• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643712)   Today's Articles (433)   Subscriber (50629)
For: Nakano T, Mochizuki Y, Yamashita K, Watanabe C, Fukuzawa K, Segawa K, Okiyama Y, Tsukamoto T, Tanaka S. Development of the four-body corrected fragment molecular orbital (FMO4) method. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Number Cited by Other Article(s)
1
Paciotti R, Re N, Storchi L. Combining the Fragment Molecular Orbital and GRID Approaches for the Prediction of Ligand-Metalloenzyme Binding Affinity: The Case Study of hCA II Inhibitors. Molecules 2024;29:3600. [PMID: 39125005 PMCID: PMC11313991 DOI: 10.3390/molecules29153600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]  Open
2
Sladek V, Šmak P, Tvaroška I. How E-, L-, and P-Selectins Bind to sLex and PSGL-1: A Quantification of Critical Residue Interactions. J Chem Inf Model 2023;63:5604-5618. [PMID: 37486087 DOI: 10.1021/acs.jcim.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
3
Nishigaya Y, Takase S, Sumiya T, Kikuzato K, Sato T, Niwa H, Sato S, Nakata A, Sonoda T, Hashimoto N, Namie R, Honma T, Umehara T, Shirouzu M, Koyama H, Yoshida M, Ito A, Shirai F. Discovery of Novel Substrate-Competitive Lysine Methyltransferase G9a Inhibitors as Anticancer Agents. J Med Chem 2023;66:4059-4085. [PMID: 36882960 DOI: 10.1021/acs.jmedchem.2c02059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
4
Fedorov DG. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. J Chem Phys 2022;157:231001. [PMID: 36550057 DOI: 10.1063/5.0131256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]  Open
5
Speake BT, Irons TJP, Wibowo M, Johnson AG, David G, Teale AM. An Embedded Fragment Method for Molecules in Strong Magnetic Fields. J Chem Theory Comput 2022;18:7412-7427. [PMID: 36414537 DOI: 10.1021/acs.jctc.2c00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
6
Liu J, He X. Recent advances in quantum fragmentation approaches to complex molecular and condensed‐phase systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
7
Paciotti R, Coletti C, Marrone A, Re N. The FMO2 analysis of the ligand-receptor binding energy: the Biscarbene-Gold(I)/DNA G-Quadruplex case study. J Comput Aided Mol Des 2022;36:851-866. [PMID: 36318393 DOI: 10.1007/s10822-022-00484-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
8
Dawson W, Degomme A, Stella M, Nakajima T, Ratcliff LE, Genovese L. Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
9
Sladek V, Yamamoto Y, Harada R, Shoji M, Shigeta Y, Sladek V. pyProGA-A PyMOL plugin for protein residue network analysis. PLoS One 2021;16:e0255167. [PMID: 34329304 PMCID: PMC8323899 DOI: 10.1371/journal.pone.0255167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022]  Open
10
Fujimori T, Kobayashi M, Taketsugu T. Energy-based automatic determination of buffer region in the divide-and-conquer second-order Møller-Plesset perturbation theory. J Comput Chem 2021;42:620-629. [PMID: 33534916 PMCID: PMC7986104 DOI: 10.1002/jcc.26486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022]
11
Okiyama Y, Nakano T, Watanabe C, Fukuzawa K, Komeiji Y, Segawa K, Mochizuki Y. Acceleration of Environmental Electrostatic Potential Using Cholesky Decomposition with Adaptive Metric (CDAM) for Fragment Molecular Orbital (FMO) Method. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
12
KOBAYASHI M, FUJIMORI T, TAKETSUGU T. Automatic Determination of Buffer Region in Divide-anc-Conquer Quantum Chemical Calculations. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2021. [DOI: 10.2477/jccj.2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
13
Sato T, Sekimata K, Sakai N, Watanabe H, Mishima-Tsumagari C, Taguri T, Matsumoto T, Fujii Y, Handa N, Tanaka A, Shirouzu M, Yokoyama S, Hashizume Y, Miyazono K, Koyama H, Honma T. Structural Basis of Activin Receptor-Like Kinase 2 (R206H) Inhibition by Bis-heteroaryl Pyrazole-Based Inhibitors for the Treatment of Fibrodysplasia Ossificans Progressiva Identified by the Integration of Ligand-Based and Structure-Based Drug Design Approaches. ACS OMEGA 2020;5:11411-11423. [PMID: 32478230 PMCID: PMC7254505 DOI: 10.1021/acsomega.9b04245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/19/2020] [Indexed: 05/11/2023]
14
Akinaga Y, Kato K, Nakano T, Fukuzawa K, Mochizuki Y. Fragmentation at sp2 carbon atoms in fragment molecular orbital method. J Comput Chem 2020;41:1416-1420. [PMID: 32196699 DOI: 10.1002/jcc.26190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 11/06/2022]
15
Fedorov DG. Analyzing Interactions with the Fragment Molecular Orbital Method. Methods Mol Biol 2020;2114:49-73. [PMID: 32016886 DOI: 10.1007/978-1-0716-0282-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
16
Herbert JM. Fantasy versus reality in fragment-based quantum chemistry. J Chem Phys 2019;151:170901. [PMID: 31703524 DOI: 10.1063/1.5126216] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
17
Liu J, Rana B, Liu KY, Herbert JM. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics. J Phys Chem Lett 2019;10:3877-3886. [PMID: 31251619 DOI: 10.1021/acs.jpclett.9b01214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
18
Thapa B, Beckett D, Jovan Jose KV, Raghavachari K. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach. J Chem Theory Comput 2018;14:1383-1394. [DOI: 10.1021/acs.jctc.7b01198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
