• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4665853)   Today's Articles (2563)   Subscriber (51690)
For: Nagata T, Fedorov DG, Kitaura K. Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Number Cited by Other Article(s)
1
Herbert JM. Fantasy versus reality in fragment-based quantum chemistry. J Chem Phys 2019;151:170901. [PMID: 31703524 DOI: 10.1063/1.5126216] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
2
Lee SJR, Ding F, Manby FR, Miller TF. Analytical gradients for projection-based wavefunction-in-DFT embedding. J Chem Phys 2019. [DOI: 10.1063/1.5109882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
3
Liu J, Rana B, Liu KY, Herbert JM. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics. J Phys Chem Lett 2019;10:3877-3886. [PMID: 31251619 DOI: 10.1021/acs.jpclett.9b01214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
4
Nakata H, Fedorov DG. Analytic second derivatives for the efficient electrostatic embedding in the fragment molecular orbital method. J Comput Chem 2018;39:2039-2050. [DOI: 10.1002/jcc.25360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 01/09/2023]
5
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in GAMESS , and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
6
Pruitt SR, Steinmann C. Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method. J Phys Chem A 2017;121:1797-1807. [DOI: 10.1021/acs.jpca.6b12830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
7
Pruitt SR, Nakata H, Nagata T, Mayes M, Alexeev Y, Fletcher G, Fedorov DG, Kitaura K, Gordon MS. Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method. J Chem Theory Comput 2016;12:1423-35. [DOI: 10.1021/acs.jctc.5b01208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
8
Nishimoto Y, Nakata H, Fedorov DG, Irle S. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. J Phys Chem Lett 2015;6:5034-9. [PMID: 26623658 DOI: 10.1021/acs.jpclett.5b02490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
9
Nakata H, Fedorov DG, Nagata T, Kitaura K, Nakamura S. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method. J Chem Theory Comput 2015;11:3053-64. [DOI: 10.1021/acs.jctc.5b00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015;16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
11
Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method. J Chem Phys 2015;142:124101. [DOI: 10.1063/1.4915068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Brorsen KR, Zahariev F, Nakata H, Fedorov DG, Gordon MS. Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method. J Chem Theory Comput 2014;10:5297-307. [DOI: 10.1021/ct500808p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Nakata H, Schmidt MW, Fedorov DG, Kitaura K, Nakamura S, Gordon MS. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method. J Phys Chem A 2014;118:9762-71. [DOI: 10.1021/jp507726m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
14
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Simulations of Raman Spectra Using the Fragment Molecular Orbital Method. J Chem Theory Comput 2014;10:3689-98. [DOI: 10.1021/ct5003829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1477-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
17
Friedrich J, Yu H, Leverentz HR, Bai P, Siepmann JI, Truhlar DG. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations. J Phys Chem Lett 2014;5:666-670. [PMID: 26270834 DOI: 10.1021/jz500079e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
18
Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Analytic second derivatives of the energy in the fragment molecular orbital method. J Chem Phys 2013;138:164103. [DOI: 10.1063/1.4800990] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Song GL, Li ZH, Fan KN. Extended Energy Divide-and-Conquer Method Based on Charge Conservation. J Chem Theory Comput 2013;9:1992-9. [DOI: 10.1021/ct300850q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Brorsen KR, Minezawa N, Xu F, Windus TL, Gordon MS. Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient. J Chem Theory Comput 2012;8:5008-12. [DOI: 10.1021/ct3007869] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA