Bhati
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Titouan Duston
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Rawlinson
- Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Robert G Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
2
|
Littlejohn R, Rawlinson J, Subotnik J. Diagonalizing the Born-Oppenheimer Hamiltonian via Moyal perturbation theory, nonadiabatic corrections, and translational degrees of freedom. J Chem Phys 2024; 160:114103. [PMID: 38501907 DOI: 10.1063/5.0192465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
This article describes a method for calculating higher order or nonadiabatic corrections in Born-Oppenheimer theory and its interaction with the translational degrees of freedom. The method uses the Wigner-Weyl correspondence to map nuclear operators into functions on the classical phase space and the Moyal star product to represent operator multiplication on those functions. These are explained in the body of the paper. The result is a power series in κ2, where κ = (m/M)1/4 is the usual Born-Oppenheimer parameter. The lowest order term is the usual Born-Oppenheimer approximation, while higher order terms are nonadiabatic corrections. These are needed in calculations of electronic currents, momenta, and densities. The separation of nuclear and electronic degrees of freedom takes place in the context of the exact symmetries (for an isolated molecule) of translations and rotations, and these, especially translations, are explicitly incorporated into our discussion. This article presents an independent derivation of the Moyal expansion in molecular Born-Oppenheimer theory. We show how electronic currents and momenta can be calculated within the framework of Moyal perturbation theory; we derive the transformation laws of the electronic Hamiltonian, the electronic eigenstates, and the derivative couplings under translations; we discuss in detail the rectilinear motion of the molecular center of mass in the Born-Oppenheimer representation; and we show how the elimination of the translational components of the derivative couplings leads to a unitary transformation that has the effect of exactly separating the translational degrees of freedom.
Collapse
Affiliation(s)
- Robert Littlejohn
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Jonathan Rawlinson
- School of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
3
|
Hanasaki K, Takatsuka K. Spin current in the early stage of radical reactions and its mechanisms. J Chem Phys 2023; 159:144111. [PMID: 37830453 DOI: 10.1063/5.0169281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
We study the electronic spin flux (atomic-scale flow of the spin density in molecules) by a perturbation analysis and ab initio nonadiabatic calculations. We derive a general perturbative expression of the charge and spin fluxes and identify the driving perturbation of the fluxes to be the time derivative of the electron-nucleus interaction term in the Hamiltonian. We then expand the expression in molecular orbitals so as to identify relevant components of the fluxes. Our perturbation theory describes the electronic fluxes in the early stage of reactions in an intuitively clear manner. The perturbation theory is then applied to an analysis of the spin flux obtained in ab initio calculations of the radical reaction of O2 and CH3· starting from three distinct spin configurations; (a) CH3· and triplet O2 with total spin of the system set Stot=1/2 (b) CH3· and singlet O2, Stot=1/2, and (c) CH3· and triplet O2, Stot=3/2. Further analysis of the time-dependent behaviors of the spin flux in these numerical simulations reveals (i) the spin flux induces rearrangement of the local spin structure, such as reduction of the spin polarization arising from the triplet O2 and (ii) the spin flux flows from O2 to CH3· in the reaction starting from spin configuration (a) and from CH3· to O2 in that starting from configuration (b), whereas no major intermolecular spin flux was observed in that starting from configuration (c). Our study thus establishes the mechanism of the spin flux that rearranges the local spin structures associated with chemical bonds.
Collapse
Affiliation(s)
- Kota Hanasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
4
|
Takatsuka K, Arasaki Y. Electronic-state chaos, intramolecular electronic energy redistribution, and chemical bonding in persisting multidimensional nonadiabatic systems. J Chem Phys 2023; 159:074110. [PMID: 37602802 DOI: 10.1063/5.0159178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
We study the chaotic, huge fluctuation of electronic state, resultant intramolecular energy redistribution, and strong chemical bonding surviving the fluctuation with exceedingly long lifetimes of highly excited boron clusters. Those excited states constitute densely quasi-degenerate state manifolds. The huge fluctuation is induced by persisting multidimensional nonadiabatic transitions among the states in the manifold. We clarify the mechanism of their coexistence and its physical significance. In doing so, we concentrate on two theoretical aspects. One is quantum chaos and energy randomization, which are to be directly extracted from the properties of the total electronic wavefunctions. The present dynamical chaos takes place through frequent transitions from adiabatic states to others, thereby making it very rare for the system to find dissociation channels. This phenomenon leads to the concept of what we call intramolecular nonadiabatic electronic-energy redistribution, which is an electronic-state generaliztion of the notion of intramolecular vibrational energy redistribution. The other aspect is about the peculiar chemical bonding. We investigate it with the energy natural orbitals (ENOs) to see what kind of theoretical structures lie behind the huge fluctuation. The ENO energy levels representing the highly excited states under study appear to have four robust layers. We show that the energy layers responsible for chaotic dynamics and those for chemical bonding are widely separated from each other, and only when an event of what we call "inter-layer crossing" happens to burst can the destruction of these robust energy layers occur, resulting in molecular dissociation. This crossing event happens only rarely because of the large energy gaps between the ENO layers. It is shown that the layers of high energy composed of complex-valued ENOs induce the turbulent flow of electrons and electronic-energy in the cluster. In addition, the random and fast time-oscillations of those high energy ENOs serve as a random force on the nuclear dynamics, which can work to prevent a concentration of high nuclear kinetic energy in the dissociation channels.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
5
|
Arasaki Y, Takatsuka K. Energy natural orbital characterization of nonadiabatic electron wavepackets in the densely quasi-degenerate electronic state manifold. J Chem Phys 2023; 158:114102. [PMID: 36948795 DOI: 10.1063/5.0139288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Dynamics and energetic structure of largely fluctuating nonadiabatic electron wavepackets are studied in terms of Energy Natural Orbitals (ENOs) [K. Takatsuka and Y. Arasaki, J. Chem. Phys. 154, 094103 (2021)]. Such huge fluctuating states are sampled from the highly excited states of clusters of 12 boron atoms (B12), which have densely quasi-degenerate electronic excited-state manifold, each adiabatic state of which gets promptly mixed with other states through the frequent and enduring nonadiabatic interactions within the manifold. Yet, the wavepacket states are expected to be of very long lifetimes. This excited-state electronic wavepacket dynamics is extremely interesting but very hard to analyze since they are usually represented in large time-dependent configuration interaction wavefunctions and/or in some other complicated forms. We have found that ENO gives an invariant energy orbital picture to characterize not only the static highly correlated electronic wavefunctions but also those time-dependent electronic wavefunctions. Hence, we first demonstrate how the ENO representation works for some general cases, choosing proton transfer in water dimer and electron-deficient multicenter chemical bonding in diborane in the ground state. We then penetrate with ENO deep into the analysis of the essential nature of nonadiabatic electron wavepacket dynamics in the excited states and show the mechanism of the coexistence of huge electronic fluctuation and rather strong chemical bonds under very random electron flows within the molecule. To quantify the intra-molecular energy flow associated with the huge electronic-state fluctuation, we define and numerically demonstrate what we call the electronic energy flux.
Collapse
Affiliation(s)
- Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
6
|
Takatsuka K. Quantum Chaos in the Dynamics of Molecules. ENTROPY (BASEL, SWITZERLAND) 2022; 25:63. [PMID: 36673204 PMCID: PMC9857761 DOI: 10.3390/e25010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Quantum chaos is reviewed from the viewpoint of "what is molecule?", particularly placing emphasis on their dynamics. Molecules are composed of heavy nuclei and light electrons, and thereby the very basic molecular theory due to Born and Oppenheimer gives a view that quantum electronic states provide potential functions working on nuclei, which in turn are often treated classically or semiclassically. Therefore, the classic study of chaos in molecular science began with those nuclear dynamics particularly about the vibrational energy randomization within a molecule. Statistical laws in probabilities and rates of chemical reactions even for small molecules of several atoms are among the chemical phenomena requiring the notion of chaos. Particularly the dynamics behind unimolecular decomposition are referred to as Intra-molecular Vibrational energy Redistribution (IVR). Semiclassical mechanics is also one of the main research fields of quantum chaos. We herein demonstrate chaos that appears only in semiclassical and full quantum dynamics. A fundamental phenomenon possibly giving birth to quantum chaos is "bifurcation and merging" of quantum wavepackets, rather than "stretching and folding" of the baker's transformation and the horseshoe map as a geometrical foundation of classical chaos. Such wavepacket bifurcation and merging are indeed experimentally measurable as we showed before in the series of studies on real-time probing of nonadiabatic chemical reactions. After tracking these aspects of molecular chaos, we will explore quantum chaos found in nonadiabatic electron wavepacket dynamics, which emerges in the realm far beyond the Born-Oppenheimer paradigm. In this class of chaos, we propose a notion of Intra-molecular Nonadiabatic Electronic Energy Redistribution (INEER), which is a consequence of the chaotic fluxes of electrons and energy within a molecule.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
7
|
Takatsuka K, Arasaki Y. Real-time electronic energy current and quantum energy flux in molecules. J Chem Phys 2022; 157:244108. [PMID: 36586984 DOI: 10.1063/5.0131200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intra- and inter-molecular electronic energy current is formulated by defining the probability current of electronic energy, called the energy flux. Among vast possible applications to electronic energy transfer phenomena, including chemical reaction dynamics, here we present a first numerical example from highly excited nonadiabatic electron wavepacket dynamics of a boron cluster B12.
