1
|
Batista BC, Morris AZ, Steinbock O. Pattern selection by material aging: Modeling chemical gardens in two and three dimensions. Proc Natl Acad Sci U S A 2023; 120:e2305172120. [PMID: 37399415 PMCID: PMC10334770 DOI: 10.1073/pnas.2305172120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 07/05/2023] Open
Abstract
Chemical gardens are complex, often macroscopic, structures formed by precipitation reactions. Their thin walls compartmentalize the system and adjust in size and shape if the volume of the interior reactant solution is increased by osmosis or active injection. Spatial confinement to a thin layer is known to result in various patterns including self-extending filaments and flower-like patterns organized around a continuous, expanding front. Here, we describe a cellular automaton model for this type of self-organization, in which each lattice site is occupied by one of the two reactants or the precipitate. Reactant injection causes the random replacement of precipitate and generates an expanding near-circular precipitate front. If this process includes an age bias favoring the replacement of fresh precipitate, thin-walled filaments arise and grow-like in the experiments-at the leading tip. In addition, the inclusion of a buoyancy effect allows the model to capture various branched and unbranched chemical garden shapes in two and three dimensions. Our results provide a model of chemical garden structures and highlight the importance of temporal changes in the self-healing membrane material.
Collapse
Affiliation(s)
- Bruno C. Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Amari Z. Morris
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL32306-4390
| |
Collapse
|
2
|
Spatial precipitate separation enhanced by complex formation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Dúzs B, Szalai I. Reaction-diffusion phenomena in antagonistic bipolar diffusion fields. Phys Chem Chem Phys 2022; 24:1814-1820. [PMID: 34986213 DOI: 10.1039/d1cp04662d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Operating natural or artificial chemical systems requires nonequilibrium conditions under which temporal and spatial control of the process is realizable. Open reaction-diffusion systems provide a general way to create such conditions. A key issue is the proper design of reactors in which the nonequilibrium conditions can be maintained. A hydrogel with flow-through channels is a simple, flexible, and easy-to-make device in which chemical reactions are performed in the diffusion field of localized separated sources of reactants. Two reactants separated in two channels create a bipolar antagonistic diffusion field, where the reaction intermediates firmly separate in space. Numerical simulations and corresponding experiments are performed to present this inhomogeneous diffusion field-induced chemical separation in sequential reactions. A remarkable result of this bipolar spatial control is localized wave phenomena in a nonlinear activatory-inhibitory reaction. These findings may help design functioning artificial nonequilibrium systems with the desired spatial separation of chemicals.
Collapse
Affiliation(s)
- Brigitta Dúzs
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary.
| | - István Szalai
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary.
| |
Collapse
|
4
|
Emmanuel M, Papp P, Schuszter G, Deák Á, Janovák L, Tóth Á, Horváth D. Nucleation kinetics of lithium phosphate precipitation. CrystEngComm 2022. [DOI: 10.1039/d2ce00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fourth-order kinetics arises from the consecutive complexation leading to precipitation.
Collapse
Affiliation(s)
- Michael Emmanuel
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Paszkál Papp
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Gábor Schuszter
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| |
Collapse
|
5
|
Pital A, Kim J, Stockton A. Colloid precipitation and interactions at a flowing solution-solution interface in confined geometries. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Bernini F, Castellini E, Sebastianelli L, Bighi B, Sainz‐Díaz CI, Mucci A, Malferrari D, Ranieri A, Brigatti MF, Borsari M. Self‐Assembled Structures from Solid Cadmium(II) Acetate in Thiol/Ethanol Solutions: A Novel Type of Organic Chemical Garden. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fabrizio Bernini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Elena Castellini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Lorenzo Sebastianelli
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Beatrice Bighi
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Claro Ignacio Sainz‐Díaz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Av. de las Palmeras, 4 18100 Armilla Granada Spain
| | - Adele Mucci
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Daniele Malferrari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Antonio Ranieri
- Department of Life Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Maria Franca Brigatti
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| |
Collapse
|
7
|
Brau F, De Wit A. Influence of rectilinear vs radial advection on the yield of A + B → C reaction fronts: A comparison. J Chem Phys 2020; 152:054716. [DOI: 10.1063/1.5135292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fabian Brau
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, Faculté des Sciences, CP231, 1050 Brussels, Belgium
| | - A. De Wit
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, Faculté des Sciences, CP231, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Emmanuel M, Horváth D, Tóth Á. Flow-driven crystal growth of lithium phosphate in microchannels. CrystEngComm 2020. [DOI: 10.1039/d0ce00540a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Flow-driven asymmetric growth of lithium phosphate in the presence of concentration gradients in a microchannel.
