1
|
Kozak F, Brandis D, Pötzl C, Epasto LM, Reichinger D, Obrist D, Peterlik H, Polyansky A, Zagrovic B, Daus F, Geyer A, Becker CFW, Kurzbach D. An Atomistic View on the Mechanism of Diatom Peptide-Guided Biomimetic Silica Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401239. [PMID: 38874418 PMCID: PMC11321707 DOI: 10.1002/advs.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.
Collapse
Affiliation(s)
- Fanny Kozak
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Ludovica M. Epasto
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dominik Obrist
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5Vienna1090Austria
| | - Anton Polyansky
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Bojan Zagrovic
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Fabian Daus
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Armin Geyer
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Christian FW Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
2
|
How multisite phosphorylation impacts the conformations of intrinsically disordered proteins. PLoS Comput Biol 2021; 17:e1008939. [PMID: 33945530 PMCID: PMC8148376 DOI: 10.1371/journal.pcbi.1008939] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/25/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation of intrinsically disordered proteins (IDPs) can produce changes in structural and dynamical properties and thereby mediate critical biological functions. How phosphorylation effects intrinsically disordered proteins has been studied for an increasing number of IDPs, but a systematic understanding is still lacking. Here, we compare the collapse propensity of four disordered proteins, Ash1, the C-terminal domain of RNA polymerase (CTD2’), the cytosolic domain of E-Cadherin, and a fragment of the p130Cas, in unphosphorylated and phosphorylated forms using extensive all-atom molecular dynamics (MD) simulations. We find all proteins to show V-shape changes in their collapse propensity upon multi-site phosphorylation according to their initial net charge: phosphorylation expands neutral or overall negatively charged IDPs and shrinks positively charged IDPs. However, force fields including those tailored towards and commonly used for IDPs overestimate these changes. We find quantitative agreement of MD results with SAXS and NMR data for Ash1 and CTD2’ only when attenuating protein electrostatic interactions by using a higher salt concentration (e.g. 350 mM), highlighting the overstabilization of salt bridges in current force fields. We show that phosphorylation of IDPs also has a strong impact on the solvation of the protein, a factor that in addition to the actual collapse or expansion of the IDP should be considered when analyzing SAXS data. Compared to the overall mild change in global IDP dimension, the exposure of active sites can change significantly upon phosphorylation, underlining the large susceptibility of IDP ensembles to regulation through post-translational modifications. Intrinsically disordered proteins (IDPs) are a class of proteins that lack secondary and tertiary structures and instead explore a broad conformational ensemble. Their functions, from transcriptional regulation to signal transmission, are tightly regulated. IDPs are subject of extensive reversible post-translational modifications (PTMs), such as phosphorylation, methylation and glycosylation. Among these PTMs, phosphorylation is one of the most common and important PTMs. However, the mechanism of how phosphorylation affects the conformations and functions of IDPs remains unclear. To answer this question, we have performed extensive all-atom molecular dynamics simulations for four representative IDPs: Ash1, E-Cadherin, CTD2’ and p130Cas in their unphosphorylated and phosphorylated forms. Our results showed that all IDPs undergo a mild change upon multi-site phosphorylation, which is V-shaped: phosphorylation moderately expands neutral or overall negatively charged IDPs and shrinks positively charged IDPs. More importantly, in two of these IDPs, only two biologically relevant phosphorylation sites suffice to render the adjacent negatively charged active site significantly more exposed to the environment, which implies a higher probability to interact with other binding partners.
Collapse
|
3
|
Control of viscosity by addition of calcium chloride and glucono-δ-lactone to heat treated skim milk concentrates produced by reverse osmosis filtration. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Jurásek M, Kumar J, Paclíková P, Kumari A, Tripsianes K, Bryja V, Vácha R. Phosphorylation-induced changes in the PDZ domain of Dishevelled 3. Sci Rep 2021; 11:1484. [PMID: 33452274 PMCID: PMC7810883 DOI: 10.1038/s41598-020-79398-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
The PDZ domain of Dishevelled 3 protein belongs to a highly abundant protein recognition motif which typically binds short C-terminal peptides. The affinity of the PDZ towards the peptides could be fine-tuned by a variety of post-translation modifications including phosphorylation. However, how phosphorylations affect the PDZ structure and its interactions with ligands remains elusive. Combining molecular dynamics simulations, NMR titration, and biological experiments, we explored the role of previously reported phosphorylation sites and their mimetics in the Dishevelled PDZ domain. Our observations suggest three major roles for phosphorylations: (1) acting as an on/off PDZ binding switch, (2) allosterically affecting the binding groove, and (3) influencing the secondary binding site. Our simulations indicated that mimetics had similar but weaker effects, and the effects of distinct sites were non-additive. This study provides insight into the Dishevelled regulation by PDZ phosphorylation. Furthermore, the observed effects could be used to elucidate the regulation mechanisms in other PDZ domains.
Collapse
Affiliation(s)
- Miroslav Jurásek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jitender Kumar
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Alka Kumari
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, 612 65, Czech Republic
| | - Robert Vácha
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Wu H, Guo T, Li S, Zhao Y, Zeng M. Orthophosphate affects iron(III) bioavailability via a mechanism involving stabilization and delivery of ferric hydroxide-phosphate nanoparticles. Food Chem 2021; 347:129081. [PMID: 33484956 DOI: 10.1016/j.foodchem.2021.129081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
Orthophosphate is endogenously present in gastrointestinal fluids and increasingly ingested as additives in processed foods. However, its effect and mechanism of action on iron bioavailability remains controversial and largely unknown. Here, at initial dissolved P/Fe ratios ((P/Fe)init) ≥ 0.6, orthophosphate completely prevents hydrolytic Fe(III) precipitation at neutral pH by mediating the formation of negatively-charged (≈-29 mV ζ-potential) ferric hydroxide-phosphate nanoparticles (Fe(OH)P-NPs) consisting of ≈3.8-nm-diameter monomers. Fe(OH)P-NPs have decreased size and Fe/P ratio with increasing (P/Fe)init. Acidic pH and balanced salts in intestinal fluid counteract orthophosphate-mediated Fe(III) solubilization by weakening colloidal stability of Fe(OH)P-NPs. Protein digests from egg white, whey, casein, and fish muscle aid Fe(III) solubilization in intestinal fluid by stabilizing Fe(OH)P-NPs with casein digest displaying the highest Fe(III)-solubilizing capacity, and in calcein-fluorescence-quenching assay, deliver nanoparticulate Fe(III) to polarized Caco-2 cells via divalent-metal-transporter-1-dependent or endocytic pathways. Overall, our study provides a new paradigm for understanding orthophosphate's role in iron bioavailability.