Collapse
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
8
|
Schürger P, Renziehausen K, Schaupp T, Barth I, Engel V. Time-Dependent Expectation Values from Integral Equations for Quantum Flux and Probability Densities. J Phys Chem A 2022; 126:8964-8975. [DOI: 10.1021/acs.jpca.2c05995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- P. Schürger
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - K. Renziehausen
- Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Theory Department, Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| | - T. Schaupp
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - I. Barth
- Theory Department, Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| | - V. Engel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Arasaki Y, Takatsuka K. Nature of chemical bond and potential barrier in an invariant energy-orbital picture. J Chem Phys 2022; 156:234102. [PMID: 35732517 DOI: 10.1063/5.0088340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Physical nature of the chemical bond and potential barrier is studied in terms of energy natural orbitals (ENOs), which are extracted from highly correlated electronic wavefunctions. ENO provides an objective one-electron picture about energy distribution in a molecule, just as the natural orbitals (NOs) represent one electron view about electronic charge distribution. ENO is invariant in the same sense as NO is, that is, ENOs converge to the exact ones as a series of approximate wavefunctions approach the exact one, no matter how the methods of approximation are adopted. Energy distribution analysis based on ENO can give novel insights about the nature of chemical bonding and formation of potential barriers, besides information based on the charge distribution alone. With ENOs extracted from full configuration interaction wavefunctions in a finite yet large enough basis set, we analyze the nature of chemical bonding of three low-lying electronic states of a hydrogen molecule, all being in different classes of the so-called covalent bond. The mechanism of energy lowering in bond formation, which gives a binding energy, is important, yet not the only concern for this small molecule. Another key notion in chemical bonding is whether a potential basin is well generated stiff enough to support a vibrational state(s) on it. Based on the virial theorem in the adiabatic approximation and in terms of the energy and force analyses with ENOs, we study the roles of the electronic kinetic energy and its nuclear derivative(s) on how they determine the curvature (or the force constant) of the potential basins. The same idea is applied to the potential barrier and, thereby, the transition states. The rate constant within the transition-state theory is formally shown to be described in terms of the electronic kinetic energy and the nuclear derivatives only. Thus, the chemical bonding and rate process are interconnected behind the scenes. Besides this aspect, we pay attention to (1) the effects of electron correlation that manifests itself not only in the orbital energy but also in the population of ENOs and (2) the role of nonadiabaticity (diabatic state mixing), resulting in double basins and a barrier on a single potential curve in bond formation. These factors differentiate a covalent bond into subclasses.
Collapse
Affiliation(s)
- Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, 606-8103 Kyoto, Japan
| |
Collapse
|
10
|
Schaupp T, Engel V. Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200385. [PMID: 35341310 DOI: 10.1098/rsta.2020.0385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 06/14/2023]
Abstract
We study the coupled electronic-nuclear dynamics in a model system to compare numerically exact calculations of electronic and nuclear flux densities with those obtained from the Born-Oppenheimer (BO) approximation. Within the adiabatic expansion of the total wave function, we identify the terms which contribute to the flux densities. It is found that only off-diagonal elements that involve the interaction between different electronic states contribute to the electronic flux whereas in the nuclear case the major contribution belongs to the BO electronic state. New flux densities are introduced where in both, the electronic and the nuclear case, the main contribution is contained in the component corresponding to the BO state. As a consequence, they can be determined within the BO approximation, and an excellent agreement with the exact results is found. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
- Thomas Schaupp
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Strasse 42, Würzburg 97074, Germany
| | - Volker Engel
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Strasse 42, Würzburg 97074, Germany
| |
Collapse
|
11
|
Hanasaki K, Takatsuka K. Spin current in chemical reactions. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Schaupp T, Engel V. Correlated three-dimensional electron-nuclear motion: Adiabatic dynamics vs passage of conical intersections. J Chem Phys 2022; 156:074302. [DOI: 10.1063/5.0082597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Thomas Schaupp