19
Fedorov DG, Kitaura K. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics. J Phys Chem A 2018;122:1781-1795. [DOI: 10.1021/acs.jpca.7b12000] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
20
Kobayashi M, Fujimori T, Taketsugu T. Automated error control in divide-and-conquer self-consistent field calculations. J Comput Chem 2018;39:909-916. [DOI: 10.1002/jcc.25174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 11/07/2022]
21
Watanabe C, Watanabe H, Fukuzawa K, Parker LJ, Okiyama Y, Yuki H, Yokoyama S, Nakano H, Tanaka S, Honma T. Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach. J Chem Inf Model 2017;57:2996-3010. [PMID: 29111719 DOI: 10.1021/acs.jcim.7b00110] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
22
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
23
Ozawa M, Ozawa T, Nishio M, Ueda K. The role of CH/π interactions in the high affinity binding of streptavidin and biotin. J Mol Graph Model 2017;75:117-124. [PMID: 28551501 DOI: 10.1016/j.jmgm.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
24
Nishimoto Y, Fedorov DG. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding. J Comput Chem 2017;38:406-418. [DOI: 10.1002/jcc.24693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
25
Ratcliff LE, Mohr S, Huhs G, Deutsch T, Masella M, Genovese L. Challenges in large scale quantum mechanical calculations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1290] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
26
Hydration of ligands of influenza virus neuraminidase studied by the fragment molecular orbital method. J Mol Graph Model 2016;69:144-53. [DOI: 10.1016/j.jmgm.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
27
Ishikawa T, Hayakawa D, Miyamoto H, Ozawa M, Ozawa T, Ueda K. Ab initio studies on the structure of and atomic interactions in cellulose IIII crystals. Carbohydr Res 2015;417:72-7. [DOI: 10.1016/j.carres.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
28
Modeling of hydroxyapatite–peptide interaction based on fragment molecular orbital method. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
29
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015;16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
30
Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2015;16:12648-83. [PMID: 24836323 DOI: 10.1039/c4cp00099d] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
31
Akimov AV, Prezhdo OV. Large-Scale Computations in Chemistry: A Bird’s Eye View of a Vibrant Field. Chem Rev 2015;115:5797-890. [DOI: 10.1021/cr500524c] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
32
Nishimoto Y, Fedorov DG, Irle S. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. J Chem Theory Comput 2014;10:4801-12. [DOI: 10.1021/ct500489d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
33
Fedorov DG, Asada N, Nakanishi I, Kitaura K. The use of many-body expansions and geometry optimizations in fragment-based methods. Acc Chem Res 2014;47:2846-56. [PMID: 25144610 DOI: 10.1021/ar500224r] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
34
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Simulations of Raman Spectra Using the Fragment Molecular Orbital Method. J Chem Theory Comput 2014;10:3689-98. [DOI: 10.1021/ct5003829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
35
Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
36
Modeling of peptide–silica interaction based on four-body corrected fragment molecular orbital (FMO4) calculations. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. J Mol Graph Model 2013;41:31-42. [PMID: 23467020 DOI: 10.1016/j.jmgm.2013.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/30/2022]
38
Komeiji Y, Fujiwara T, Okiyama Y, Mochizuki Y. Dynamic fragmentation with static fragments (DF/SF) algorithm designed for <i>ab initio</i> fragment molecular orbital-based molecular dynamics (FMO-MD) simulations of polypeptides. CHEM-BIO INFORMATICS JOURNAL 2013. [DOI: 10.1273/cbij.13.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
39
Statistical correction to effective interactions in the fragment molecular orbital method. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.11.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
40
Hua S, Li W, Li S. The Generalized Energy-Based Fragmentation Approach with an Improved Fragmentation Scheme: Benchmark Results and Illustrative Applications. Chemphyschem 2012;14:108-15. [DOI: 10.1002/cphc.201200867] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Indexed: 11/09/2022]
41
Fedorov DG, Nagata T, Kitaura K. Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 2012;14:7562-77. [DOI: 10.1039/c2cp23784a] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
42
Pruitt SR, Addicoat MA, Collins MA, Gordon MS. The fragment molecular orbital and systematic molecular fragmentation methods applied to water clusters. Phys Chem Chem Phys 2012;14:7752-64. [DOI: 10.1039/c2cp00027j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
43
Efficient Calculation of Fragment Molecular Orbital Method with Continuous Multipole Method. JOURNAL OF COMPUTER AIDED CHEMISTRY 2012. [DOI: 10.2751/jcac.13.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA