1
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Lee SJR, Ding F, Manby FR, Miller TF. Analytical gradients for projection-based wavefunction-in-DFT embedding. J Chem Phys 2019. [DOI: 10.1063/1.5109882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sebastian J. R. Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Feizhi Ding
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Frederick R. Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
3
|
Liu J, Rana B, Liu KY, Herbert JM. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics. J Phys Chem Lett 2019; 10:3877-3886. [PMID: 31251619 DOI: 10.1021/acs.jpclett.9b01214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The many-body expansion (MBE) and its extension to overlapping fragments, the generalized (G)MBE, constitute the theoretical basis for most fragment-based approaches for large-scale quantum chemistry. We reformulate the GMBE for use with embedding charges determined self-consistently from the fragment wave functions, in a manner that preserves the variational nature of the underlying self-consistent field method. As a result, the analytic gradient retains the simple "sum of fragment gradients" form that is often assumed in practice, sometimes incorrectly. This obviates (without approximation) the need to solve coupled-perturbed equations, and we demonstrate stable, fragment-based ab initio molecular dynamics simulations using this technique. Energy conservation fails when charge-response contributions to the Fock matrix are neglected, even while geometry optimizations and vibrational frequency calculations may yet be accurate. Stable simulations can be recovered by means of straightforward modifications introduced here, providing a general paradigm for fragment-based ab initio molecular dynamics.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Kuan-Yu Liu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
4
|
Nakata H, Fedorov DG. Analytic second derivatives for the efficient electrostatic embedding in the fragment molecular orbital method. J Comput Chem 2018; 39:2039-2050. [DOI: 10.1002/jcc.25360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Hiroya Nakata
- Department of Fundamental Technology Research; Research and Development Center Kagoshima, Kyocera, 1-4 Kokubu Yamashita-cho; Kirishima-shi Kagoshima, 899-4312 Japan
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono; Tsukuba Ibaraki, 305-8568 Japan
| |
Collapse
|
5
|
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in
GAMESS
, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD‐FMat)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|
6
|
Pruitt SR, Steinmann C. Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method. J Phys Chem A 2017; 121:1797-1807. [DOI: 10.1021/acs.jpca.6b12830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Spencer R. Pruitt
- Academic & Research Computing, Worcester Polytechnic Institute, Worcester, Massachusetts 01602, United States
| | - Casper Steinmann
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
7
|
Pruitt SR, Nakata H, Nagata T, Mayes M, Alexeev Y, Fletcher G, Fedorov DG, Kitaura K, Gordon MS. Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method. J Chem Theory Comput 2016; 12:1423-35. [DOI: 10.1021/acs.jctc.5b01208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Spencer R. Pruitt
- Argonne
Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass
Avenue, Lemont, Illinois 60439, United States
| | - Hiroya Nakata
- Department of Fundamental Technology Research, R&D Center Kagoshima, Kyocera Corporation, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan
| | - Takeshi Nagata
- Nanosystem Research
Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umenzono, Tsukuba, Ibaraki 305-8568, Japan
| | - Maricris Mayes
- Department
of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts 02747-2300, United States
| | - Yuri Alexeev
- Argonne
Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass
Avenue, Lemont, Illinois 60439, United States
| | - Graham Fletcher
- Argonne
Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass
Avenue, Lemont, Illinois 60439, United States
| | - Dmitri G. Fedorov
- Nanosystem Research
Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umenzono, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazuo Kitaura
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Mark S. Gordon
- Department
of Chemistry and Ames Laboratory, Iowa State University, 201 Spedding
Hall, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Nishimoto Y, Nakata H, Fedorov DG, Irle S. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. J Phys Chem Lett 2015; 6:5034-9. [PMID: 26623658 DOI: 10.1021/acs.jpclett.5b02490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The fully analytic gradient is developed for density-functional tight-binding (DFTB) combined with the fragment molecular orbital (FMO) method (FMO-DFTB). The response terms arising from the coupling of the electronic state to the embedding potential are derived, and the gradient accuracy is demonstrated on water clusters and a polypeptide. The radial distribution functions (RDFs) obtained with FMO-DFTB are found to be similar to those from conventional DFTB, while the computational cost is greatly reduced; for 256 water molecules one molecular dynamics (MD) step takes 73.26 and 0.68 s with full DFTB and FMO-DFTB, respectively, showing a speed-up factor of 108. FMO-DFTB/MD is applied to 100 ps MD simulations of liquid hydrogen halides and is found to reproduce experimental RDFs reasonably well.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Department of Chemistry, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Hiroya Nakata
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midoriku, Yokohama 226-8501, Japan
- RIKEN, Research Cluster for Innovation , Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Stephan Irle
- Department of Chemistry, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Nakata H, Fedorov DG, Nagata T, Kitaura K, Nakamura S. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method. J Chem Theory Comput 2015; 11:3053-64. [DOI: 10.1021/acs.jctc.5b00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroya Nakata
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Research
Cluster for Innovation, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Dmitri G. Fedorov
- Nanosystem
Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Takeshi Nagata
- Nanosystem
Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kazuo Kitaura
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinichiro Nakamura
- Research
Cluster for Innovation, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015; 16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.