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Hanasaki K, Takatsuka K. On the molecular electronic flux: Role of nonadiabaticity and violation of conservation. J Chem Phys 2021; 154:164112. [PMID: 33940814 DOI: 10.1063/5.0049821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analysis of electron flux within and in between molecules is crucial in the study of real-time dynamics of molecular electron wavepacket evolution such as those in attosecond laser chemistry and ultrafast chemical reaction dynamics. We here address two mutually correlated issues on the conservation law of molecular electronic flux, which serves as a key consistency condition for electron dynamics. The first one is about a close relation between "weak" nonadiabaticity and the electron dynamics in low-energy chemical reactions. We show that the electronic flux in adiabatic reactions can be consistently reproduced by taking account of nonadiabaticity. Such nonadiabaticity is usually weak in the sense that it does not have a major effect on nuclear dynamics, whereas it plays an important role in electronic dynamics. Our discussion is based on a nonadiabatic extension of the electronic wavefunction similar in idea to the complete adiabatic formalism developed by Nafie [J. Chem. Phys. 79, 4950 (1983)], which has also recently been reformulated by Patchkovskii [J. Chem. Phys. 137, 084109 (2012)]. We give straightforward proof of the theoretical assertion presented by Nafie using a time-dependent mixed quantum-classical framework and a standard perturbation expansion. Explicitly taking account of the flux conservation, we show that the nonadiabatically induced flux realizes the adiabatic time evolution of the electronic density. In other words, the divergence of the nonadiabatic flux equals the time derivative of the electronic density along an adiabatic time evolution of the target molecule. The second issue is about the accurate computationability of the flux. The calculation of flux needs an accurate representation of the (relative) quantum phase, in addition to the amplitude factor, of a total wavefunction and demands special attention for practical calculations. This paper is the first one to approach this issue directly and show how the difficulties arise explicitly. In doing so, we reveal that a number of widely accepted truncation techniques for static property calculations are potential sources of numerical flux non-conservation. We also theoretically propose alternative strategies to realize better flux conservation.
Collapse
Affiliation(s)
- Kota Hanasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
14
|
Takatsuka K. Electron Dynamics in Molecular Elementary Processes and Chemical Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
15
|
Schaupp T, Renziehausen K, Barth I, Engel V. Time-dependent momentum expectation values from different quantum probability and flux densities. J Chem Phys 2021; 154:064307. [PMID: 33588545 DOI: 10.1063/5.0039466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on the Ehrenfest theorem, the time-dependent expectation value of a momentum operator can be evaluated equivalently in two ways. The integrals appearing in the expressions are taken over two different functions. In one case, the integrand is the quantum mechanical flux density j̲, and in the other, a different quantity j̲̃ appears, which also has the units of a flux density. The quantum flux density j̲ is related to the probability density ρ via the continuity equation, and j̲̃ may as well be used to define a density ρ̃ that fulfills a continuity equation. Employing a model for the coupled dynamics of an electron and a proton, we document the properties of the densities and flux densities. It is shown that although the mean momentum derived from the two quantities is identical, the various functions exhibit a very different coordinate and time-dependence. In particular, it is found that the flux density j̲̃ directly monitors temporal changes in the probability density, and the density ρ̃ carries information about wave packet dispersion occurring in different spatial directions.
Collapse
Affiliation(s)
- Thomas Schaupp
- Institut für Physikalische und Theoretische Chemie, Universität Würzberg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Klaus Renziehausen
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Saale), Germany
| | - Ingo Barth
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Saale), Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie, Universität Würzberg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Yamamoto K, Takatsuka K. Binuclear Mn oxo complex as a self-contained photocatalyst in water-splitting cycle: Role of additional Mn oxides as a buffer of electrons and protons. J Chem Phys 2020; 152:024115. [DOI: 10.1063/1.5139065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyou-ku, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyou-ku, Kyoto 606-8103, Japan
| |
Collapse
|
17
|
Hermann G, Pohl V, Dixit G, Tremblay JC. Probing Electronic Fluxes via Time-Resolved X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 124:013002. [PMID: 31976697 DOI: 10.1103/physrevlett.124.013002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The current flux density is a vector field that can be used to describe theoretically how electrons flow in a system out of equilibrium. In this work, we unequivocally demonstrate that the signal obtained from time-resolved x-ray scattering does not only map the time evolution of the electronic charge distribution, but also encodes information about the associated electronic current flux density. We show how the electronic current flux density qualitatively maps the distribution of electronic momenta and reveals the underlying mechanism of ultrafast charge migration processes, while also providing quantitative information about the timescales of electronic coherences.