Collapse
Affiliation(s)
- Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Tengjiao Guo
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
6
|
Jiang Y, Liu XC, de Zawadzki A, Skibsted LH. Binding of calcium to l-serine and o-phospho-l-serine as affected by temperature, pH and ionic strength under milk processing conditions. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Koch LM, Birkeland ES, Battaglioni S, Helle X, Meerang M, Hiltbrunner S, Ibáñez AJ, Peter M, Curioni-Fontecedro A, Opitz I, Dechant R. Cytosolic pH regulates proliferation and tumour growth by promoting expression of cyclin D1. Nat Metab 2020; 2:1212-1222. [PMID: 33077976 DOI: 10.1038/s42255-020-00297-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Enhanced growth and proliferation of cancer cells are accompanied by profound changes in cellular metabolism. These metabolic changes are also common under physiological conditions, and include increased glucose fermentation accompanied by elevated cytosolic pH (pHc)1,2. However, how these changes contribute to enhanced cell growth and proliferation is unclear. Here, we show that elevated pHc specifically orchestrates an E2F-dependent transcriptional programme to drive cell proliferation by promoting cyclin D1 expression. pHc-dependent transcription of cyclin D1 requires the transcription factors CREB1, ATF1 and ETS1, and the histone acetyltransferases p300 and CBP. Biochemical characterization revealed that the CREB1-p300/CBP interaction acts as a pH sensor and coincidence detector, integrating different mitotic signals to regulate cyclin D1 transcription. We also show that elevated pHc contributes to increased cyclin D1 expression in malignant pleural mesotheliomas (MPMs), and renders these cells hypersensitive to pharmacological reduction of pHc. Taken together, these data demonstrate that elevated pHc is a critical cellular signal regulating G1 progression, and provide a mechanism linking elevated pHc to oncogenic activation of cyclin D1 in MPMs, and possibly other cyclin D1~dependent tumours. Thus, an increase of pHc may represent a functionally important, early event in the aetiology of cancer that is amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Lisa Maria Koch
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Life science Zürich, PhD program for Molecular Life Sciences, Zurich, Switzerland
| | - Eivind Salmorin Birkeland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Life science Zürich, PhD program for Molecular Life Sciences, Zurich, Switzerland
| | - Stefania Battaglioni
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Xiao Helle
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alfredo J Ibáñez
- Core facility for Omics Research and Applied Biotechnology (ICOBA), Pontificia Universidad Católica del Perú, Lima, Peru
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Tahereh Valizadeh, Kiani F, Gharib F, Zabihi F, Koohyar F. Solvent Effects on Protonation Constants of Imatinib in Different Aqueous Solutions of Methanol at T = 298.15 K. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420010331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Feng Y, Zhang J, Miao Y, Guo W, Feng G, Yang Y, Guo T, Wu H, Zeng M. Prevention of Zinc Precipitation with Calcium Phosphate by Casein Hydrolysate Improves Zinc Absorption in Mouse Small Intestine ex Vivo via a Nanoparticle-Mediated Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:652-659. [PMID: 31869222 DOI: 10.1021/acs.jafc.9b07097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Casein phosphopeptides are known to enhance zinc absorption, but the underlying mechanism remains unclear. Here, a gastrointestinal casein hydrolysate (CH) was found to keep zinc in solution despite heavy precipitation of calcium and phosphate, the omnipresent mineral nutrients that could co-precipitate zinc out of solution instantly and almost completely under physiologically relevant conditions. Dynamic light scattering, transmission electron microscopy, and energy-dispersive X-ray analysis displayed the CH-mediated formation of zinc/calcium phosphate (Zn/CaP) nanocomplexes aggregated from rather small nanoclusters. The ex vivo mouse ileal loop experiments revealed enhanced intestinal zinc absorption by CH's prevention of zinc co-precipitation with CaP, and the treatments with specific inhibitors unveiled the involvement of macropinocytic internalization, lysosomal degradation, and transcytosis in the intestinal uptake of zinc from Zn/CaP nanocomplexes. A low calcium-to-phosphorus ratio adversely affected CH's efficiency to enhance zinc solubility and absorption. Overall, our study provides a new paradigm for casein phosphopeptides to improve zinc bioavailability.
