1
|
Zhang Z, Chen K, Tang K, Chen K, Li R, Sun X, Hu Y, Liu Q, Chen M, Yang H, Chen X. Quinine-Fabricated Surface-Enhanced Raman Spectroscopy Chiral Sensing Platform Enables Simultaneous Enantioselective Discrimination and Identification of Aliphatic Amino Acids. Anal Chem 2023; 95:4923-4931. [PMID: 36880121 DOI: 10.1021/acs.analchem.2c04839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Due to low optical activity and structural simplicity, synchronous chiral discrimination and identification of aliphatic amino acids (AAs) are still challenging yet demanding. Herein, we developed a novel surface-enhanced Raman spectroscopy (SERS)-based chiral discrimination-sensing platform for aliphatic AAs, in which l- and d-enantiomers are able to discriminately bind with quinine to generate distinct differences in the SERS vibrational modes. Meanwhile, the plasmonic sub-nanometer gaps supported by the rigid quinine enable the maximization of SERS signal enhancement to reveal feeble signals, allowing for simultaneously acquiring the structural specificity and enantioselectivity of aliphatic amino acid enantiomers in a single SERS spectrum. Different kinds of chiral aliphatic AAs were successfully identified by using this sensing platform, demonstrating its potential and practicality in recognizing chiral aliphatic molecules.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Weeraratna C, Kostko O, Ahmed M. An investigation of aqueous ammonium nitrate aerosols with soft X-ray spectroscopy. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1983058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chaya Weeraratna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
3
|
Reddy TDN, Mallik BS. Hydration behavior of protic ionic pair of methyl ammonium formate: A comparative molecular dynamics simulation study with their conjugate neutral forms. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2019.112663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Houriez C, Réal F, Vallet V, Mautner M, Masella M. Ion hydration free energies and water surface potential in water nano drops: The cluster pair approximation and the proton hydration Gibbs free energy in solution. J Chem Phys 2019; 151:174504. [PMID: 31703526 DOI: 10.1063/1.5109777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We estimate both single ion hydration Gibbs free energies in water droplets, comprising from 50 to 1000 molecules, and water/vacuum surface potentials in pure water droplets comprising up to 10 000 molecules. We consider four ions, namely, Li+, NH4 +, F-, and Cl-, and we model their hydration process and water/water interactions using polarizable force fields based on an induced point dipole approach. We show both ion hydration Gibbs free energies and water surface potentials to obey linear functions of the droplet radius as soon as droplets comprising a few hundred water molecules. Moreover, we also show that the differences in anion/cation hydration Gibbs free energies in droplets obey a different regime in large droplets than in small clusters comprising no more than six water molecules, in line with the earlier results computed from standard additive point charge force fields. Hence, both point charge and more sophisticated induced point dipole molecular modeling approaches suggest that methods considering only the thermodynamical properties of small ion/water clusters to estimate the absolute proton hydration Gibbs free energy in solution are questionable. In particular, taking into account the data of large ion/water droplets may yield a proton hydration Gibbs free energy in solution value to be shifted by several kBT units compared to small clusters-based approaches.
Collapse
Affiliation(s)
- Céline Houriez
- MINES ParisTech, PSL Research University, CTP - Centre Thermodynamique des Procédés, 35 rue Saint-Honoré, 77300 Fontainebleau, France
| | - Florent Réal
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Michael Mautner
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA and Department of Chemistry, University of Canterbury, Christchurch 8001, New Zealand
| | - Michel Masella
- Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes, Institut Joliot, CEA Saclay, F-91191 Gif sur Yvette Cedex, France
| |
Collapse
|
5
|
Mazmanian K, Dudev T, Lim C. How First Shell–Second Shell Interactions and Metal Substitution Modulate Protein Function. Inorg Chem 2018; 57:14052-14061. [DOI: 10.1021/acs.inorgchem.8b01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- Taiwan and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Ekimova M, Quevedo W, Szyc Ł, Iannuzzi M, Wernet P, Odelius M, Nibbering ETJ. Aqueous Solvation of Ammonia and Ammonium: Probing Hydrogen Bond Motifs with FT-IR and Soft X-ray Spectroscopy. J Am Chem Soc 2017; 139:12773-12783. [PMID: 28810120 DOI: 10.1021/jacs.7b07207] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a multifaceted investigation combining local soft X-ray and vibrational spectroscopic probes with ab initio molecular dynamics simulations, hydrogen-bonding interactions of two key principal amine compounds in aqueous solution, ammonia (NH3) and ammonium ion (NH4+), are quantitatively assessed in terms of electronic structure, solvation structure, and dynamics. From the X-ray measurements and complementary determination of the IR-active hydrogen stretching and bending modes of NH3 and NH4+ in aqueous solution, the picture emerges of a comparatively strongly hydrogen-bonded NH4+ ion via N-H donating interactions, whereas NH3 has a strongly accepting hydrogen bond with one water molecule at the nitrogen lone pair but only weakly N-H donating hydrogen bonds. In contrast to the case of hydrogen bonding among solvent water molecules, we find that energy mismatch between occupied orbitals of both the solutes NH3 and NH4+ and the surrounding water prevents strong mixing between orbitals upon hydrogen bonding and, thus, inhibits substantial charge transfer between solute and solvent. A close inspection of the calculated unoccupied molecular orbitals, in conjunction with experimentally measured N K-edge absorption spectra, reveals the different nature of the electronic structural effects of these two key principal amine compounds imposed by hydrogen bonding to water, where a pH-dependent excitation energy appears to be an intrinsic property. These results provide a benchmark for hydrogen bonding of other nitrogen-containing acids and bases.
Collapse
Affiliation(s)
- Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max Born Strasse 2A, 12489 Berlin, Germany
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Łukasz Szyc
- Magnosco c/o LTB Lasertechnik Berlin GmbH , Am Studio 2c, 12489 Berlin, Germany
| | - Marcella Iannuzzi
- Institute of Physical Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Michael Odelius
- Department of Physics, Stockholm University , AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Erik T J Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max Born Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
7
|
Armetta F, Chillura Martino DF, Lombardo R, Saladino ML, Berrettoni M, Caponetti E. Synthesis of yttrium aluminum garnet nanoparticles in confined environment, and their characterization. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Cameron TS, Grossert JS, Maheux CR, Alarcon IQ, Copeland CR, Linden A. Inversion twinning in a second polymorph of the hydrochloride salt of the recreational drug ethylone. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2015; 71:266-70. [PMID: 25836283 DOI: 10.1107/s2053229615004295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/10/2022]
Abstract
A second polymorph of the hydrochloride salt of the recreational drug ethylone, C12H16NO3(+)·Cl(-), is reported [systematic name: (±)-2-ethylammonio-1-(3,4-methylenedioxyphenyl)propane-1-one chloride]. This polymorph, denoted form (A), appears in crystallizations performed above 308 K. The originally reported form (B) [Wood et al. (2015). Acta Cryst. C71, 32-38] crystallizes preferentially at room temperature. The conformations of the cations in the two forms differ by a 180° rotation about the C-C bond linking the side chain to the aromatic ring. Hydrogen bonding links the cations and anions in both forms into similar extended chains in which any one chain contains only a single enantiomer of the chiral cation, but the packing of the ions is different. In form (A), the aromatic rings of adjacent chains interleave, but pack equally well if neighbouring chains contain the same or opposite enantiomorph of the cation. The consequence of this is then near perfect inversion twinning in the structure. In form (B), neighbouring chains are always inverted, leading to a centrosymmetric space group. The question as to why the polymorphs crystallize at slightly different temperatures has been examined by density functional theory (DFT) and lattice energy calculations and a consideration of packing compactness. The free energy (ΔG) of the crystal lattice for polymorph (A) lies some 52 kJ mol(-1) above that of polymorph (B).
Collapse
Affiliation(s)
- T Stanley Cameron
- Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - J Stuart Grossert
- Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Chad R Maheux
- Science and Engineering Directorate, Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Ontario, Canada K2E 6T7
| | - Idralyn Q Alarcon
- Science and Engineering Directorate, Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Ontario, Canada K2E 6T7
| | - Catherine R Copeland
- Science and Engineering Directorate, Canada Border Services Agency, 79 Bentley Avenue, Ottawa, Ontario, Canada K2E 6T7
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|