Collapse
Affiliation(s)
- Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- QoD Technologies GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- QoD Technologies GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jean Christophe Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR 7019, ICPM, 1 Bd Arago, 57070 Metz, France
| |
Collapse
|
18
|
Yamamoto K, Takatsuka K. Charge separation and successive reconfigurations of electronic and protonic states in a water-splitting catalytic cycle with the Mn4CaO5 cluster. On the mechanism of water splitting in PSII. Phys Chem Chem Phys 2020; 22:7912-7934. [DOI: 10.1039/d0cp00443j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Charge separation, reloading of electrons and protons, and O2 generation in a catalytic cycle for water splitting with Mn4CaO5 in PSII.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Kyoto 606-8103
- Japan
| |
Collapse
|
19
|
Schaupp T, Engel V. Electronic and nuclear flux dynamics at a conical intersection. J Chem Phys 2019; 151:084309. [DOI: 10.1063/1.5111922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Schaupp
- Universität Würzburg Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Volker Engel
- Universität Würzburg Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Yamamoto K, Takatsuka K. On the Elementary Chemical Mechanisms of Unidirectional Proton Transfers: A Nonadiabatic Electron-Wavepacket Dynamics Study. J Phys Chem A 2019; 123:4125-4138. [PMID: 30977655 DOI: 10.1021/acs.jpca.9b01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We propose a set of chemical reaction mechanisms of unidirectional proton transfers, which may possibly work as an elementary process in chemical and biological systems. Being theoretically derived based on our series of studies on charge separation dynamics in water splitting by Mn oxides, the present mechanisms have been constructed after careful exploration over the accumulated biological studies on cytochrome c oxidase (CcO) and bacteriorhodopsin. In particular, we have focused on the biochemical findings in the literature that unidirectional transfers of approximately two protons are driven by one electron passage through the reaction center (binuclear center) in CcO, whereas no such dissipative electron transfer is believed to be demanded in the proton transport in bacteriorhodopsin. The proposed basic mechanisms of unidirectional proton transfers are further reduced to two elementary dynamical processes, namely, what we call the coupled proton and electron-wavepacket transfer (CPEWT) and the inverse CPEWT. To show that the proposed mechanisms can indeed be materialized in a molecular level, we construct model systems with possible molecules that are rather familiar in biological chemistry, for which we perform the ab initio calculations of full-dimensional nonadiabatic electron-wavepacket dynamics coupled with all nuclear motions including proton transfers.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry , Kyoto University , Sakyou-ku, Kyoto 606-8103 , Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry , Kyoto University , Sakyou-ku, Kyoto 606-8103 , Japan
| |
Collapse
|
21
|
Matsuzaki R, Takatsuka K. Electronic and nuclear fluxes induced by quantum interference in the adiabatic and nonadiabatic dynamics in the Born-Huang representation. J Chem Phys 2019; 150:014103. [DOI: 10.1063/1.5066571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rei Matsuzaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
22
|
Matsuzaki R, Takatsuka K. Electronic and nuclear flux analysis on nonadiabatic electron transfer reaction: A view from single-configuration adiabatic born-huang representation. J Comput Chem 2018; 40:148-163. [DOI: 10.1002/jcc.25557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rei Matsuzaki
- Fukui Institute for Fundamental Chemistry; Kyoto University; Sakyou-ku Kyoto Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry; Kyoto University; Sakyou-ku Kyoto Japan
| |
Collapse
|
23
|
Diestler DJ, Manz J, Pérez-Torres JF. Comparison of approximate methods for computation of the concerted adiabatic electronic and nuclear fluxes in aligned H2+(2Σg+). Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Diestler DJ, Jia D, Manz J, Yang Y. Na 2 Vibrating in the Double-Well Potential of State 2 1Σ u+ (JM = 00): A Pulsating "Quantum Bubble" with Antagonistic Electronic Flux. J Phys Chem A 2018; 122:2150-2159. [PMID: 29364671 DOI: 10.1021/acs.jpca.7b11732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The theory of concerted electronic and nuclear flux densities associated with the vibration and dissociation of a multielectron nonrotating homonuclear diatomic molecule (or ion) in an electronic state 2S+1Σg,u+ (JM = 00) is presented. The electronic population density, nuclear probability density, and nuclear flux density are isotropic. A theorem of Barth , presented in this issue, shows that the electronic flux density (EFD) is also isotropic. Hence, the evolving system appears as a pulsating, or exploding, "quantum bubble". Application of the theory to Na2 vibrating in the double-minimum potential of the 2 1Σu+ (JM = 00) excited state reveals that the EFD consists of two antagonistic components. One arises from electrons that flow essentially coherently with the nuclei. The other, which is oppositely directed (i.e., antagonistic) and more intense, is due to the transition in electronic structure from "Rydberg" to "ionic" type as the nuclei traverse the potential barrier between inner and outer potential wells. This "transition" component of the EFD rises and falls sharply as the nuclei cross the barrier.
Collapse
Affiliation(s)
- D J Diestler
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany.,University of Nebraska-Lincoln , Lincoln, Nebraska 68583, United States
| | | | - J Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany.,Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan 030006, China
| | - Y Yang
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan 030006, China
| |
Collapse
|
25
|
Andrés J, González-Navarrete P, Safont VS, Silvi B. Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory. Phys Chem Chem Phys 2018; 19:29031-29046. [PMID: 29077108 DOI: 10.1039/c7cp06108k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the usefulness of curly arrows in chemistry, their relationship with real electron density flows is still imprecise, and even their direct connection to quantum chemistry is still controversial. The paradigmatic description - from first principles - of the mechanistic aspects of a given chemical process is based mainly on the relative energies and geometrical changes at the stationary points of the potential energy surface along the reaction pathway; however, it is not sufficient to describe chemical systems in terms of bonding aspects. Probing the electron density distribution during a chemical reaction can provide important insights, enabling us to understand and control chemical reactions. This aim has required an extension of the relationships between the concepts of traditional chemistry and those of quantum mechanics. Bonding evolution theory (BET), which combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT), provides a powerful method that offers insight into the molecular mechanism of chemical rearrangements. In agreement with the laws of physical and aspects of quantum theory, BET can be considered an appropriate tool to tackle chemical reactivity with a wide range of possible applications. In this work, BET is applied to address a long-standing problem: the ability to monitor the flow of electron density. BET analysis shows a connection between quantum mechanics and bond making/forming processes. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds and provides detailed physical grounds for this type of representation. We demonstrate this procedure using the test set of prototypical examples of thermal ring apertures, and the degenerated Cope rearrangement of semibullvalene.
Collapse
Affiliation(s)
- Juan Andrés
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain.
| | | | | | | |
Collapse
|
26
|
Jia D, Manz J, Yang Y. Communication: Electronic flux induced by crossing the transition state. J Chem Phys 2018; 148:041101. [DOI: 10.1063/1.5018236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
27
|
Matsuoka T, Takatsuka K. Nonadiabatic electron wavepacket dynamics behind molecular autoionization. J Chem Phys 2018; 148:014106. [DOI: 10.1063/1.5000293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Takahide Matsuoka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
28
|
Albert J, Hader K, Engel V. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle. J Chem Phys 2017; 147:241101. [DOI: 10.1063/1.5011807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julian Albert
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Kilian Hader
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Volker Engel
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
29
|
Yamamoto K, Takatsuka K. Photoinduced Charge Separation Catalyzed by Manganese Oxides onto a Y-Shaped Branching Acceptor Efficiently Preventing Charge Recombination. Chemphyschem 2017; 18:537-548. [DOI: 10.1002/cphc.201601237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kentaro Yamamoto
- Fukui Institute for Fundamental Chemistry; Kyoto University; Takano-Nishihiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry; Kyoto University; Takano-Nishihiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| |
Collapse
|
30
|
Eich FG, Agostini F. The adiabatic limit of the exact factorization of the electron-nuclear wave function. J Chem Phys 2016; 145:054110. [DOI: 10.1063/1.4959962] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. G. Eich
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Federica Agostini
- Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
31
|
Yamamoto K, Takatsuka K. Dynamical mechanism of charge separation by photoexcited generation of proton–electron pairs in organic molecular systems. A nonadiabatic electron wavepacket dynamics study. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Yonehara T, Takatsuka K. Nonadiabtic electron dynamics in densely quasidegenerate states in highly excited boron cluster. J Chem Phys 2016; 144:164304. [DOI: 10.1063/1.4947302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Takehiro Yonehara
- Department of Basic Science, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic Science, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
33
|
Hermann G, Liu C, Manz J, Paulus B, Pérez-Torres JF, Pohl V, Tremblay JC. Multidirectional Angular Electronic Flux during Adiabatic Attosecond Charge Migration in Excited Benzene. J Phys Chem A 2016; 120:5360-9. [DOI: 10.1021/acs.jpca.6b01948] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gunter Hermann
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - ChunMei Liu
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jörn Manz
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
- State
Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute
of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Beate Paulus
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jhon Fredy Pérez-Torres
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Vincent Pohl
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Jean Christophe Tremblay
- Freie Universität Berlin, Institut für
Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
34
|
Schild A, Agostini F, Gross EKU. Electronic Flux Density beyond the Born–Oppenheimer Approximation. J Phys Chem A 2016; 120:3316-25. [DOI: 10.1021/acs.jpca.5b12657] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Axel Schild
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - Federica Agostini
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - E. K. U. Gross
- Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| |
Collapse
|
35
|
Bredtmann T, Manz J, Zhao JM. Concerted Electronic and Nuclear Fluxes During Coherent Tunnelling in Asymmetric Double-Well Potentials. J Phys Chem A 2016; 120:3142-54. [PMID: 26799383 DOI: 10.1021/acs.jpca.5b11295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum theory of concerted electronic and nuclear fluxes (CENFs) during coherent periodic tunnelling from reactants (R) to products (P) and back to R in molecules with asymmetric double-well potentials is developed. The results are deduced from the solution of the time-dependent Schrödinger equation as a coherent superposition of two eigenstates; here, these are the two states of the lowest tunnelling doublet. This allows the periodic time evolutions of the resulting electronic and nuclear probability densities (EPDs and NPDs) as well as the CENFs to be expressed in terms of simple sinusodial functions. These analytical results reveal various phenomena during coherent tunnelling in asymmetric double-well potentials, e.g., all EPDs and NPDs as well as all CENFs are synchronous. Distortion of the symmetric reference to a system with an asymmetric double-well potential breaks the spatial symmetry of the EPDs and NPDs, but, surprisingly, the symmetry of the CENFs is conserved. Exemplary application to the Cope rearrangement of semibullvalene shows that tunnelling of the ideal symmetric system can be suppressed by asymmetries induced by rather small external electric fields. The amplitude for the half tunnelling, half nontunnelling border is as low as 0.218 × 10(-8) V/cm. At the same time, the delocalized eigenstates of the symmetric reference, which can be regarded as Schrödinger's cat-type states representing R and P with equal probabilities, get localized at one or the other minima of the asymmetric double-well potential, representing either R or P.
Collapse
Affiliation(s)
| | - Jörn Manz
- Freie Universität Berlin , Institut für Chemie und Biochemie, 14195 Berlin, Germany
| | | |
Collapse
|
36
|
Li ZW, Yonehara T, Takatsuka K. Nonadiabatic electron wavepacket study on symmetry breaking dynamics of the low-lying excited states of cyclic-B4. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Liu C, Manz J, Yang Y. Staircase patterns of nuclear fluxes during coherent tunneling in excited doublets of symmetric double well potentials. Phys Chem Chem Phys 2016; 18:5048-55. [DOI: 10.1039/c5cp06935a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Step-by-step flux for one-by-one transfers of the lobes of the density, from the reactant (left) to the product (right) in the excited tunneling doublet.
Collapse
Affiliation(s)
- ChunMei Liu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
38
|
Electron wavepacket approaches to non-adiabatic transition processes in the internal rotational motion of H2CNH2+ – Charge oscillation due to electronic coherence. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Gomez T, Hermann G, Zarate X, Pérez-Torres JF, Tremblay JC. Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2. Molecules 2015; 20:13830-53. [PMID: 26263959 PMCID: PMC6332195 DOI: 10.3390/molecules200813830] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/25/2022] Open
Abstract
In this work, we adopt a quantum mechanical approach based on time-dependent density functional theory (TDDFT) to study the optical and electronic properties of alizarin supported on TiO2 nano-crystallites, as a prototypical dye-sensitized solar cell. To ensure proper alignment of the donor (alizarin) and acceptor (TiO2 nano-crystallite) levels, static optical excitation spectra are simulated using time-dependent density functional theory in response. The ultrafast photoelectron transfer from the dye to the cluster is simulated using an explicitly time-dependent, one-electron TDDFT ansatz. The model considers the δ-pulse excitation of a single active electron localized in the dye to the complete set of energetically accessible, delocalized molecular orbitals of the dye/nano-crystallite complex. A set of quantum mechanical tools derived from the transition electronic flux density is introduced to visualize and analyze the process in real time. The evolution of the created wave packet subject to absorbing boundary conditions at the borders of the cluster reveal that, while the electrons of the aromatic rings of alizarin are heavily involved in an ultrafast charge redistribution between the carbonyl groups of the dye molecule, they do not contribute positively to the electron injection and, overall, they delay the process.
Collapse
Affiliation(s)
- Tatiana Gomez
- Dirección de Postgrado e Investigación, Universidad Autónoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.
| | - Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Ximena Zarate
- Dirección de Postgrado e Investigación, Universidad Autónoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.
| | - Jhon Fredy Pérez-Torres
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Jean Christophe Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
40
|
Yamamoto K, Takatsuka K. An Electron Dynamics Mechanism of Charge Separation in the Initial-Stage Dynamics of Photoinduced Water Splitting in XMnWater (X=OH, OCaH) and Electron-Proton Acceptors. Chemphyschem 2015; 16:2534-7. [DOI: 10.1002/cphc.201500416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/11/2022]
|
41
|
Pérez-Torres JF. Dissociating H2+(2Σg+,JM=00) Ion as an Exploding Quantum Bubble. J Phys Chem A 2015; 119:2895-901. [DOI: 10.1021/acs.jpca.5b00907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jhon Fredy Pérez-Torres
- Institut für Chemie
und Biochemie, Freie Universität Berlin, Takustraße
3, 14195 Berlin, Germany
| |
Collapse
|
42
|
Bredtmann T, Diestler DJ, Li SD, Manz J, Pérez-Torres JF, Tian WJ, Wu YB, Yang Y, Zhai HJ. Quantum theory of concerted electronic and nuclear fluxes associated with adiabatic intramolecular processes. Phys Chem Chem Phys 2015; 17:29421-64. [DOI: 10.1039/c5cp03982g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Example of concerted electronic (right) and nuclear (left) fluxes: isomerization of B4.
Collapse
Affiliation(s)
- Timm Bredtmann
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Dennis J. Diestler
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- University of Nebraska-Lincoln
| | - Si-Dian Li
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | | | - Wen-Juan Tian
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yan-Bo Wu
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
- Institute of Laser Spectroscopy
- Shanxi University
- Taiyuan 030006
- China
| | - Hua-Jin Zhai
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
43
|
Manz J, Pérez-Torres JF, Yang Y. Vibrating H2+(2Σg+, JM = 00) Ion as a Pulsating Quantum Bubble in the Laboratory Frame. J Phys Chem A 2014; 118:8411-25. [DOI: 10.1021/jp5017246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics
Devices, Institute of Laser Spectroscopy, Shanxi University, 92
Wucheng Road, Taiyuan 030006, China
- Institut für Chemie and Biochemie, Freie Universitat Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Jhon Fredy Pérez-Torres
- Institut für Chemie and Biochemie, Freie Universitat Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics
Devices, Institute of Laser Spectroscopy, Shanxi University, 92
Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
44
|
Diestler DJ. Beyond the Born–Oppenheimer Approximation: A Treatment of Electronic Flux Density in Electronically Adiabatic Molecular Processes. J Phys Chem A 2013; 117:4698-708. [DOI: 10.1021/jp4022079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583,
United States
| |
Collapse
|
45
|
Yonehara T, Takatsuka K. Path-Branching Representation for Nonadiabatic Electron Dynamics in Conical Intersection. J Phys Chem A 2013; 117:8599-608. [DOI: 10.1021/jp402655q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takehiro Yonehara
- Department of Basic
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
46
|
Diestler DJ, Kenfack A, Manz J, Paulus B, Pérez-Torres JF, Pohl V. Computation of the Electronic Flux Density in the Born–Oppenheimer Approximation. J Phys Chem A 2013; 117:8519-27. [DOI: 10.1021/jp4002302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. J. Diestler
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- University of Nebraska—Lincoln, Lincoln, Nebraska 68583, United States
| | - A. Kenfack
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - J. Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- Shanxi University, Laser Spectroscopy Laboratory, 92 Wucheng Road, Taiyuan 030006, PRC
| | - B. Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - J. F. Pérez-Torres
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - V. Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
47
|
Bredtmann T, Chelkowski S, Bandrauk AD. Effect of Nuclear Motion on Molecular High Order Harmonic Pump Probe Spectroscopy. J Phys Chem A 2012; 116:11398-405. [DOI: 10.1021/jp3063977] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timm Bredtmann
- Physikalische und Theoretische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin,
Germany
- Laboratoire de
Chimie Théorique,
Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Szczepan Chelkowski
- Laboratoire de
Chimie Théorique,
Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - André D. Bandrauk
- Laboratoire de
Chimie Théorique,
Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
48
|
Barth I. Translational Effects on Electronic and Nuclear Ring Currents. J Phys Chem A 2012; 116:11283-303. [DOI: 10.1021/jp305318s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ingo Barth
- Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
49
|
Patchkovskii S. Electronic currents and Born-Oppenheimer molecular dynamics. J Chem Phys 2012; 137:084109. [DOI: 10.1063/1.4747540] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Schild A, Choudhary D, Sambre VD, Paulus B. Electron Density Dynamics in the Electronic Ground State: Motion Along the Kekulé Mode of Benzene. J Phys Chem A 2012; 116:11355-60. [DOI: 10.1021/jp305735s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Axel Schild
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Deepanshu Choudhary
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Vaibhav D. Sambre
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|