Collapse
Affiliation(s)
- Yinong Feng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Jiayou Zhang
- Department of Clinical Laboratory , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province 266003 , China
| | - Yu Miao
- Department of Clinical Laboratory , The Affiliated Hospital of Qingdao University , Qingdao , Shandong Province 266003 , China
| | - Wei Guo
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Guangxin Feng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Yisheng Yang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Tengjiao Guo
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Haohao Wu
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| | - Mingyong Zeng
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao , Shandong Province 266003 , China
| |
Collapse
|
10
|
Leonard AN, Klauda JB, Sukharev S. Isothermal Titration Calorimetry of Be 2+ with Phosphatidylserine Models Guides All-Atom Force-Field Development for Lipid-Ion Interactions. J Phys Chem B 2019; 123:1554-1565. [PMID: 30681857 DOI: 10.1021/acs.jpcb.8b11884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beryllium has multiple industrial applications but exposure to its dust during manufacturing is associated with developing chronic inflammation in lungs known as berylliosis. Besides binding to specific alleles of MHC-II, Be2+ was recently found to compete with Ca2+ for binding sites on phosphatidylserine-containing membranes and inhibit recognition of this lipid by phagocytes. Computational studies of possible molecular targets for this small toxic dication are impeded by the absence of a reliable force field. This study introduces parameters for Be2+ for the CHARMM36 additive force field that represent interactions with water, including free energy of hydration and ion-monohydrate interaction energy and separation distance; and interaction parameters describing Be2+ affinity for divalent ion binding sites on lipids, namely phosphoryl and carboxylate oxygens. Results from isothermal titration calorimetry experiments for the binding affinities of Be2+ to dimethyl phosphate and acetate ions reveal that Be2+ strongly binds to phosphoryl groups. Revised interaction parameters for Be2+ with these types of oxygens reproduce experimental affinities in solution simulations. Surface tensions calculated from simulations of DOPS monolayers with varied concentrations of Be2+ are compared with prior results from Langmuir monolayer experiments, verifying the compacting effect that produces greater surface tensions (lower pressures) for Be2+-bound monolayers at the same surface area in comparison with K+. The new parameters will enable simulations that should reveal the mechanism of Be2+ interference with molecular recognition and signaling processes.
Collapse
Affiliation(s)
- Alison N Leonard
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | | |
Collapse
|
11
|
Formoso E, Grande-Aztatzi R, Lopez X. Does phosphorylation increase the binding affinity of aluminum? A computational study on the aluminum interaction with serine and O-phosphoserine. J Inorg Biochem 2018; 192:33-44. [PMID: 30594864 DOI: 10.1016/j.jinorgbio.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 11/28/2022]
Abstract
Several toxic effects arise from aluminum's presence in living systems, one of these effects is to alter the natural role of enzymes and non-enzyme proteins. Aluminum promotes the hyperphosphorylation of normal proteins. In order to assess the aluminum-binding abilities of phosphorylated proteins and peptides, the interaction of aluminum at different pH with serine and phosphoserine is studied by a Density Functional Theory study, combined with polarizable continuum models to account for bulk solvent effects, and the electronic structure of selected complexes are analyzed by Quantum Theory of "Atoms in Molecules". Our results confirm the high ability of aluminum to bind polypeptides as the pH lowers. Moreover, the phosphorylation of the building blocks increases the affinity for aluminum, in particular at physiological pH. Finally, aluminum shows a tendency to be chelated forming different size rings.
Collapse
Affiliation(s)
- Elena Formoso
- Farmazia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Euskadi, Spain; Donostia International Physics Centre (DIPC), Donostia 20018, Euskadi, Spain.
| | | | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain; Donostia International Physics Centre (DIPC), Donostia 20018, Euskadi, Spain
| |
Collapse
|
12
|
|
13
|
Tõnsuaadu K, Gruselle M, Kriisa F, Trikkel A, Gredin P, Villemin D. Dependence of the interaction mechanisms between L-serine and O-phospho-L-serine with calcium hydroxyapatite and copper modified hydroxyapatite in relation with the acidity of aqueous medium. J Biol Inorg Chem 2018; 23:929-937. [PMID: 29987356 DOI: 10.1007/s00775-018-1594-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022]
Abstract
Motivated by the role of copper ions in biological processes the aim of this study was to elucidate the impact of copper ions bound to hydroxyapatite on L-serine (L-Ser) and O-phospho-L-serine (O-Ph-L-Ser) adsorption at different acidity of aqueous solutions. The adsorption phenomenon was studied by FTIR, UV, and AA spectroscopy, XRD and thermal analysis methods together with the evolved gases analysis taking into consideration the ionic state of the amino acids as well as the apatite surface state, which are tightly correlated with the solution pH. In acidic solution, the main process involves apatite dissolution releasing calcium and copper ions. At pH > 5 the complexation of amino acids with Ca2+ or Cu2+ ions is more important leading also to the release of cations. The ability of copper ions to form water soluble complexes with L-Ser and O-Ph-L-Ser leads to an important loss of these ions, while calcium release is very low at this pH. Therefore, the use of copper ions substituting calcium in the apatite structure to enhance the ability of amino acids adsorption on the apatite surface seems problematic even at pH > 5.
Collapse
Affiliation(s)
- Kaia Tõnsuaadu
- Institute of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia.
| | - Michel Gruselle
- CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.,Sorbonne Université, UPMC Université Paris 06, 4 Place Jussieu, 75005, Paris, France
| | - Frieda Kriisa
- Institute of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Andres Trikkel
- Institute of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Patrick Gredin
- Sorbonne Université, UPMC Université Paris 06, 4 Place Jussieu, 75005, Paris, France.,Chimie Paris Tech, PSL Research Université, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Didier Villemin
- LCTM, UMR 6507, ENSICAEN, INC3M, Fr 3038, Normandie Université, 14050, Caen, France
| |
Collapse
|
14
|
Batalha IL, Zhou H, Lilley K, Lowe CR, Roque ACA. Mimicking nature: Phosphopeptide enrichment using combinatorial libraries of affinity ligands. J Chromatogr A 2016; 1457:76-87. [PMID: 27345211 DOI: 10.1016/j.chroma.2016.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Phosphorylation is a reversible post-translational modification of proteins that controls a plethora of cellular processes and triggers specific physiological responses, for which there is a need to develop tools to characterize phosphorylated targets efficiently. Here, a combinatorial library of triazine-based synthetic ligands comprising 64 small molecules has been rationally designed, synthesized and screened for the enrichment of phosphorylated peptides. The lead candidate (coined A8A3), composed of histidine and phenylalanine mimetic components, showed high binding capacity and selectivity for binding mono- and multi-phosphorylated peptides at pH 3. Ligand A8A3 was coupled onto both cross-linked agarose and magnetic nanoparticles, presenting higher binding capacities (100-fold higher) when immobilized on the magnetic support. The magnetic adsorbent was further screened against a tryptic digest of two phosphorylated proteins (α- and β-caseins) and one non-phosphorylated protein (bovine serum albumin, BSA). The MALDI-TOF mass spectra of the eluted peptides allowed the identification of nine phosphopeptides, comprising both mono- and multi-phosphorylated peptides.
Collapse
Affiliation(s)
- Iris L Batalha
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Houjiang Zhou
- Cambridge Centre for Proteomics, Cambridge, CB2 1QR, UK
| | | | - Christopher R Lowe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, CB2 1QT, Cambridge, UK
| | - Ana C A Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
15
|
Gone S, Alfonso-Prieto M, Paudyal S, Nicholson AW. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation. Sci Rep 2016; 6:25448. [PMID: 27150669 PMCID: PMC4858673 DOI: 10.1038/srep25448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves double-helical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in kcat and a 1.4-fold decrease in Km following phosphorylation, providing a 7.4–fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagement of product. The simulations also show why glutamic acid substitution at either serine does not confer enhancement, thus underscoring the specific requirement for a phosphomonoester.
