1
|
Amonov A, Scheiner S. Halogen Bonding to the π-Systems of Polycyclic Aromatics. Chemphyschem 2024; 25:e202400482. [PMID: 38923736 DOI: 10.1002/cphc.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The propensity of the π-electron system lying above a polycyclic aromatic system to engage in a halogen bond is examined by DFT calculations. Prototype Lewis acid CF3I is placed above the planes of benzene, naphthalene, anthracene, phenanthrene, naphthacene, chrysene, triphenyl, pyrene, and coronene. The I atom positions itself some 3.3-3.4 Å above the polycyclic plane, and the associated interaction energy is about 4 kcal/mol. This quantity is a little smaller for benzene, but is roughly equal for the larger polycyclics. The energy only oscillates a little as the Lewis acid slides across the face of the polycyclic, preferring regions of higher π-electron density over minima of the electrostatic potential. The binding is dominated by dispersion which contributes half of the total interaction energy.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy, Institute of Engineering Physics Samarkand State University, University blv. 15, 140104, Samarkand, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| |
Collapse
|
2
|
Scheiner S, Amonov A. Types of noncovalent bonds within complexes of thiazole with CF 4 and SiF 4. Phys Chem Chem Phys 2024; 26:6127-6137. [PMID: 38299682 DOI: 10.1039/d4cp00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The five-membered heteroaromatic thiazole molecule contains a number of electron-rich regions that could attract an electrophile, namely the N and S lone pairs that lie in the molecular plane, and π-system areas above the plane. The possibility of each of these sites engaging in a tetrel bond (TB) with CF4 and SiF4, as well as geometries that encompass a CH⋯F H-bond, was explored via DFT calculations. There are a number of minima that occur in the pairing of thiazole with CF4 that are very close in energy, but these complexes are weakly bound by less than 2 kcal mol-1 and the presence of a true TB is questionable. The inclusion of zero-point vibrational energies alters the energetic ordering, which is further modified when entropic effects are added. The preferred geometry would thus be sensitive to the temperature of an experiment. Replacement of CF4 by SiF4 leaves intact most of the configurations, and their tight energetic clustering, the ordering of which is again altered as the temperature rises. But there is one exception in that by far the most tightly bound complex involves a strong Si⋯N TB between SiF4 and the lone pair of the thiazole N, with an interaction energy of 30 kcal mol-1. Even accounting for its high deformation energy and entropic considerations, this structure remains as clearly the most stable at any temperature.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University Logan, Utah 84322-0300, USA.
| | - Akhtam Amonov
- Department of Optics and Spectroscopy, Institute of Engineering Physics Samarkand State University 140104, University blv. 15, Samarkand, Uzbekistan
| |
Collapse
|
3
|
Abstract
The properties of the bond between a N-ligand and a Lewis acid containing a σ-hole are studied by quantum chemical methods. Interactions considered include pnicogen bonds involving SbX5, PX5, and PX3, where X represents any of the halogen atoms F, Cl, Br, or I. Also studied are the tetrel bonds of PbX4 and SiX4, as well as the chalcogen bond involving TeOX4. Both NH3 and NCH are applied as two possible bases of differing potency. Some of the bonds are very strong with interaction energies easily exceeding 25 kcal/mol and with AIM bond critical point densities much higher than 0.04 au, suggesting their classification as coordinate covalent bonds. The pentavalent SbX5 and PX5 fall into this category when combined with NH3, as does TeOX4. Although the tetrel bonds involving PbX4 are only slightly weaker, they are probably better viewed as a strong noncovalent bond on the cusp of covalency. Changing the internal bonding of hypervalent SbX5 to the more conventional SbX3 weakens the interaction to a classical noncovalent pnicogen bond. Reducing the base nucleophilicity from NH3 to NCH weakens the bonds so that they are clearly noncovalent.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
4
|
Amonov A, Scheiner S. Relation between Halogen Bond Strength and IR and NMR Spectroscopic Markers. Molecules 2023; 28:7520. [PMID: 38005241 PMCID: PMC10673387 DOI: 10.3390/molecules28227520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The relationship between the strength of a halogen bond (XB) and various IR and NMR spectroscopic quantities is assessed through DFT calculations. Three different Lewis acids place a Br or I atom on a phenyl ring; each is paired with a collection of N and O bases of varying electron donor power. The weakest of the XBs display a C-X bond contraction coupled with a blue shift in the associated frequency, whereas the reverse trends occur for the stronger bonds. The best correlations with the XB interaction energy are observed with the NMR shielding of the C atom directly bonded to X and the coupling constants involving the C-X bond and the C-H/F bond that lies ortho to the X substituent, but these correlations are not accurate enough for the quantitative assessment of energy. These correlations tend to improve as the Lewis acid becomes more potent, which makes for a wider range of XB strengths.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy, Engineering Physics Institute, Samarkand State University, University blv. 15, Samarkand 140104, Uzbekistan;
