1
|
Janesko BG. Multiconfigurational Correlation at DFT + U Cost: On-Site Electron-Electron Interactions Yield a Block-Localized Configuration Interaction Hamiltonian. J Phys Chem A 2024; 128:5077-5087. [PMID: 38878060 DOI: 10.1021/acs.jpca.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This work presents a first-principles wavefunction-in-DFT approach based on the Hubbard density functional theory (DFT) + U method. This approach begins with the standard DFT reference system of noninteracting electrons and introduces an electron-electron interaction projected onto DFT+U-type atomic states. The reference system's configuration interaction Hamiltonian is block-localized to these states and can be expressed in terms of state occupation numbers, state self-energies (which correspond to unscreened Hubbard U values), and the promotion energies of doubly excited Slater determinants. Simple approximations for the promotion energies provide multiconfigurational correlation energies without requiring explicit orbital localization/transform. Numerical results for fractionally occupied chromium atom, bonded chromium dimer, dissociating covalent bonds, and large active spaces show that the approach provides beyond-zero-sum accuracy at computational cost comparable to standard DFT+U.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
2
|
Majumdar S, Roy AK. Recent Advances in Cartesian-Grid DFT in Atoms and Molecules. Front Chem 2022; 10:926916. [PMID: 35936092 PMCID: PMC9354079 DOI: 10.3389/fchem.2022.926916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
In the past several decades, density functional theory (DFT) has evolved as a leading player across a dazzling variety of fields, from organic chemistry to condensed matter physics. The simple conceptual framework and computational elegance are the underlying driver for this. This article reviews some of the recent developments that have taken place in our laboratory in the past 5 years. Efforts are made to validate a viable alternative for DFT calculations for small to medium systems through a Cartesian coordinate grid- (CCG-) based pseudopotential Kohn-Sham (KS) DFT framework using LCAO-MO ansatz. In order to legitimize its suitability and efficacy, at first, electric response properties, such as dipole moment ( μ ), static dipole polarizability ( α ), and first hyperpolarizability ( β ), are calculated. Next, we present a purely numerical approach in CCG for proficient computation of exact exchange density contribution in certain types of orbital-dependent density functionals. A Fourier convolution theorem combined with a range-separated Coulomb interaction kernel is invoked. This takes motivation from a semi-numerical algorithm, where the rate-deciding factor is the evaluation of electrostatic potential. Its success further leads to a systematic self-consistent approach from first principles, which is desirable in the development of optimally tuned range-separated hybrid and hyper functionals. Next, we discuss a simple, alternative time-independent DFT procedure, for computation of single-particle excitation energies, by means of "adiabatic connection theorem" and virial theorem. Optical gaps in organic chromophores, dyes, linear/non-linear PAHs, and charge transfer complexes are faithfully reproduced. In short, CCG-DFT is shown to be a successful route for various practical applications in electronic systems.
Collapse
Affiliation(s)
| | - Amlan K. Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| |
Collapse
|
3
|
Yeh SH, Yang W, Hsu CP. Reformulation of Thermally-Assisted-Occupation Density Functional Theory in the Kohn-Sham Framework. J Chem Phys 2022; 156:174108. [DOI: 10.1063/5.0087012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We reformulate the thermally-assisted-occupation density functional theory (TAO-DFT) into the Kohn-Sham single-determinant framework and construct two new post-self-consistent field (post-SCF) static correlation correction schemes, named rTAO and rTAO-1. In contrast to the original TAO-DFT with the density in an ensemble form, in which each orbital density is weighted with a fractional occupation number, the ground-state density is given by a single-determinant wavefunction, a regular Kohn-Sham density, and total ground state energy is expressed in the normal Kohn-Sham form with a static correlation energy formulated in terms of the Kohn-Sham orbitals. In post-SCF calculations with rTAO functionals, an efficient energy scanning to quantitatively determine $\theta$ is also proposed. The rTAOs provide a promising method to simulate systems with strong static correlation as original TAO, but simpler and more efficient.We show that both rTAO and rTAO-1 is capable of reproducing most results from TAO-DFT without the additional functional Eθ used in TAO-DFT. Furthermore, our numerical results support that, without the functional Eθ, both rTAO and rTAO-1 can capture correct static correlation profiles in various systems.
Collapse
Affiliation(s)
- Shu-Hao Yeh
- Institute of Chemistry Academia Sinica, Taiwan
| | - Weitao Yang
- Department of Chemistry, Duke University, United States of America
| | - Chao-Ping Hsu
- Institute of Chemistry, Institute of Chemistry Academia Sinica, Taiwan
| |
Collapse
|
4
|
El-Shamy NT, Alkaoud AM, Hussein RK, Ibrahim MA, Alhamzani AG, Abou-Krisha MM. DFT, ADMET and Molecular Docking Investigations for the Antimicrobial Activity of 6,6'-Diamino-1,1',3,3'-tetramethyl-5,5'-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione]. Molecules 2022; 27:620. [PMID: 35163880 PMCID: PMC8839838 DOI: 10.3390/molecules27030620] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/24/2022] Open
Abstract
Heterocyclic compounds, including pyrimidine derivatives, exhibit a broad variety of biological and pharmacological activities. In this paper, a previously synthesized novel pyrimidine molecule is proposed, and its pharmaceutical properties are investigated. Computational techniques such as the density functional theory, ADMET evaluation, and molecular docking were applied to elucidate the chemical nature, drug likeness and antibacterial function of molecule. The viewpoint of quantum chemical computations revealed that the molecule was relatively stable and has a high electrophilic nature. The contour maps of HOMO-LUMO and molecular electrostatic potential were analyzed to illustrate the charge density distributions that could be associated with the biological activity. Natural bond orbital (NBO) analysis revealed details about the interaction between donor and acceptor within the bond. Drug likeness and ADMET analysis showed that the molecule possesses the agents of safety and the effective combination therapy as pharmaceutical drug. The antimicrobial activity was investigated using molecular docking. The investigated molecule demonstrated a high affinity for binding within the active sites of antibacterial and antimalarial proteins. The high affinity of the antibacterial protein was proved by its low binding energy (-7.97 kcal/mol) and a low inhibition constant value (1.43 µM). The formation of four conventional hydrogen bonds in ligand-protein interactions confirmed the high stability of the resulting complexes. When compared to known standard drugs, the studied molecule displayed a remarkable antimalarial activity, as indicated by higher binding affinity (B.E. -5.86 kcal/mol & Ki = 50.23 M). The pre-selected molecule could be presented as a promising drug candidate for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Nesreen T. El-Shamy
- Physics Department, Faculty of Science, Taibah University, Al-Madina Al Munawarah 44256, Saudi Arabia; or
- Physics Department, Faculty of Women, Ain Shams University, Cairo 11865, Egypt
| | - Ahmed M. Alkaoud
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.M.A.); (M.A.I.)
| | - Rageh K. Hussein
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.M.A.); (M.A.I.)
| | - Moez A. Ibrahim
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.M.A.); (M.A.I.)
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (M.M.A.-K.)
| | - Mortaga M. Abou-Krisha
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (M.M.A.-K.)
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
5
|
Janesko BG. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev 2021; 50:8470-8495. [PMID: 34060549 DOI: 10.1039/d0cs01074j] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory (DFT) is the most widely-used electronic structure approximation across chemistry, physics, and materials science. Every year, thousands of papers report hybrid DFT simulations of chemical structures, mechanisms, and spectra. Unfortunately, hybrid DFT's accuracy is ultimately limited by tradeoffs between over-delocalization and under-binding. This review summarizes these tradeoffs, and introduces six modern attempts to go beyond them while maintaining hybrid DFT's relatively low computational cost: DFT+U, self-interaction corrections, localized orbital scaling corrections, local hybrid functionals, real-space nondynamical correlation, and our rung-3.5 approach. The review concludes with practical suggestions for DFT users to identify and mitigate these tradeoffs' impact on their simulations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Dr, Fort Worth, TX 76129, USA.
| |
Collapse
|
6
|
Yang J, Pei Z, Deng J, Mao Y, Wu Q, Yang Z, Wang B, Aikens CM, Liang W, Shao Y. Analysis and visualization of energy densities. I. Insights from real-time time-dependent density functional theory simulations. Phys Chem Chem Phys 2020; 22:26838-26851. [PMID: 33170198 PMCID: PMC7722154 DOI: 10.1039/d0cp04206d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we report a scheme to analyze and visualize the energy density fluctuations during the real-time time-dependent density functional theory (RT-TDDFT) simulations. Using Ag4-N2 complexes as examples, it is shown that the grid-based Kohn-Sham energy density can be computed at each time step using a procedure from Nakai and coworkers. Then the instantaneous energy of each molecular fragment (such as Ag4 and N2) can be obtained by partitioning the Kohn-Sham energy densities using Becke or fragment-based Hirshfeld (FBH) scheme. A strong orientation-dependence is observed for the energy flow between the Ag4 cluster and a nearby N2 molecule in the RT-TDDFT simulations. Future applications of such an energy density analysis in electron dynamics simulations are discussed.
Collapse
Affiliation(s)
- Junjie Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pei Z, Yang J, Deng J, Mao Y, Wu Q, Yang Z, Wang B, Aikens CM, Liang W, Shao Y. Analysis and visualization of energy densities. II. Insights from linear-response time-dependent density functional theory calculations. Phys Chem Chem Phys 2020; 22:26852-26864. [PMID: 33216085 PMCID: PMC8258743 DOI: 10.1039/d0cp04207b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inspired by the analysis of Kohn-Sham energy densities by Nakai and coworkers, we extended the energy density analysis to linear-response time-dependent density functional theory (LR-TDDFT) calculations. Using ethylene-tetrafluoroethylene and oxyluciferin-water complexes as examples, distinctive distribution patterns were demonstrated for the excitation energy densities of local excitations (within a molecular fragment) and charge-transfer excitations (between molecular fragments). It also provided a simple way to compute the effective energy of both hot carriers (particle and hole) from charge-transfer excitations via an integration of the excitation energy density over the donor and acceptor grid points.
Collapse
Affiliation(s)
- Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ramos C, Janesko BG. Nonlocal rung-3.5 correlation from the density matrix expansion: Flat-plane condition, thermochemistry, and kinetics. J Chem Phys 2020; 153:164116. [PMID: 33138396 DOI: 10.1063/5.0025160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The rung-3.5 approach to density functional theory constructs nonlocal approximate correlation from the expectation values of nonlocal one-electron operators. This offers an inexpensive solution to hybrid functionals' imbalance between exact nonlocal exchange and local approximate correlation. Our rung-3.5 correlation functionals also include a local complement to the nonlocal ingredient, analogous to the local exchange component of a hybrid functional. Here, we use the density matrix expansion (DME) to build rung-3.5 complements. We demonstrate how these provide a measure of local fractional occupancy and use them to approximate the flat-plane condition. We also use these complements in a three-parameter nonlocal correlation functional compatible with full nonlocal exchange. This functional approaches the accuracy of widely used hybrids for molecular thermochemistry and kinetics. The DME provides a foundation for practical, minimally empirical, nonlocal correlation functionals compatible with full nonlocal local exchange.
Collapse
Affiliation(s)
- Chloe Ramos
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 S. University Dr., Fort Worth, Texas 76129, USA
| | - Benjamin G Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 S. University Dr., Fort Worth, Texas 76129, USA
| |
Collapse
|
9
|
Yeh SH, Manjanath A, Cheng YC, Chai JD, Hsu CP. Excitation energies from thermally assisted-occupation density functional theory: Theory and computational implementation. J Chem Phys 2020; 153:084120. [PMID: 32872866 DOI: 10.1063/1.5140243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The time-dependent density functional theory (TDDFT) has been broadly used to investigate the excited-state properties of various molecular systems. However, the current TDDFT heavily relies on outcomes from the corresponding ground-state DFT calculations, which may be prone to errors due to the lack of proper treatment in the non-dynamical correlation effects. Recently, thermally assisted-occupation DFT (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)], a DFT with fractional orbital occupations, was proposed, explicitly incorporating the non-dynamical correlation effects in the ground-state calculations with low computational complexity. In this work, we develop TDTAO-DFT, which is a TD, linear-response theory for excited states within the framework of TAO-DFT. With tests on the excited states of H2, the first triplet excited state (13Σu +) was described well, with non-imaginary excitation energies. TDTAO-DFT also yields zero singlet-triplet gap in the dissociation limit for the ground singlet (11Σg +) and the first triplet state (13Σu +). In addition, as compared to traditional TDDFT, the overall excited-state potential energy surfaces obtained from TDTAO-DFT are generally improved and better agree with results from the equation-of-motion coupled-cluster singles and doubles.
Collapse
Affiliation(s)
- Shu-Hao Yeh
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | - Yuan-Chung Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jeng-Da Chai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Janesko BG. Coupled alkali halide color centers: Fractional charge errors, fractional spin errors, and a failure of spin symmetry breaking produce challenging tests for condensed-phase electronic structure calculations. J Chem Phys 2019. [DOI: 10.1063/1.5111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 S. University Dr., Fort Worth, Texas 76129, USA
| |
Collapse
|
11
|
Maier TM, Ikabata Y, Nakai H. Efficient Semi-Numerical Implementation of Relativistic Exact Exchange within the Infinite-Order Two-Component Method Using a Modified Chain-of-Spheres Method. J Chem Theory Comput 2019; 15:4745-4763. [DOI: 10.1021/acs.jctc.9b00228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Toni M. Maier
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
12
|
Wang M, John D, Yu J, Proynov E, Liu F, Janesko BG, Kong J. Performance of new density functionals of nondynamic correlation on chemical properties. J Chem Phys 2019; 150:204101. [DOI: 10.1063/1.5082745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew Wang
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Dwayne John
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Jianguo Yu
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Emil Proynov
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Fenglai Liu
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Benjamin G. Janesko
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Jing Kong
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| |
Collapse
|
13
|
Ghosal A, Mandal T, Roy AK. Efficient HF exchange evaluation through Fourier convolution in Cartesian grid for orbital-dependent density functionals. J Chem Phys 2019; 150:064104. [DOI: 10.1063/1.5082393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abhisek Ghosal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur, WB 741246, India
| | - Tanmay Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur, WB 741246, India
| | - Amlan K. Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur, WB 741246, India
| |
Collapse
|
14
|
Janesko BG, Scalmani G, Frisch MJ. Density functionals for nondynamical correlation constructed from an upper bound to the exact exchange energy density. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1535673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | | | | |
Collapse
|
15
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
16
|
Maier TM, Arbuznikov AV, Kaupp M. Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1378] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Toni M. Maier
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Alexei V. Arbuznikov
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
| | - Martin Kaupp
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
| |
Collapse
|
17
|
Laqua H, Kussmann J, Ochsenfeld C. Efficient and Linear-Scaling Seminumerical Method for Local Hybrid Density Functionals. J Chem Theory Comput 2018; 14:3451-3458. [DOI: 10.1021/acs.jctc.8b00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henryk Laqua
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), University of Munich (LMU), D-81377 München, Germany
| | - Jörg Kussmann
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), University of Munich (LMU), D-81377 München, Germany
| | - Christian Ochsenfeld
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), University of Munich (LMU), D-81377 München, Germany
| |
Collapse
|
18
|
Becke AD, Dale SG, Johnson ER. Communication: Correct charge transfer in CT complexes from the Becke’05 density functional. J Chem Phys 2018; 148:211101. [DOI: 10.1063/1.5039742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Axel D. Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stephen G. Dale
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
19
|
Janesko BG, Proynov E, Scalmani G, Frisch MJ. Long-range-corrected Rung 3.5 density functional approximations. J Chem Phys 2018; 148:104112. [DOI: 10.1063/1.5017981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76110, USA
| | - Emil Proynov
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76110, USA
| | | | | |
Collapse
|
20
|
Dale SG, Johnson ER, Becke AD. Interrogating the Becke’05 density functional for non-locality information. J Chem Phys 2017; 147:154103. [DOI: 10.1063/1.5000909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephen G. Dale
- Department of Chemistry, Dalhousie University, 6274 Coburg
Rd. P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg
Rd. P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Axel D. Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg
Rd. P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
21
|
Abstract
The exact exchange energy and its energy density are useful but computationally expensive ingredients in density functional approximations for Kohn-Sham density functional theory. We present detailed tests of some exact nonempirical upper bounds to exact exchange. These "Rung 3.5" upper bounds contract the Kohn-Sham one-particle density matrix with model density matrices used to construct semilocal model exchange holes and invoke the Cauchy-Schwarz inequality. The contraction automatically eliminates the computationally expensive long-range component of the exact exchange hole. Numerical tests show that the exchange upper bounds underestimate total exchange energies while predicting other properties with accuracy approaching standard hybrid approximations.
Collapse
Affiliation(s)
- Emil Proynov
- Department of Chemistry and Biochemistry, Texas Christian University , Fort Worth, Texas 76110, United States
| | - Benjamin G Janesko
- Department of Chemistry and Biochemistry, Texas Christian University , Fort Worth, Texas 76110, United States
| |
Collapse
|
22
|
Liu F, Kong J. Efficient Computation of Exchange Energy Density with Gaussian Basis Functions. J Chem Theory Comput 2017; 13:2571-2580. [DOI: 10.1021/acs.jctc.7b00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fenglai Liu
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37130, United States
| | - Jing Kong
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37130, United States
| |
Collapse
|
23
|
Affiliation(s)
- Benjamin G. Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
24
|
Kong J, Proynov E. Density Functional Model for Nondynamic and Strong Correlation. J Chem Theory Comput 2015; 12:133-43. [DOI: 10.1021/acs.jctc.5b00801] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Kong
- Department of Chemistry and
Center for Computational Sciences, Middle Tennessee State University, 1301 Main Street, Murfreesboro, Tennessee 37130, United States
| | - Emil Proynov
- Department of Chemistry and
Center for Computational Sciences, Middle Tennessee State University, 1301 Main Street, Murfreesboro, Tennessee 37130, United States
| |
Collapse
|
25
|
Pavlíková Přecechtělová J, Bahmann H, Kaupp M, Ernzerhof M. Design of exchange-correlation functionals through the correlation factor approach. J Chem Phys 2015; 143:144102. [DOI: 10.1063/1.4932074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
26
|
Becke AD. Perspective: Fifty years of density-functional theory in chemical physics. J Chem Phys 2015; 140:18A301. [PMID: 24832308 DOI: 10.1063/1.4869598] [Citation(s) in RCA: 654] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since its formal inception in 1964-1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development.
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd., P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
27
|
Becke AD. Fractional Kohn–Sham Occupancies from a Strong-Correlation Density Functional. Top Curr Chem (Cham) 2014. [DOI: 10.1007/128_2014_581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
28
|
Shao Y, Gan Z, Epifanovsky E, Gilbert AT, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang CM, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MW, Harbach PH, Hauser AW, Hohenstein EG, Holden ZC, Jagau TC, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao SP, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su YC, Thom AJ, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You ZQ, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GK, Chipman DM, Cramer CJ, Goddard WA, Gordon MS, Hehre WJ, Klamt A, Schaefer HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai JD, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu CP, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PM, Head-Gordon M. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 2014. [DOI: 10.1080/00268976.2014.952696] [Citation(s) in RCA: 1769] [Impact Index Per Article: 176.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Becke AD. Density functionals for static, dynamical, and strong correlation. J Chem Phys 2013; 138:074109. [DOI: 10.1063/1.4790598] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
30
|
Liu F, Proynov E, Yu JG, Furlani TR, Kong J. Comparison of the performance of exact-exchange-based density functional methods. J Chem Phys 2012; 137:114104. [PMID: 22998246 PMCID: PMC3465352 DOI: 10.1063/1.4752396] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 01/18/2023] Open
Abstract
How to describe nondynamic electron correlation is still a major challenge to density functional theory (DFT). Recent models designed particularly for this problem, such as Becke'05 (B05) and Perdew-Staroverov-Tao-Scuseria (PSTS) functionals employ the exact-exchange density, the efficient calculation of which is technically quite challenging. We have recently implemented self-consistently the B05 functional based on an efficient resolution-identity (RI) technique. In this study, we report a self-consistent RI implementation of the PSTS functional. In contrast to its original implementation, our version brings no limitation on the choice of the basis set. We have also implemented the Mori-Sanchez-Cohen-Yang-2 (MCY2) functional, another recent DFT method that includes full exact exchange. The performance of PSTS, B05, and MCY2 is validated on thermochemistry, reaction barriers, and dissociation energy curves, with an emphasis on nondynamic correlation effects in the discussion. All three methods perform rather well in general, B05 and MCY2 being on average somewhat better than PSTS. We include also results with other functionals that represent various aspects of the development in this field in recent years, including B3LYP, M06-HF, M06-2X, ωB97X, and TPSSh. The performance of the heavy-parameterized functionals M06-2X and ωB97X is on average better than that of B05, MCY2, and PSTS for standard thermodynamic properties and reactions, while the latter functionals do better in hydrogen abstraction reactions and dissociation processes. In particular, B05 is found to be the only functional that yields qualitatively correct dissociation curves for two-center symmetric radicals like He(2)(+). Finally, we compare the performance of all these functionals on a strongly correlated exemplary case system, the NO dimer. Only PSTS, B05, and MCY2 describe the system qualitatively correctly. Overall, this new type of functionals show good promise of overcoming some of the difficulties DFT encounters for systems with strong nondynamic correlation.
Collapse
Affiliation(s)
- Fenglai Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Ess DH, Cook TC. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves. J Phys Chem A 2012; 116:4922-9. [PMID: 22578025 DOI: 10.1021/jp300633j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Here we present and test several computational prescriptions for calculating singlet-triplet (ST) gap energies and bond dissociation curves for open-shell singlet diradicals using economical unrestricted single reference type calculations. For ST gap energies from Slipchenko and Krylov's atom and molecule test set (C, O, Si, NH, NF, OH(+), O(2), CH(2), and NH(2)(+)) spin unrestricted Hartree-Fock and MP2 energies result in errors greater than 15 kcal/mol. However, spin-projected (SP) Hartree-Fock theory in combination with spin-component-scaled (SCS) or scaled-opposite-spin (SOS) second-order perturbation theory gives ST gap energies with a mean unsigned error (MUE) of less than 2 kcal/mol. Density functionals generally give poor results for unrestricted energies and only the ωB97X-D, the M06, and the M06-2X functionals provide reasonable accuracy after spin-projection with MUE values of 4.7, 4.3, and 3.0 kcal/mol, respectively, with the 6-311++G(2d,2p) basis set. We also present a new one parameter hybrid density functional, diradical-1 (DR-1), based on Adamo and Barone's modified PW exchange functional with the PW91 correlation functional. This DR-1 method gives a mean error (ME) of 0.0 kcal/mol and a MUE value of 1.3 kcal/mol for ST gap energies. As another test of unrestricted methods the bond dissociation curves for methane (CH(4)) and hydrofluoric acid (H-F) were calculated with the M06-2X, DR-1, and ωB97X-D density functionals. All three of these functionals give reasonable results for the methane C-H bond but result in errors greater than 50 kcal/mol for the H-F bond dissociation. Spin-projection is found to significantly degrade bond dissociation curves past ~2.2 Å. Although unrestricted Hartree-Fock theory provides a very poor description of H-F bond dissociation, unrestricted SCS-MP2 and SOS-MP2 methods give accurate results.
Collapse
Affiliation(s)
- Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | | |
Collapse
|
32
|
Proynov E, Liu F, Kong J. Modified Becke'05 method of nondynamic correlation in density functional theory with self-consistent implementation. Chem Phys Lett 2012; 525-526:150-152. [PMID: 22685346 PMCID: PMC3367507 DOI: 10.1016/j.cplett.2011.12.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Becke's B05 method for nondynamic correlation is simplified for self-consistent implementation. An alternative form is proposed for the nondynamic correlation factors that do not require solving a complicated nonlinear algebraic equation. The four linear parameters of B05 are re-optimized together with one extra parameter entering a modified expression for the second-order same-spin energy contribution. The latter is co-linear with the exact-exchange energy density and does not require higher moments of the relaxed exchange hole. Preliminary tests of this method show that it leads to a slight improvement over the resolution-of-identity B05 results reported previously for atomization energies, and to a definite improvement for reaction barriers of Hydrogen abstraction.
Collapse
Affiliation(s)
- Emil Proynov
- Q-Chem Inc., 5001 Baum boulevard, Suite 690, Pittsburgh, PA 15213, USA
| | - Fenglai Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China and Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Jing Kong
- Q-Chem Inc., 5001 Baum boulevard, Suite 690, Pittsburgh, PA 15213, USA
| |
Collapse
|
33
|
Proynov E, Liu F, Shao Y, Kong J. Improved self-consistent and resolution-of-identity approximated Becke'05 density functional model of nondynamic electron correlation. J Chem Phys 2012; 136:034102. [PMID: 22280739 PMCID: PMC3272064 DOI: 10.1063/1.3676726] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/22/2011] [Indexed: 01/14/2023] Open
Abstract
In a recent letter [E. Proynov, Y. Shao, and J. Kong, Chem. Phys. Lett. 493, 381 (2010)], Becke's B05 model of nondynamic electron correlation in density functional theory was implemented self-consistently with computational efficiency (the "SCF-RI-B05" scheme). Important modifications of the algorithm were done in order to make the self-consistency feasible. In the present work, we give a complete account of the SCF-RI-B05 algorithm, including all the formulae for the analytical representation of the B05 functional and for its self-consistent field (SCF) potential. The average performance of the SCF-RI-B05 method reported in the above letter was somewhat less accurate, compared to the original B05 implementation, mainly because the parameters of the original B05 model were optimized with post-local-spin-density calculations. In this work, we report improved atomization energies with SCF-RI-B05, based on a SCF re-optimization of its four linear parameters. The re-optimized SCF-RI-B05 scheme is validated also on reaction barriers, and on the subtle energetics of NO dimer, an exemplary system of strong nondynamic correlation. It yields both the binding energy and the singlet-triplet splitting of the NO dimer correctly, and close to the benchmarks reported in the literature.
Collapse
Affiliation(s)
- Emil Proynov
- Q-Chem Inc., 5001 Baum Boulevard, Suite 690, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|