Collapse
Affiliation(s)
- Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
11
|
Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method. J Chem Phys 2015; 142:124101. [DOI: 10.1063/1.4915068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Brorsen KR, Zahariev F, Nakata H, Fedorov DG, Gordon MS. Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method. J Chem Theory Comput 2014; 10:5297-307. [DOI: 10.1021/ct500808p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kurt R. Brorsen
- Ames
Laboratory, U.S. Department of Energy (US-DOE), Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Federico Zahariev
- Ames
Laboratory, U.S. Department of Energy (US-DOE), Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Hiroya Nakata
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Kanagawa, Yokohama 226-8501, Japan
- Nakamura
Laboratory, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Japan Society
for the Promotion of Science, Kojimachi
Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Dmitri G. Fedorov
- NRI, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Mark S. Gordon
- Ames
Laboratory, U.S. Department of Energy (US-DOE), Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
13
|
Nakata H, Schmidt MW, Fedorov DG, Kitaura K, Nakamura S, Gordon MS. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method. J Phys Chem A 2014; 118:9762-71. [DOI: 10.1021/jp507726m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hiroya Nakata
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Research Cluster
for Innovation, Nakamura Lab, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kojimachi Business
Center Building, Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Michael W. Schmidt
- Department
of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Dmitri G. Fedorov
- NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazuo Kitaura
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinichiro Nakamura
- Research Cluster
for Innovation, Nakamura Lab, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mark S. Gordon
- Department
of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Simulations of Raman Spectra Using the Fragment Molecular Orbital Method. J Chem Theory Comput 2014; 10:3689-98. [DOI: 10.1021/ct5003829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroya Nakata
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Nakamura
Lab, Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi,
Chiyoda-ku, Tokyo 102-0083, Japan
| | - Dmitri G. Fedorov
- NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1
Umezono,Tsukuba, Ibaraki 305-8568, Japan
| | - Satoshi Yokojima
- Nakamura
Lab, Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji-shi, Tokyo 192-0392, Japan
| | - Kazuo Kitaura
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 Japan
| | - Shinichiro Nakamura
- Nakamura
Lab, Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1477-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Friedrich J, Yu H, Leverentz HR, Bai P, Siepmann JI, Truhlar DG. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations. J Phys Chem Lett 2014; 5:666-670. [PMID: 26270834 DOI: 10.1021/jz500079e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is important to test methods for simulating water, but small water clusters for which benchmarks are available are not very representative of the bulk. Here we present benchmark calculations, in particular CCSD(T) calculations at the complete basis set limit, for water 26-mers drawn from Monte Carlo simulations of bulk water. These clusters are large enough that each water molecule participates in 2.5 hydrogen bonds on average. The electrostatically embedded three-body approximation with CCSD(T) embedded dimers and trimers reproduces the relative binding energies of eight clusters with a mean unsigned error (MUE, kcal per mole of water molecules) of only 0.009 and 0.015 kcal for relative and absolute binding energies, respectively. Using only embedded dimers (electrostatically embedded pairwise approximation) raises these MUEs to 0.038 and 0.070 kcal, and computing the energies with the M11 exchange-correlation functional, which is very economical, yields errors of only 0.029 and 0.042 kcal.
Collapse
Affiliation(s)
- Joachim Friedrich
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Haoyu Yu
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Hannah R Leverentz
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Peng Bai
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - J Ilja Siepmann
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
18
|
Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Analytic second derivatives of the energy in the fragment molecular orbital method. J Chem Phys 2013; 138:164103. [DOI: 10.1063/1.4800990] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Song GL, Li ZH, Fan KN. Extended Energy Divide-and-Conquer Method Based on Charge Conservation. J Chem Theory Comput 2013; 9:1992-9. [DOI: 10.1021/ct300850q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guo-Liang Song
- Shanghai Key Laboratory of Molecular
Catalysts and
Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Zhen Hua Li
- Shanghai Key Laboratory of Molecular
Catalysts and
Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Kang-Nian Fan
- Shanghai Key Laboratory of Molecular
Catalysts and
Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
20
|
Brorsen KR, Minezawa N, Xu F, Windus TL, Gordon MS. Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient. J Chem Theory Comput 2012; 8:5008-12. [DOI: 10.1021/ct3007869] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kurt R. Brorsen
- Department
of Chemistry and Ames Laboratory, Iowa State
University, Ames, Iowa 50011, United States
| | - Noriyuki Minezawa
- Department
of Chemistry and Ames Laboratory, Iowa State
University, Ames, Iowa 50011, United States
| | - Feng Xu
- Department
of Chemistry and Ames Laboratory, Iowa State
University, Ames, Iowa 50011, United States
| | - Theresa L. Windus
- Department
of Chemistry and Ames Laboratory, Iowa State
University, Ames, Iowa 50011, United States
| | - Mark S. Gordon
- Department
of Chemistry and Ames Laboratory, Iowa State
University, Ames, Iowa 50011, United States
| |
Collapse
|