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
5
|
Amonov A, Scheiner S. Heavy pnicogen atoms as electron donors in sigma-hole bonds. Phys Chem Chem Phys 2023; 25:23530-23537. [PMID: 37656119 DOI: 10.1039/d3cp03479h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
DFT calculations evaluate the strength of σ-hole bonds formed by ZH3 and ZMe3 (Z = N, P, As, Sb) acting as electron donor. Bond types considered include H-bond, halogen, chalcogen, pnicogen, and tetrel bond to perfluorinated Lewis acids FH, FBr, F2Se F3As, F4Ge, respectively, as well as their monofluorinated analogues. All of the Z atoms can engage in bonds of at least moderate strength, varying from 3 to more than 40 kcal mol-1. In most cases, N forms the strongest bonds, but the falloff from P to Sb is quite mild. However, this pattern is not characteristic of all cases, as for example in the halogen bonds, where the heavier Z atoms are comparable to, or even stronger than N. Most of the bonds are strengthened by replacing the three H atoms of ZH3 by methyl groups, better simulating the situation that would be generally encountered. Structural and NMR shielding data ought to facilitate the identification of these bonds within crystals or in solution.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy Engineering Physics Institute, Samarkand State University, University blv. 15, Samarkand 140104, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
6
|
Abstract
While a good deal of information has accumulated concerning the manner in which an intramolecular noncovalent bond can affect the relative energies of various conformers, less is known about how such bonds might affect the dynamics of interconversion between them. A series of molecules are constructed in which symmetrically equivalent conformers containing a noncovalent bond can be interconverted by a bond rotation, the energy barrier to which is computed by quantum chemical methods. The rotation of a CF3 group attached to a phenyl ring is speeded up if a Se··F chalcogen bond can be formed with a SeH or SeF group placed in an ortho position, a bond that is present in and stabilizes the rotational transition state. The analogous SnF3 group can, on the other hand, engage in a Sn··Se tetrel bond in its global minimum. The energetic cost of breakage of this bond is not fully compensated by the appearance of a Se··F chalcogen bond in the rotational transition state. Other systems were designed by placing two phenyl rings on opposite ends of an octahedrally disposed SeF4 group. A high barrier inhibits their rotation with bulky Br atoms in ortho positions, but this barrier is lowered if Br is replaced by groups that can engage in either chalcogen (SeH or SeF) or pnicogen (AsH2) bonds with the F atoms in the rotational transition state. The barrier reduction is closely related to the strength of these noncovalent bonds.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
7
|
Amonov A, Scheiner S. Competition between Binding to Various Sites of Substituted Imidazoliums. J Phys Chem A 2023. [PMID: 37490696 DOI: 10.1021/acs.jpca.3c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The imidazolium cation has a number of different sites that can interact with a nucleophile. Adding a halogen atom (X) or a chalcogen (YH) group introduces the possibility of an NX···nuc halogen or NY···nuc chalcogen bond, which competes against the various H-bonds (NH and CH donors) as well as the lone pair···π interaction wherein the nucleophile lies above the plane of the cation. Substituted imidazoliums are paired with the NH3 base, and the various different complexes are evaluated by density functional theory (DFT) calculations. The strength of XB and YB increases quickly along with the size and polarizability of the X/Y atom, and this sort of bond is the strongest for the heavier Br, I, Se, and Te atoms, followed by the NH···N H-bond, but this order reverses for Cl and S. The various CH···N H-bonds are comparable to one another and to the lone pair···π bond, all with interaction energies of 10-13 kcal/mol, values which show very little dependence upon the substituent placed on the imidazolium.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy, Engineering Physics Institute, Samarkand State University, University blv. 15, Samarkand 140104, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
8
|
Scheiner S. Properties and Stabilities of Cyclic and Open Chains of Halogen Bonds. J Phys Chem A 2022; 126:6443-6455. [PMID: 36084144 DOI: 10.1021/acs.jpca.2c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Open and cyclic chains from two to eight units of ICl and IF are constructed and examined by density functional theory (DFT) calculations. These chains contain either I···I or I···X halogen bonds (XBs) where X refers to Cl or F. The closed rings are more stable than the open chains due to the presence of an additional XB and enhanced cooperativity. This pattern is true even for most trimers where there is sizable geometric distortion in the rings. I···F rings are generally more stable than the corresponding I···I cycles as the I···F bond is stronger than I···I even in the simple dimer. However, I···I rings are comparable in energy to I···Cl. It is possible to construct I···I rings of at least as large as eight units, which are held together exclusively by XBs. On the other hand, the maximum possible size of I···X rings is 6. Red shifts are observed in the I-X stretching frequency bands, which magnify as the chain, both cyclic and open, grows longer. The NMR chemical shielding of the I atoms increases for I···I chains but diminishes when I···Cl bonds are present.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
9
|
Abstract
The list of σ-hole bonds is long and growing, encompassing both H-bonds and its closely related halogen, chalcogen, etc., sisters. These bonds rely on the asymmetric distribution of electron density, whose depletion along the extension of a covalent bond leaves a positive region of electrostatic potential from which these bonds derive their name. However, the density distributions of other molecules contain analogous positive regions that lie out of the molecular plane known as π-holes, which are likewise capable of engaging in noncovalent bonds. Quantum calculations are applied to study such π-hole bonds that involve linear molecules, whose positive region is a circular belt surrounding the molecule, rather than the more restricted area of a σ-hole. These bonds are examined in terms of their most fundamental elements arising from the spatial dispositions of their relevant molecular orbitals and the π-holes in both the total electron density and the electrostatic potential to which they lead. Systems examined comprise tetrel, chalcogen, aerogen, and triel bonds, as well as those involving group II elements, with atoms drawn from various rows of the Periodic Table. The π-hole bonds established by linear molecules tend to be weaker than those of comparable planar systems.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
10
|
Scheiner S. Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage. J Phys Chem A 2021; 125:6514-6528. [PMID: 34310147 DOI: 10.1021/acs.jpca.1c05431] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accompanying the rapidly growing list of σ-hole bonds has come the acknowledgment of parallel sorts of noncovalent bonds which owe their stability in large part to a deficiency of electron density in the area above the molecular plane, known as a π-hole. The origins of these π-holes are probed for a wide series of molecules, comprising halogen, chalcogen, pnicogen, tetrel, aerogen, and spodium bonds. Much like in the case of their σ-hole counterparts, formation of the internal covalent π-bond in the Lewis acid molecule pulls density toward the bond midpoint and away from its extremities. This depletion of density above the central atom is amplified by an electron-withdrawing substituent. At the same time, the amplitude of the π*-orbital is enhanced in the region of the density-depleted π-hole, facilitating a better overlap with the nucleophile's lone pair orbital and a stabilizing n → π* charge transfer. The presence of lone pairs on the central atom acts to attenuate the π-hole and shift its position somewhat, resulting in an overall weakening of the π-hole bond. There is a tendency for π-hole bonds to include a higher fraction of induction energy than σ-bonds with proportionately smaller electrostatic and dispersion components, but this distinction is less a product of the σ- or π-character and more a function of the overall bond strength.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
11
|
Exploring pentavalent phosphorous bonding in phosphoryl chloride-halocarbon heterodimers at low temperatures and ab initio Computations. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Sruthi PK, Chandra S, Ramanathan N, Sundararajan K. Unusual blue to red shifting of C-H stretching frequency of CHCl 3 in co-operatively P⋯Cl phosphorus bonded POCl 3-CHCl 3 heterodimers at low temperature inert matrixes. J Chem Phys 2020; 153:174305. [PMID: 33167652 DOI: 10.1063/5.0031162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterodimers of POCl3-CHCl3 were generated in Ne, Ar, and Kr matrixes at low temperatures and were studied using infrared spectroscopy. The remarkable role of co-operative pentavalent phosphorus bonding in the stabilization of the structure dictated by hydrogen bonding is deciphered. The complete potential energy surface of the heterodimer was scanned by ab initio and density functional theory computational methodologies. The hydrogen bond between the phosphoryl oxygen of POCl3 and C-H group of CHCl3 in heterodimers induces a blue-shift in the C-H stretching frequency within the Ne matrix. However, in Ar and Kr matrixes, the C-H stretching frequency is exceptionally red-shifted in stark contrast with Ne. The plausibility of the Fermi resonance by the C-H stretching vibrational mode with higher order modes in the heterodimers has been eliminated as a possible cause within Ar and Kr matrixes by isotopic substitution (CDCl3) experiments. To evaluate the influence of matrixes as a possible cause of red-shift, self-consistent Iso-density polarized continuum reaction field model was applied. This conveyed the important role of the dielectric matrixes in inducing the fascinating vibrational shift from blue (Ne) to red (Ar and Kr) due to the matrix specific transmutation of the POCl3-CHCl3 structure. The heterodimer produced in the Ne matrix possesses a cyclic structure stabilized by hydrogen bonding with co-operative phosphorus bonding, while in Ar and Kr the generation of an acyclic open structure stabilized solely by hydrogen bonding is promoted. Compelling justification regarding the dispersion force based influence of matrix environments in addition to the well-known dielectric influence is presented.
Collapse
Affiliation(s)
- P K Sruthi
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| |
Collapse
|
13
|
Joshi PR, Sankaran K. P⋯N type pnicogen bonding in phosphorus trichloride–pyridine adduct: A matrix isolation infrared, DFT and ab initio study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Abstract
A central pnicogen Z atom (Z = Sb, As) is covalently attached to the O atom of three -O(CH2)nX chains where X represents either an aldehyde or amine group. The chain can fold around so that the basic X group can engage in a noncovalent pnicogen bond with the central Z. The formation of up to three pnicogen bonds is energetically favored. The amine appears to engage in stronger pnicogen bonds than does the aldehyde, and bonds to Sb are favored over As, but there is little dependence on the length of the chain. The formation of each successive pnicogen bond reduces the magnitude of the σ-holes surrounding the Z atom, which tends to weaken the attraction for the basic end of the chain.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
15
|
Previtali V, Sánchez-Sanz G, Trujillo C. Theoretical Investigation of Cyano-Chalcogen Dimers and Their Importance in Molecular Recognition. Chemphyschem 2019; 20:3186-3194. [PMID: 31608563 DOI: 10.1002/cphc.201900899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Indexed: 11/10/2022]
Abstract
In this manuscript the different noncovalent interactions established between (HYCN)2 dimers (Y=S, Se and Te) have been studied at the MP2 and CCSD(T) level of theory. Several homodimers have been taken into account, highlighting the capacity of these compounds to act both as electron donor and acceptor. The main properties studied were geometries, binding energy (Eb ), and molecular electrostatic potential (MEP). Given the wide application of chalcogen bonds, and more specifically of cyano-chalcogen moieties in molecular recognition, natural bond orbital (NBO), "atoms-in-molecules" (AIM), and electron density shift (EDS) analysis were also used to analyse the different noncovalent interactions upon complexation. The presence of hydrogen, chalcogen and dipole-dipole interactions was confirmed and their implications on molecular recognition were analysed.
Collapse
Affiliation(s)
- Viola Previtali
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens Lyngby, DK, Denmark
| | - Goar Sánchez-Sanz
- Irish Centre of High-End Computing, Grand Canal Quay, Dublin 2, Ireland & School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cristina Trujillo
- School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublini, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
16
|
Sruthi PK, Sarkar S, Ramanathan N, Sundararajan K. Elusive hypervalent phosphorus⋯π interactions: evidence for paradigm transformation from hydrogen to phosphorus bonding at low temperatures. Phys Chem Chem Phys 2019; 21:12250-12264. [DOI: 10.1039/c9cp01925a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A paradigm transformation from hydrogen to phosphorus bonding is found to depend on the proton affinity of the interacting π-systems.
Collapse
Affiliation(s)
- P. K. Sruthi
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - Shubhra Sarkar
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - N. Ramanathan
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| | - K. Sundararajan
- Materials Chemistry and Metal Fuel Cycle Group
- Homi Bhabha National Institute
- Indira Gandhi Centre for Atomic Research
- Kalpakkam-603 102
- India
| |
Collapse
|
17
|
Gholivand K, Tizhoush SK, Kozakiewicz A, Eskandari K, Farshadfar K. Copper( i) complexes of functionalized sulfur-containing ligands: structural and theoretical insights into chalcogen bonding. CrystEngComm 2019. [DOI: 10.1039/c8ce02006j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new copper(i) thiocyanate complexes were studied using geometrical parameters and the lump–hole approach for justification of the strength and nature of chalcogen bonding.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry
- Faculty of Science
- Tarbiat Modares University
- Tehran
- Iran
| | - Samaneh K. Tizhoush
- Department of Chemistry
- Faculty of Science
- Tarbiat Modares University
- Tehran
- Iran
| | - Anna Kozakiewicz
- Faculty of Chemistry
- Nicolaus Copernicus University in Toruń
- 87-100 Toruń
- Poland
| | - Kiamars Eskandari
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Kaveh Farshadfar
- Department of Chemistry
- Faculty of Science
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
18
|
Zabardasti A, Farhadi S, Mahdizadeh A. Cooperative effect between pnicogen bond and hydrogen bond interactions in typical X…AsH2F…HF complexes (X = NR3, PR3 and OR2; R = CH3, H, F). PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1513514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University, Khorramabad, Iran
| | | |
Collapse
|
19
|
Scheiner S. Ability of IR and NMR Spectral Data to Distinguish between a Tetrel Bond and a Hydrogen Bond. J Phys Chem A 2018; 122:7852-7862. [DOI: 10.1021/acs.jpca.8b07631] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
20
|
Dong W, Li Q, Scheiner S. Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors. Molecules 2018; 23:E1681. [PMID: 29996528 PMCID: PMC6100607 DOI: 10.3390/molecules23071681] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
Ab initio calculations are employed to assess the relative strengths of various noncovalent bonds. Tetrel, pnicogen, chalcogen, and halogen atoms are represented by third-row atoms Ge, As, Se, and Br, respectively. Each atom was placed in a series of molecular bonding situations, beginning with all H atoms, then progressing to methyl substitutions, and F substituents placed in various locations around the central atom. Each Lewis acid was allowed to engage in a complex with NH₃ as a common nucleophile, and the strength and other aspects of the dimer were assessed. In the context of fully hydrogenated acids, the strengths of the various bonds varied in the pattern of chalcogen > halogen > pnicogen ≈ tetrel. Methyl substitution weakened all bonds, but not in a uniform manner, resulting in a greatly weakened halogen bond. Fluorosubstitution strengthened the interactions, increasing its effect as the number of F atoms rises. The effect was strongest when the F atom lay directly opposite the base, resulting in a halogen > chalcogen > pnicogen > tetrel order of bond strength. Replacing third-row atoms by their second-row counterparts weakened the bonds, but not uniformly. Tetrel bonds were weakest for the fully hydrogenated acids and surpassed pnicogen bonds when F had been added to the acid.
Collapse
Affiliation(s)
- Wenbo Dong
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
21
|
Esrafili MD, Sadr-Mousavi A. A computational study on the strength and nature of bifurcated aerogen bonds. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.02.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Sruthi PK, Ramanathan N, Sarkar S, Sundararajan K. Pentavalent phosphorus as a unique phosphorus donor in POCl3 homodimer and POCl3–H2O heterodimer: matrix isolation infrared spectroscopic and computational studies. Phys Chem Chem Phys 2018; 20:22058-22075. [DOI: 10.1039/c8cp03937b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phosphorus, an important element among the pnicogen group, opens up avenues for experimental and computational explorations of its interaction in a variety of compounds.
Collapse
Affiliation(s)
- P. K. Sruthi
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| | - N. Ramanathan
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| | - Shubhra Sarkar
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| | - K. Sundararajan
- Materials Chemistry & Metal Fuel Cycle Group
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research
- Kalpakkam 603 102
- India
| |
Collapse
|
23
|
Pnicogen bond interaction between PF2Y (Y = –C☰N, –N☰C) with NH3, CH3OH, H2O, and HF molecules. Struct Chem 2017. [DOI: 10.1007/s11224-017-0968-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Esrafili MD, Sadr-Mousavi A. Modulating of the pnicogen-bonding by a H⋯π interaction: An ab initio study. J Mol Graph Model 2017; 75:165-173. [PMID: 28595167 DOI: 10.1016/j.jmgm.2017.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/29/2022]
Abstract
An ab initio study of the cooperativity in XH2P⋯NCH⋯Z and XH2P⋯CNH⋯Z complexes (X=F, Cl, Br, CN, NC; Z=C2H2,C6H6) connected by pnicogen-bonding and H⋯π interactions is carried out by means of MP2 computational method. A detailed analysis of the structures, interaction energies and bonding properties is performed on these systems. For each set of the complexes considered, a favorable cooperativity is observed, especially in X=F and CN complexes. However, for a given X or Z, the amount of cooperativity effects in XH2P⋯CNH⋯Z complexes are more important than XH2P⋯NCH⋯Z counterparts. Besides, the influence of a H⋯π interaction on a P⋯N (C) bond is more pronounced than that of a P⋯N (C) bond on a H⋯π bond. The quantum theory of atoms in molecules shows that ternary complexes have increased electron densities at their bond critical points relative to the corresponding binary systems. The results also indicate that the strength of the P⋯N(C) and H⋯π interactions increases in the presence of the solvent.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, P.O. Box: 5513864596, Maragheh, Iran.
| | - Asma Sadr-Mousavi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
25
|
Esrafili MD, Mohammadian-Sabet F, Vessally E. An ab initio study on the nature of σ-hole interactions in pnicogen-bonded complexes with carbene as an electron donor. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1185547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Department of Chemistry, Laboratory of Theoretical Chemistry, University of Maragheh, Maragheh, Iran
| | - Fariba Mohammadian-Sabet
- Department of Chemistry, Laboratory of Theoretical Chemistry, University of Maragheh, Maragheh, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
26
|
|
27
|
Tang Q, Li Q. Enhancing effect of metal coordination interaction on pnicogen bonding. J Mol Model 2016; 22:64. [DOI: 10.1007/s00894-016-2929-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
|
28
|
Wei Y, Li Q, Li W, Cheng J, McDowell SAC. Influence of the protonation of pyridine nitrogen on pnicogen bonding: competition and cooperativity. Phys Chem Chem Phys 2016; 18:11348-56. [PMID: 27055488 DOI: 10.1039/c6cp00551a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio MP2/aug-cc-pVTZ calculations were performed to investigate the pnicogen-bonded complexes of PyZX2 (Py = pyridine, Z = P and As, X = H and F) and their protonated analogues.
