1
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Singaravelu D, Binjawhar DN, Ameen F, Veerappan A. Lectin-Fortified Cationic Copper Sulfide Nanoparticles Gain Dual Targeting Capabilities to Treat Carbapenem-Resistant Acinetobacter baumannii Infection. ACS OMEGA 2022; 7:43934-43944. [PMID: 36506188 PMCID: PMC9730473 DOI: 10.1021/acsomega.2c05252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Targeted drug delivery maximizes the chance to combat infection caused by drug-resistant pathogens. Herein, lectin-fortified cationic copper sulfide (cCuS) nanoparticles were suggested for targeted adhesion to bacterial membranes and to enforce bacterial death. Jacalin, a lectin from jackfruit seed, was conjugated to fluorescein isothiocyanate (FITC), and its ability to recognize bacterial cell surface glycans was demonstrated. Jacalin formed a noncovalent complex with cCuS, which was investigated by fluorescence quenching measurements. The data revealed that jacalin-cCuS (JcCuS) had a good affinity with an association constant K a of 2.27 (± 0.28) × 104 M-1. The resultant JcCuS complex displayed excellent anti-infective activity against carbapenem-resistant Acinetobacter baumannii (CRAB). The minimum inhibitory concentration (MIC) of cCuS was 62.5 μM, which was 2-fold lower than that of the broad-spectrum antibiotic ciprofloxacin. Interestingly, the MIC of JcCuS was reduced to 15.63 μM, which was attributed to jacalin fortification. The mechanistic study unveiled that JcCuS affected the membrane integrity, depolarized the inner membrane, and produced excess reactive oxygen species to combat CRAB at a lower concentration compared to cCuS. A. baumannii formed a biofilm more readily, which played a critical role in pathogenesis and resistance in clinical settings. JcCuS (3.91 μM) displayed stronger antibiofilm activity without affecting the metabolic viability of CRAB. Microscopy analyses confirmed the inhibition of biofilm formation and disruption of the mature biofilm upon treatment with JcCuS. Furthermore, JcCuS hindered pellicle formation and inhibited the biofilm-associated virulence factor of CRAB such as exopolysaccharide, cell surface hydrophobicity, swarming, and twitching mobility. The anti-infective potential of JcCuS was demonstrated by rescuing CRAB-infected zebrafish. The reduction in pathogen proliferation in muscle tissues was observed in the treated group, and the fish recovered from the infection and was restored to normal life within 12 h. The findings illustrate that lectin fortification offers a unique advantage in enhancing the therapeutic potential of antimicrobials against human pathogens of critical priority worldwide.
Collapse
Affiliation(s)
- Dharshini
Karnan Singaravelu
- Department
of Chemistry, School of Chemical & Biotechnology, Shanmugha Arts,
Science, Technology & Research Academy
(SASTRA) Deemed University, Thanjavur613401, Tamil Nadu, India
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh11671, Saudi
Arabia
| | - Fuad Ameen
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Anbazhagan Veerappan
- Department
of Chemistry, School of Chemical & Biotechnology, Shanmugha Arts,
Science, Technology & Research Academy
(SASTRA) Deemed University, Thanjavur613401, Tamil Nadu, India
| |
Collapse
|
3
|
Petters I, Modrušan M, Vidović N, Crnolatac I, Cindro N, Piantanida I, Speranza G, Horvat G, Tomišić V. Anion-Sensing Properties of Cyclopentaphenylalanine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123918. [PMID: 35745042 PMCID: PMC9228215 DOI: 10.3390/molecules27123918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Cyclic pentaphenylalanine was studied as an efficient anion sensor for halides, thiocyanate and oxoanions in acetonitrile and methanol. Stability constants of the corresponding complexes were determined by means of fluorimetric, spectrophotometric, 1H NMR, and microcalorimetric titrations. A detailed structural overview of receptor–anion complexes was obtained by classical molecular dynamics (MD) simulations. The results of 1H NMR and MD studies indicated that the bound anions were coordinated by the amide groups of cyclopeptide, as expected. Circular dichroism (CD) titrations were also carried out in acetonitrile. To the best of our knowledge, this is the first example of the detection of anion binding by cyclopeptide using CD spectroscopy. The CD spectra were calculated from the structures obtained by MD simulations and were qualitatively in agreement with the experimental data. The stoichiometry of almost all complexes was 1:1 (receptor:anion), except for dihydrogen phosphate where the binding of dihydrogen phosphate dimer was observed in acetonitrile. The affinity of the cyclopeptide receptor was correlated with the structure of anion coordination sphere, as well as with the solvation properties of the examined solvents.
Collapse
Affiliation(s)
- Ivan Petters
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.P.); (M.M.); (N.C.)
| | - Matija Modrušan
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.P.); (M.M.); (N.C.)
| | - Nikolina Vidović
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133 Milan, Italy; (N.V.); (G.S.)
- Institute of Agriculture and Tourism, Department of Agriculture and Nutrition, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Ivo Crnolatac
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (I.C.); (I.P.)
| | - Nikola Cindro
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.P.); (M.M.); (N.C.)
| | - Ivo Piantanida
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (I.C.); (I.P.)
| | - Giovanna Speranza
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133 Milan, Italy; (N.V.); (G.S.)
| | - Gordan Horvat
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.P.); (M.M.); (N.C.)
- Correspondence: (G.H.); (V.T.)
| | - Vladislav Tomišić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (I.P.); (M.M.); (N.C.)
- Correspondence: (G.H.); (V.T.)
| |
Collapse
|
4
|
Idrees M, Ayaz M, Bibi R, Khan MN. Fluorescence Quenching of the Probes L-Tryptophan and Indole by Anions in Aqueous System. ANAL SCI 2020; 36:183-185. [PMID: 31564677 DOI: 10.2116/analsci.19p264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 08/09/2023]
Abstract
A fluorescence quenching study of the fluorescent probes L-tryptophan and indole by anions (NO3-, Cl-, SO42-) was carried out in an aqueous system. The ions NO3-, Cl- and SO42- showed very good quenching of both the probes. Quenching of L-tryptophan by all the anions studied was higher as compare to the quenching of indole. The data was fitted with the Stern-Volmer equation. Stern-Volmer constants were observed in the order NO3- > Cl- > SO42-. Stern-Volmer constants reflect the sensitivity of the method for the studied anions. Limit of detection (LOD) was calculated as three times the standard deviation of the blank for n = 10 (3 × SD) while the limit of quantification (LOQ) was calculated as ten times the standard deviation of the blank for n = 10 (10 × SD). In the case of L-tryptophan LOD and LOQ varied from 4.08 × 10-5 - 4.56 × 10-4 mol L-1, while in the case of indole the values ranged from 3.87 × 10-5 - 6.59 × 10-4 respectively. Fluorescence quenching of L-tryptophan and indole by the studied anions showed good reproducibility and the method could be very effective for the determination of anions.
Collapse
Affiliation(s)
- Muhammad Idrees
- Department of Chemistry, Bacha Khan University, Charsadda, 24420, Pakistan.
| | - Muhammad Ayaz
- Department of Chemistry, Bacha Khan University, Charsadda, 24420, Pakistan
| | - Rafida Bibi
- Department of Chemistry, Bacha Khan University, Charsadda, 24420, Pakistan
| | - Muhammad N Khan
- Department of Chemistry, Bacha Khan University, Charsadda, 24420, Pakistan
| |
Collapse
|
5
|
Avudaiappan G, Anjaly Jacob K, Theresa LV, Shebitha A, Hiba K, Shenoi PK, Unnikrishnan V, Sreekumar K. A novel dendritic polymer based turn- off fluorescence sensor for the selective detection of cyanide ion in aqueous medium. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Martin JP, Fetto NR, Tucker MJ. Comparison of biological chromophores: photophysical properties of cyanophenylalanine derivatives. Phys Chem Chem Phys 2018; 18:20750-7. [PMID: 27412819 DOI: 10.1039/c6cp04154j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within this work, the family of cyanophenylalanine spectroscopic reporters is extended by showing the ortho and meta derivatives have intrinsic photophysical properties that are useful for studies of protein structure and dynamics. The molar absorptivities of 2-cyanophenylalanine and 3-cyanophenylalanine are shown to be comparable to that of 4-cyanophenylalanine with similar spectral features in their absorbance and emission profiles, demonstrating that these probes can be utilized interchangeably. The fluorescence quantum yields are also on the same scale as commonly used fluorophores in peptides and proteins, tyrosine and tryptophan. These new cyano-fluorophores can be paired with either 4-cyanophenylalanine or tryptophan to capture distances in peptide structure through Förster resonance energy transfer. Additionally, the spectroscopic properties of these chromophores can report the local solvent environment via changes in fluorescence emission intensity as a result of hydrogen bonding and/or hydration. A decrease in the quantum yield is also observed in basic environments due to photoinduced electron transfer from a deprotonated amine in the free PheCN species and at the N-terminus of a short peptide, providing an avenue to detect pH in biological systems. Our results show the potential of these probes, 2-cyanophenylalanine and 3-cyanophenylalanine, to be incorporated into a single peptide chain, either individually or in tandem with 4-cyanophenylalanine, tryptophan, or tyrosine, in order to obtain information about peptide structure and dynamics.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| |
Collapse
|
7
|
Fetto NR, Cao W, Wallace IS, Tucker MJ. Selective Excitation of Cyanophenylalanine Fluorophores for Multi-Site Binding Studies. J Phys Chem B 2017; 121:9566-9571. [PMID: 28949137 DOI: 10.1021/acs.jpcb.7b08442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, it has been shown that nitrile-derivatized phenylalanines possess distinct fluorescent properties depending on the position of the cyano-group within the aromatic ring. These fluorophores have potential as probes for studying protein dynamics due to their sensitivity to local environment. Herein, we demonstrate that 2-cyanophenylalanine (Phe2CN) and Phe4CN can independently monitor multiple sites during the Ca2+ dependent binding of a skeletal muscle myosin light chain kinase (MLCK) peptide fragment to the protein calmodulin (CaM). These cyano-probes were incorporated at two different positions along the peptide chain and monitored simultaneously via selective excitation of the two chromophores. The peptide was labeled with Phe4CN at a residue known to bind to a hydrophobic binding pocket of CaM, while Phe2CN was designed to acquire dynamics external to the binding pocket. By selectively exciting each of the chromophores, it was determined that the fluorescence emission of Phe4CN located at position 581 of MLCK was quenched in the presence of CaM, while no significant change in Phe2CN emission was observed at exposed position 594. The CaM binding affinity (Kd) of the double labeled MLCK peptide was calculated to be approximately 64 nM, which is in agreement with previous measurements. These results indicate that multiple PheCN reporters within the same peptide can simultaneously detect variations in the local environment, and that these fluorophores could be utilized to investigate a wide variety of biological problems.
Collapse
Affiliation(s)
- Natalie R Fetto
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Wenqiang Cao
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Ian S Wallace
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States.,Department of Biochemistry and Molecular Biology, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
8
|
Do guanidinium and tetrapropylammonium ions specifically interact with aromatic amino acid side chains? Proc Natl Acad Sci U S A 2017; 114:1003-1008. [PMID: 28096375 DOI: 10.1073/pnas.1618071114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many ions are known to affect the activity, stability, and structural integrity of proteins. Although this effect can be generally attributed to ion-induced changes in forces that govern protein folding, delineating the underlying mechanism of action still remains challenging because it requires assessment of all relevant interactions, such as ion-protein, ion-water, and ion-ion interactions. Herein, we use two unnatural aromatic amino acids and several spectroscopic techniques to examine whether guanidinium chloride, one of the most commonly used protein denaturants, and tetrapropylammonium chloride can specifically interact with aromatic side chains. Our results show that tetrapropylammonium, but not guanidinium, can preferentially accumulate around aromatic residues and that tetrapropylammonium undergoes a transition at ∼1.3 M to form aggregates. We find that similar to ionic micelles, on one hand, such aggregates can disrupt native hydrophobic interactions, and on the other hand, they can promote α-helix formation in certain peptides.
Collapse
|
9
|
Gosavi PM, Korendovych IV. Minimalist IR and fluorescence probes of protein function. Curr Opin Chem Biol 2016; 34:103-109. [PMID: 27599185 DOI: 10.1016/j.cbpa.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
Spectroscopic studies of small proteins and peptides, especially those requiring fine spatial and/or temporal resolution, demand synthetic probes that confer the minimal possible steric and functional change on the native properties. Here we review the recent progress in development of minimally disruptive probes for fluorescence and infrared spectroscopies, as well as the methods to efficiently incorporate them into proteins. Advances in spectroscopy on the one hand result in high specialization of synthetic probes for a particular purpose, but on the other hand allow for the same probes be used for different techniques to gather complementary biochemical information.
Collapse
Affiliation(s)
- Pallavi M Gosavi
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
10
|
Watson MD, Peran I, Raleigh DP. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching. Biochemistry 2016; 55:3685-91. [PMID: 27258904 DOI: 10.1021/acs.biochem.6b00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens.
Collapse
Affiliation(s)
- Matthew D Watson
- Department of Chemistry and ‡Graduate Program in Biochemistry & Structural Biology, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Ivan Peran
- Department of Chemistry and ‡Graduate Program in Biochemistry & Structural Biology, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Daniel P Raleigh
- Department of Chemistry and ‡Graduate Program in Biochemistry & Structural Biology, Stony Brook University , Stony Brook, New York 11794-3400, United States
| |
Collapse
|
11
|
Namboodiri C, Bongu S, Bisht P, Mukkamala R, Chandra B, Aidhen I, Kelly T, Costello J. Enhanced two photon absorption cross section and optical nonlinearity of a quasi-octupolar molecule. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Bobone S, De Zotti M, Bortolotti A, Biondi B, Ballano G, Palleschi A, Toniolo C, Formaggio F, Stella L. The fluorescence and infrared absorption probepara-cyanophenylalanine: Effect of labeling on the behavior of different membrane-interacting peptides. Biopolymers 2015; 104:521-32. [DOI: 10.1002/bip.22674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Bobone
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Gema Ballano
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| |
Collapse
|
13
|
Pazos IM, Ahmed IA, Berríos MIL, Gai F. Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics. Anal Biochem 2015; 483:21-6. [PMID: 25935260 DOI: 10.1016/j.ab.2015.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/22/2022]
Abstract
We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change.
Collapse
Affiliation(s)
- Ileana M Pazos
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
New aspects of the structure and mode of action of the human cathelicidin LL-37 revealed by the intrinsic probe p-cyanophenylalanine. Biochem J 2015; 465:443-57. [PMID: 25378136 DOI: 10.1042/bj20141016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human cathelicidin peptide LL-37 is an important effector of our innate immune system and contributes to host defence with direct antimicrobial activity and immunomodulatory properties, and by stimulating wound healing. Its sequence has evolved to confer specific structural characteristics that strongly affect these biological activities, and differentiate it from orthologues of other primate species. In the present paper we report a detailed study of the folding and self-assembly of this peptide in comparison with rhesus monkey peptide RL-37, taking into account the different stages of its trajectory from bulk solution to contact with, and insertion into, biological membranes. Phenylalanine residues in different positions throughout the native sequences of LL-37 and RL-37 were systematically replaced with the non-invasive fluorescent and IR probe p-cyanophenylalanine. Steady-state and time-resolved fluorescence studies showed that LL-37, in contrast to RL-37, forms oligomers with a loose hydrophobic core in physiological solutions, which persist in the presence of biological membranes. Fourier transform IR and surface plasmon resonance studies also indicated different modes of interaction for LL-37 and RL-37 with anionic and neutral membranes. This correlated with a distinctly different mode of bacterial membrane permeabilization, as determined using a flow cytometric method involving impermeant fluorescent dyes linked to polymers of defined sizes.
Collapse
|
15
|
Mintzer MR, Troxler T, Gai F. p-Cyanophenylalanine and selenomethionine constitute a useful fluorophore-quencher pair for short distance measurements: application to polyproline peptides. Phys Chem Chem Phys 2015; 17:7881-7. [PMID: 25716887 PMCID: PMC4357573 DOI: 10.1039/c5cp00050e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C≡N stretching frequency and fluorescence quantum yield of p-cyanophenylalanine are sensitive to environment. As such, this unnatural amino acid has found broad applications, ranging from studying how proteins fold to determining the local electric field of membranes. Herein, we demonstrate that the fluorescence of p-cyanophenylalanine can be quenched by selenomethionine through an electron transfer process occurring at short distances, thus further expanding its spectroscopic utility. Using this fluorophore-quencher pair, we are able to show that short polyproline peptides (1-4 prolines) are not rigid; instead, they sample a bimodal conformational distribution.
Collapse
Affiliation(s)
- Mary Rose Mintzer
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Thomas Troxler
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Maj M, Ahn C, Kossowska D, Park K, Kwak K, Han H, Cho M. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes. Phys Chem Chem Phys 2015; 17:11770-8. [DOI: 10.1039/c5cp00454c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump–probe spectroscopy.
Collapse
Affiliation(s)
- Michał Maj
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Changwoo Ahn
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Kyungwon Kwak
- Department of Chemistry
- Chung-Ang University
- Seoul 156-756, Korea
| | - Hogyu Han
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| |
Collapse
|