Collapse
Affiliation(s)
- Swapna Gone
- Department of Chemistry, Philadelphia PA, 19122, USA
| | | | - Samridhdi Paudyal
- Department of Biology, Temple University, Philadelphia PA, 19122, USA
| | - Allen W Nicholson
- Department of Chemistry, Philadelphia PA, 19122, USA.,Department of Biology, Temple University, Philadelphia PA, 19122, USA
| |
Collapse
|
16
|
Stover ML, Plummer CE, Miller SR, Cassady CJ, Dixon DA. Gas-Phase Acidities of Phosphorylated Amino Acids. J Phys Chem B 2015; 119:14604-21. [DOI: 10.1021/acs.jpcb.5b08616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michele L. Stover
- Chemistry
Department, Shelby
Hall, The University of Alabama, Shelby Hall, Box
870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Chelsea E. Plummer
- Chemistry
Department, Shelby
Hall, The University of Alabama, Shelby Hall, Box
870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Sean R. Miller
- Chemistry
Department, Shelby
Hall, The University of Alabama, Shelby Hall, Box
870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Carolyn J. Cassady
- Chemistry
Department, Shelby
Hall, The University of Alabama, Shelby Hall, Box
870336, Tuscaloosa, Alabama 35487-0336, United States
| | - David A. Dixon
- Chemistry
Department, Shelby
Hall, The University of Alabama, Shelby Hall, Box
870336, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
17
|
Fathallah AM, Turner MR, Mager DE, Balu-Iyer SV. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration. Biopharm Drug Dispos 2014; 36:115-25. [PMID: 25377184 DOI: 10.1002/bdd.1925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/04/2014] [Accepted: 10/25/2014] [Indexed: 12/20/2022]
Abstract
The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability.
Collapse
Affiliation(s)
- Anas M Fathallah
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14215, USA
| | | | | | | |
Collapse
|
18
|
Chooi KP, Galan SRG, Raj R, McCullagh J, Mohammed S, Jones LH, Davis BG. Synthetic phosphorylation of p38α recapitulates protein kinase activity. J Am Chem Soc 2014; 136:1698-701. [PMID: 24393126 PMCID: PMC4235370 DOI: 10.1021/ja4095318] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Through
a “tag-and-modify” protein chemical modification
strategy, we site-selectively phosphorylated the activation
loop of protein kinase p38α. Phosphorylation at natural
(180) and unnatural (172) sites created two pure phospho-forms. p38α
bearing only a single phosphocysteine (pCys) as a mimic of pThr at
180 was sufficient to switch the kinase to an active state, capable
of processing natural protein substrate ATF2; 172 site phosphorylation
did not. In this way, we chemically recapitulated triggering of a
relevant segment of the MAPK-signaling pathway in vitro. This allowed detailed kinetic analysis of global and stoichiometric
phosphorylation events catalyzed by p38α and revealed
that site 180 is a sufficient activator alone and engenders dominant
mono-phosphorylation activity. Moreover, a survey of kinase
inhibition using inhibitors with different (Type I/II) modes (including
therapeutically relevant) revealed unambiguously that Type II inhibitors
inhibit phosphorylated p38α and allowed discovery of a
predictive kinetic analysis based on cooperativity to distinguish
Type I vs II.
Collapse
Affiliation(s)
- K Phin Chooi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | | | | | | | | | | | | |
Collapse
|
19
|
Theoretical calculation of pKa values of the Nortryptiline and Amitryptiline drugs in aqueous and non-aqueous solvents. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Yang C, Xue XS, Jin JL, Li X, Cheng JP. Theoretical Study on the Acidities of Chiral Phosphoric Acids in Dimethyl Sulfoxide: Hints for Organocatalysis. J Org Chem 2013; 78:7076-85. [DOI: 10.1021/jo400915f] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chen Yang
- State
Key Laboratory of Elemento-organic Chemistry and ‡Computational Center of Molecular
Science, Department of Chemistry, Nankai University, Tianjin 300071
| | - Xiao-Song Xue
- State
Key Laboratory of Elemento-organic Chemistry and ‡Computational Center of Molecular
Science, Department of Chemistry, Nankai University, Tianjin 300071
| | - Jia-Lu Jin
- State
Key Laboratory of Elemento-organic Chemistry and ‡Computational Center of Molecular
Science, Department of Chemistry, Nankai University, Tianjin 300071
| | - Xin Li
- State
Key Laboratory of Elemento-organic Chemistry and ‡Computational Center of Molecular
Science, Department of Chemistry, Nankai University, Tianjin 300071
| | - Jin-Pei Cheng
- State
Key Laboratory of Elemento-organic Chemistry and ‡Computational Center of Molecular
Science, Department of Chemistry, Nankai University, Tianjin 300071
| |
Collapse
|
21
|
Chiba Y, Horita S, Ohtsuka J, Arai H, Nagata K, Igarashi Y, Tanokura M, Ishii M. Structural units important for activity of a novel-type phosphoserine phosphatase from Hydrogenobacter thermophilus TK-6 revealed by crystal structure analysis. J Biol Chem 2013; 288:11448-58. [PMID: 23479726 DOI: 10.1074/jbc.m112.449561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Novel-type serine-synthesizing enzymes, termed metal-independent phosphoserine phosphatases (iPSPs), were recently identified and characterized from Hydrogenobacter thermophilus, a chemolithoautotrophic bacterium belonging to the order Aquificales. iPSPs are cofactor-dependent phosphoglycerate mutase (dPGM)-like phosphatases that have significant amino acid sequence similarity to dPGMs but lack phosphoglycerate mutase activity. Genes coding dPGM-like phosphatases have been identified in a broad range of organisms; however, predicting the function of the corresponding proteins based on sequence information alone is difficult due to their diverse substrate preferences. Here, we determined the crystal structure of iPSP1 from H. thermophilus in the apo-form and in complex with its substrate L-phosphoserine to find structural units important for its phosphatase activity toward L-phosphoserine. Structural and biochemical characterization of iPSP1 revealed that the side chains of His(85) and C-terminal region characteristic of iPSP1 are responsible for the PSP activity. The importance of these structural units for PSP activity was confirmed by high PSP activity observed in two novel dPGM-like proteins from Cyanobacteria and Chloroflexus in which the two structural units were conserved. We anticipate that our present findings will facilitate understanding of the serine biosynthesis pathways of organisms that lack gene(s) encoding conventional PSPs, as the structural information revealed here will help to identify iPSP from sequence databases.
Collapse
Affiliation(s)
- Yoko Chiba
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Glaser R, Ulmer L, Coyle S. Mechanistic models for LAH reductions of acetonitrile and malononitrile. Aggregation effects of Li+ and AlH3 on imide-enamide equilibria. J Org Chem 2013; 78:1113-26. [PMID: 23327108 DOI: 10.1021/jo302527k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The results are reported of an ab initio study of the addition of LiAlH(4) to acetonitrile and malononitrile at the MP2(full)/6-311+G* level considering the effects of electron correlation at higher levels up to QCISD(T)/6-311++G(2df,2pd) and including ether solvation. All imide (RCH(2)CH═N(-)) and enamide (RCH(-)CH═NH ↔ RCH═CHN(-)H) adducts feature strong interactions between the organic anion and both Li(+) and AlH(3). The relative stabilities of the tautomeric LAH adducts are compared to the tautomer preference energies of the LiH adducts and of the hydride adducts of the nitriles. Alane affinities were determined for the lithium ion pairs formed by LiH addition to the nitriles. The results show that alane binding greatly affects the imide-enamide equilibria and that alane complexation might even provide a thermodynamic preference for the imide intermediate. While lithium enamides of malononitrile are much more stable than lithium imides, alane binding dramatically reduces the enamide preference so that both tautomers are present at equilibrium. Implications are discussed regarding to the propensity for multiple hydride reductions and with regard to the mechanism of reductive nitrile dimerization. A detailed mechanism is proposed for the formation of 2-aminonicotinonitrile (2ANN) in the LAH reduction of malononitrile.
Collapse
Affiliation(s)
- Rainer Glaser
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
23
|
Evaluation of Amino Acid O-Phosphoserine as Ligand for the Capture of Immunoglubulin G from Human Serum. Appl Biochem Biotechnol 2012; 167:632-44. [DOI: 10.1007/s12010-012-9679-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|