Collapse
Affiliation(s)
- Yuanxin Wei
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Sean A. C. McDowell
- Department of Biological and Chemical Sciences
- The University of the West Indies
- Cave Hill Campus
- Barbados
| |
Collapse
|
29
|
Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J. Modulating intramolecular P⋯N pnictogen interactions. Phys Chem Chem Phys 2016; 18:9148-60. [DOI: 10.1039/c6cp00227g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strength of P⋯N intramolecular pnictogen interactions can be modulated, enhanced or diminished upon substitution of different electron withdrawing or donor groups.
Collapse
Affiliation(s)
| | - Cristina Trujillo
- School of Chemistry
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Ibon Alkorta
- Instituto de Química Médica
- CSIC
- E-28006 Madrid
- Spain
| | - José Elguero
- Instituto de Química Médica
- CSIC
- E-28006 Madrid
- Spain
| |
Collapse
|
30
|
Ramanathan N, Sankaran K, Sundararajan K. PCl3–C6H6 heterodimers: evidence for P⋯π phosphorus bonding at low temperatures. Phys Chem Chem Phys 2016; 18:19350-8. [DOI: 10.1039/c6cp03825e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A phosphorous trichloride (PCl3)–benzene (C6H6) heterodimer was generated in a low temperature N2 matrix and was characterized using infrared spectroscopy.
Collapse
Affiliation(s)
- N. Ramanathan
- Chemistry Group
- Indira Gandhi Center for Atomic Research
- Kalpakkam – 603102
- India
| | - K. Sankaran
- Chemistry Group
- Indira Gandhi Center for Atomic Research
- Kalpakkam – 603102
- India
| | - K. Sundararajan
- Chemistry Group
- Indira Gandhi Center for Atomic Research
- Kalpakkam – 603102
- India
| |
Collapse
|
31
|
Trujillo C, Sánchez-Sanz G. A Study of π-π Stacking Interactions and Aromaticity in Polycyclic Aromatic Hydrocarbon/Nucleobase Complexes. Chemphyschem 2015; 17:395-405. [PMID: 26663678 DOI: 10.1002/cphc.201501019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/05/2015] [Indexed: 11/10/2022]
Abstract
We analysed the interactions and aromaticity electron-density delocalisation observed in π-π complexes between the phenalenyl radical and acenaphthylene, and the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine and uracil). Interaction energies are obtained at the M06-2X/6-311++G(2df,p) computational level for gas phase and PCM-water conditions. For both the phenalenyl radical and acenaphthylene, the complexes formed with guanine are the most stable ones. Atoms in molecules and natural bond orbital results reveal weak π-π interactions between both interacting moieties, characterized by bond critical points between C⋅⋅⋅C and C⋅⋅⋅N atoms. Nucleus independent chemical shifts (NICS) indicate the retention of the aromatic character of the monomers in the outer region of the complex. The fluctuation indexes reveal a loss of electron delocalisation upon complexation for all cases except guanine complexes. Nevertheless, the interface region shows large negative NICS values, which is not associated with an increase of the aromaticity or electron-density delocalisation, but with magnetic couplings of both molecules, leading to an unrealistic description of the aromatic behaviour in that region.
Collapse
Affiliation(s)
- Cristina Trujillo
- School of Chemistry, Trinity Biomedical Sciences, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Goar Sánchez-Sanz
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Gas phase reaction of phosphorus trichloride and methanol: Matrix isolation infrared and DFT studies. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Liu C, Zeng Y, Li X, Meng L, Zhang X. A comprehensive analysis of P···π pnicogen bonds: substitution effects and comparison with Br···π halogen bonds. J Mol Model 2015; 21:143. [DOI: 10.1007/s00894-015-2697-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
|
34
|
Joshi PR, Ramanathan N, Sundararajan K, Sankaran K. Evidence for Phosphorus Bonding in Phosphorus Trichloride–Methanol Adduct: A Matrix Isolation Infrared and ab Initio Computational Study. J Phys Chem A 2015; 119:3440-51. [DOI: 10.1021/jp511156d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prasad Ramesh Joshi
- Chemistry
Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| | - N. Ramanathan
- Chemistry
Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| | - K. Sundararajan
- Chemistry
Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| | - K. Sankaran
- Chemistry
Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| |
Collapse
|
35
|
Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J. Theoretical study of cyanophosphines: Pnicogen vs. dipole–dipole interactions. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Liu F, Du L, Gao J, Wang L, Song B, Liu C. Application of polarizable ellipsoidal force field model to pnicogen bonds. J Comput Chem 2015; 36:441-8. [DOI: 10.1002/jcc.23819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/06/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Fang Liu
- Key Lab of Colloid and Interface Chemistry; Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Likai Du
- Laboratory of Bio-based Materials, Qingdao Institute of Bio-energy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266101 Shandong People's Republic of China
| | - Jun Gao
- Key Lab of Colloid and Interface Chemistry; Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Lili Wang
- Key Lab of Colloid and Interface Chemistry; Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Bo Song
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Laboratory of Physical Biology; Shanghai 201800 People's Republic of China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry; Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| |
Collapse
|
37
|
Xu HY, Wang W, Zou JW, Xu XL. Theoretical calculations of π-type pnicogen bonds in the triad intermolecular complexes. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1142/s0219633614500680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pnicogen bonding interactions of PCl3and π-electron systems (acetylene, ethylene, benzene) were calculated by using MP2/aug-cc-pVDZ method and the effect of hydrogen bond on pnicogen bond systems were investigated. It has been indicated that the hydrogen bonding and the pnicogen bonding interactions have influence on each other and the positively cooperative effect has been detected. The interaction energies of pnicogen bonded supramolecular system were also calculated by using DFT method (M06-2X) and some simple comparisons with those by using MP2 method were made. It has been disclosed from natural bond orbitals (NBO) analysis that more the amount of charge transfer of pnicogen bonding interaction, the greater the stability of the corresponding complex. Through AIM topological analysis, it has been revealed that the electron density of pnicogen bond BCP point is positively correlated with the stability of trimeric complex. Electron localization function (ELF) was also adopted to analyze the nature of pnicogen bonding interactions. Furthermore, density difference function (DDF) method was adopted to analyze the variation of electron density of pnicogen bond system because of hydrogen bond.
Collapse
Affiliation(s)
- Hui-Ying Xu
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang Province, P. R. China
| | - Wei Wang
- Zhejiang Surveying Institute of Estuary and Coast, Hangzhou, 310008, Zhejiang Province, P. R. China
| | - Jian-Wei Zou
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang Province, P. R. China
- Ningbo Institute of Technology, Zhejiang University, Ningbo, 315200, Zhejiang Province, P. R. China
| | - Xiao-Lu Xu
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang Province, P. R. China
| |
Collapse
|
38
|
Alkorta I, Elguero J, Grabowski SJ. Pnicogen and hydrogen bonds: complexes between PH3X+ and PH2X systems. Phys Chem Chem Phys 2015; 17:3261-72. [DOI: 10.1039/c4cp04840g] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge-assisted complexes between PH3X+ and PH2X show three potential minima structures, the pnicogen bonded (I) one being the most stable.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC)
- 28006 Madrid
- Spain
| | - José Elguero
- Instituto de Química Médica (CSIC)
- 28006 Madrid
- Spain
| | - Sławomir J. Grabowski
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU, and Donostia International Physics Center (DIPC)
- 20080 Donostia
- Spain
- IKERBASQUE
| |
Collapse
|
39
|
Del Bene JE, Alkorta I, Elguero J. Substituent Effects on the Properties of Pnicogen-Bonded Complexes H2XP:PYH2, for X, Y = F, Cl, OH, NC, CCH, CH3, CN, and H. J Phys Chem A 2014; 119:224-33. [DOI: 10.1021/jp5117504] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janet E. Del Bene
- Department
of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
40
|
Setiawan D, Kraka E, Cremer D. Strength of the pnicogen bond in complexes involving group Va elements N, P, and As. J Phys Chem A 2014; 119:1642-56. [PMID: 25325889 DOI: 10.1021/jp508270g] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A set of 36 pnicogen homo- and heterodimers, R3E···ER3 and R3E···E′R′3, involving differently substituted group Va elements E = N, P, and As has been investigated at the ωB97X-D/aug-cc-pVTZ level of theory to determine the strength of the pnicogen bond with the help of the local E···E′ stretching force constants k(a). The latter are directly related to the amount of charge transferred from an E donor lone pair orbital to an E′ acceptor σ* orbital, in the sense of a through-space anomeric effect. This leads to a buildup of electron density in the intermonomer region and a distinct pnicogen bond strength order quantitatively assessed via k(a). However, the complex binding energy ΔE depends only partly on the pnicogen bond strength as H,E-attractions, H-bonding, dipole-dipole, or multipole-multipole attractions also contribute to the stability of pnicogen bonded dimers. A variation from through-space anomeric to second order hyperonjugative, and skewed π,π interactions is observed. Charge transfer into a π* substituent orbital of the acceptor increases the absolute value of ΔE by electrostatic effects but has a smaller impact on the pnicogen bond strength. A set of 10 dimers obtains its stability from covalent pnicogen bonding whereas all other dimers are stabilized by electrostatic interactions. The latter are quantified by the magnitude of the local intermonomer bending force constants XE···E′. Analysis of the frontier orbitals of monomer and dimer in connection with the investigation of electron difference densities, and atomic charges lead to a simple rationalization of the various facets of pnicogen bonding. The temperature at which a given dimer is observable under experimental conditions is provided.
Collapse
Affiliation(s)
- Dani Setiawan
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | | | | |
Collapse
|
41
|
Azofra LM, Alkorta I, Scheiner S. Noncovalent interactions in dimers and trimers of SO3 and CO. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1586-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Del Bene JE, Alkorta I, Elguero J. Pnicogen-Bonded Complexes HnF5–nP:N-Base, for n = 0–5. J Phys Chem A 2014; 118:10144-54. [DOI: 10.1021/jp509353a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Janet E. Del Bene
- Department
of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Ibon Alkorta
- Instituto de Química
Médica (IQM-CSIC), Juan de la
Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto de Química
Médica (IQM-CSIC), Juan de la
Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
43
|
Azofra LM, Alkorta I, Scheiner S. An exploration of the ozone dimer potential energy surface. J Chem Phys 2014; 140:244311. [DOI: 10.1063/1.4884962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Luis Miguel Azofra
- Instituto de Química Médica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
44
|
Azofra LM, Scheiner S. Substituent Effects in the Noncovalent Bonding of SO2 to Molecules Containing a Carbonyl Group. The Dominating Role of the Chalcogen Bond. J Phys Chem A 2014; 118:3835-3845. [DOI: 10.1021/jp501932g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Luis Miguel Azofra
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
- Department
of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department
of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
45
|
Chen Y, Yao L, Lin X. Theoretical study of (FH2X)n·Y (X=P and As, n=1–4, Y=F−, Cl−, Br−, I−, NO3− and SO42−): The possibility of anion recognition based on pnicogen bonding. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Affiliation(s)
- Janet E. Del Bene
- Department
of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Ibon Alkorta
- Instituto de Química Médica (IQM−CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (IQM−CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
47
|
Adhikari U, Scheiner S. Effects of Charge and Substituent on the S···N Chalcogen Bond. J Phys Chem A 2014; 118:3183-92. [DOI: 10.1021/jp501449v] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Upendra Adhikari
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
48
|
Del Bene JE, Alkorta I, Elguero J. σ–σ and σ–π pnicogen bonds in complexes H2XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH3, and H. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1464-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE. Pnicogen bonds between X═PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 2014; 118:1527-37. [PMID: 24547683 DOI: 10.1021/jp411623h] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the pnicogen bonded complexes formed between the acids O═PH3, S═PH3, HN═PH3, and H2C═PH3 and the bases NH3, NCH, N2, PH3, and PCH. All nitrogen and phosphorus bases form complexes in which the bases are lone pair electron donors. The binding energies of complexes involving the stronger bases NH3, NCH, and PH3 differentiate among the acids, but the binding energies of complexes with the weaker bases do not. These complexes are stabilized by charge transfer from the lone pair orbital of N or P to the σ*P═A orbital of X═PH3, where A is the atom of X directly bonded to P. PCH also forms complexes with the X═PH3 acids as a π electron donor to the σ*P═A orbital. The binding energies and the charge-transfer energies of the π complexes are greater than those of the complexes in which PCH is a lone pair donor. Whether the positive charge on P increases, decreases, or remains the same upon complex formation, the chemical shieldings of (31)P decrease in the complexes relative to the corresponding monomers. (1p)J(P-N) and (1p)J(P-P) values correlate best with the corresponding P-N and P-P distances as a function of the nature of the base. (1)J(P-A) values do not correlate with P-A distances. Rather, the absolute values of (1)J(P-O), (1)J(P-S), and (1)J(P-N) decrease upon complexation. Decreasing (1)J(P-A) values correlate linearly with increasing complex binding energies. In contrast, (1)J(P-C) values increase upon complexation and correlate linearly with increasing binding energies.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC) , Juan de la Cierva, 328006 Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Azofra LM, Scheiner S. Complexation ofnSO2molecules (n= 1, 2, 3) with formaldehyde and thioformaldehyde. J Chem Phys 2014; 140:034302. [DOI: 10.1063/1.4861432] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|