Collapse
Affiliation(s)
- Michael Emmanuel
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry
- University of Szeged
- Szeged
- Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| |
Collapse
|
9
|
Comolli A, De Wit A, Brau F. Dynamics of A+B → C reaction fronts under radial advection in three dimensions. Phys Rev E 2019; 100:052213. [PMID: 31869892 DOI: 10.1103/physreve.100.052213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The dynamics of A+B→C reaction fronts is studied both analytically and numerically in three-dimensional systems when A is injected radially into B at a constant flow rate. The front dynamics is characterized in terms of the temporal evolution of the reaction front position, r_{f}, of its width, w, of the maximum local production rate, R^{max}, and of the total amount of product generated by the reaction, n_{C}. We show that r_{f}, w, and R^{max} exhibit the same temporal scalings as observed in rectilinear and two-dimensional radial geometries both in the early-time limit controlled by diffusion, and in the longer time reaction-diffusion-advection regime. However, unlike the two-dimensional cases, the three-dimensional problem admits an asymptotic stationary solution for the reactant concentration profiles where n_{C} grows linearly in time. The timescales at which the transition between the regimes arise, as well as the properties of each regime, are determined in terms of the injection flow rate and reactant initial concentration ratio.
Collapse
Affiliation(s)
- Alessandro Comolli
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| | - A De Wit
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| | - Fabian Brau
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Abstract
The selection of polymorphs of the organic compound 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, ROY, is studied experimentally in the confined space between two horizontal glass plates when an acetone solution of ROY of variable concentration is injected at a variable flow rate into water. Depending on the local concentration within the radial flow, a polymorph selection is observed such that red prisms are favored close to the injection center while yellow needles are the preferred polymorph close to the edge of the injected ROY domain. At larger flow rates, a buoyancy-driven instability induces stripes at the outer edge of the displacement pattern, in which specific polymorphs are seen to crystallize. Our results evidence the possibility of a selection of ROY polymorph structures in out-of-equilibrium flow conditions.
Collapse
|
11
|
Pótári G, Tóth Á, Horváth D. Precipitation patterns driven by gravity current. CHAOS (WOODBURY, N.Y.) 2019; 29:073117. [PMID: 31370424 DOI: 10.1063/1.5094491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
A precipitation reaction can be driven by a gravity current that spreads on the bottom as a denser fluid is injected into an initially stagnant liquid. Supersaturation and nucleation are restricted to locations where the two liquids come into contact; hence, the flow pattern governs the spatial distribution of the final product. In this numerical study, we quantitatively characterize the flow associated with the gravity current prior to the onset of nucleation and distinguish three zones where the coupling of transport processes with the reaction can take place depending on their time scales. A scaling law associated with the region of Rayleigh-Taylor instability behind the tip of the gravity current is also determined.
Collapse
Affiliation(s)
- Gábor Pótári
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| |
Collapse
|
12
|
Balog E, Bittmann K, Schwarzenberger K, Eckert K, De Wit A, Schuszter G. Influence of microscopic precipitate structures on macroscopic pattern formation in reactive flows in a confined geometry. Phys Chem Chem Phys 2019; 21:2910-2918. [DOI: 10.1039/c8cp07693f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thanks to the coupling between chemical precipitation reactions and hydrodynamics, new dynamic phenomena may be obtained and new types of materials can be synthesized.
Collapse
Affiliation(s)
- Edina Balog
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Kevin Bittmann
- Institute of Process Engineering
- TU Dresden
- 01062 Dresden
- Germany
- Helmholtz-Zentrum Dresden-Rossendorf
| | - Karin Schwarzenberger
- Institute of Process Engineering
- TU Dresden
- 01062 Dresden
- Germany
- Helmholtz-Zentrum Dresden-Rossendorf
| | - Kerstin Eckert
- Institute of Process Engineering
- TU Dresden
- 01062 Dresden
- Germany
- Helmholtz-Zentrum Dresden-Rossendorf
| | - Anne De Wit
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- 1050 Brussels
- Belgium
| | - Gábor Schuszter
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| |
Collapse
|
13
|
Pópity-Tóth É, Schuszter G, Horváth D, Tóth Á. Peristalticity-driven banded chemical garden. J Chem Phys 2018; 148:184701. [DOI: 10.1063/1.5023465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- É. Pópity-Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720,
Hungary
| | - G. Schuszter
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720,
Hungary
| | - D. Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720,
Hungary
| | - Á. Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720,
Hungary
| |
Collapse
|
14
|
Rauscher E, Schuszter G, Bohner B, Tóth Á, Horváth D. Osmotic contribution to the flow-driven tube formation of copper–phosphate and copper–silicate chemical gardens. Phys Chem Chem Phys 2018; 20:5766-5770. [DOI: 10.1039/c7cp08282g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A flow-driven technique allowing osmosis reveals the capacities of gradient-applying methods to form membranes with tailor-made inner and smoother outer surfaces.
Collapse
Affiliation(s)
- Evelin Rauscher
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Gábor Schuszter
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Bíborka Bohner
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry
- University of Szeged
- Szeged
- Hungary
| |
Collapse
|
15
|
Das NP, Müller B, Tóth Á, Horváth D, Schuszter G. Macroscale precipitation kinetics: towards complex precipitate structure design. Phys Chem Chem Phys 2018; 20:19768-19775. [DOI: 10.1039/c8cp01798k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Producing self-assembled inorganic precipitate micro- and macro-structures with tailored properties may pave the way for new possibilities in, e.g., materials science and the pharmaceutical industry.
Collapse
Affiliation(s)
- Nirmali Prabha Das
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Brigitta Müller
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry
- University of Szeged
- Szeged
- Hungary
| | - Gábor Schuszter
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged
- Hungary
| |
Collapse
|
16
|
Brau F, Schuszter G, De Wit A. Flow Control of A+B→C Fronts by Radial Injection. PHYSICAL REVIEW LETTERS 2017; 118:134101. [PMID: 28409971 DOI: 10.1103/physrevlett.118.134101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 06/07/2023]
Abstract
The dynamics of A+B→C fronts is analyzed theoretically in the presence of passive advection when A is injected radially into B at a constant inlet flow rate Q. We compute the long-time evolution of the front position, r_{f}, of its width, w, and of the local production rate R of the product C at r_{f}. We show that, while advection does not change the well-known scaling exponents of the evolution of corresponding reaction-diffusion fronts, their dynamics is however significantly influenced by the injection. In particular, the total amount of product varies as Q^{-1/2} for a given volume of injected reactant and the front position as Q^{1/2} for a given time, paving the way to a flow control of the amount and spatial distribution of the reaction front product. This control strategy compares well with calcium carbonate precipitation experiments for which the amount of solid product generated in flow conditions at fixed concentrations of reactants and the front position can be tuned by varying the flow rate.
Collapse
Affiliation(s)
- Fabian Brau
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| | - G Schuszter
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| | - A De Wit
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Schuszter G, De Wit A. Comparison of flow-controlled calcium and barium carbonate precipitation patterns. J Chem Phys 2016; 145:224201. [DOI: 10.1063/1.4971286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- G. Schuszter
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| | - A. De Wit
- Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium
| |
Collapse
|
18
|
Nakouzi E, Steinbock O. Self-organization in precipitation reactions far from the equilibrium. SCIENCE ADVANCES 2016; 2:e1601144. [PMID: 27551688 PMCID: PMC4991932 DOI: 10.1126/sciadv.1601144] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/18/2016] [Indexed: 05/20/2023]
Abstract
Far from the thermodynamic equilibrium, many precipitation reactions create complex product structures with fascinating features caused by their unusual origins. Unlike the dissipative patterns in other self-organizing reactions, these features can be permanent, suggesting potential applications in materials science and engineering. We review four distinct classes of precipitation reactions, describe similarities and differences, and discuss related challenges for theoretical studies. These classes are hollow micro- and macrotubes in chemical gardens, polycrystalline silica carbonate aggregates (biomorphs), Liesegang bands, and propagating precipitation-dissolution fronts. In many cases, these systems show intricate structural hierarchies that span from the nanometer scale into the macroscopic world. We summarize recent experimental progress that often involves growth under tightly regulated conditions by means of wet stamping, holographic heating, and controlled electric, magnetic, or pH perturbations. In this research field, progress requires mechanistic insights that cannot be derived from experiments alone. We discuss how mesoscopic aspects of the product structures can be modeled by reaction-transport equations and suggest important targets for future studies that should also include materials features at the nanoscale.
Collapse
Affiliation(s)
- Elias Nakouzi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306–4390, USA
| |
Collapse
|
19
|
Bohner B, Endrődi B, Horváth D, Tóth Á. Flow-driven pattern formation in the calcium-oxalate system. J Chem Phys 2016; 144:164504. [PMID: 27131554 DOI: 10.1063/1.4947141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
Collapse
Affiliation(s)
- Bíborka Bohner
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary
| |
Collapse
|
20
|
Schuszter G, Brau F, De Wit A. Flow-driven control of calcium carbonate precipitation patterns in a confined geometry. Phys Chem Chem Phys 2016; 18:25592-25600. [DOI: 10.1039/c6cp05067k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Upon injection of an aqueous solution of carbonate into a solution of calcium ions in the confined geometry of a Hele-Shaw cell, various calcium carbonate precipitation patterns are observed.
Collapse
Affiliation(s)
- Gábor Schuszter
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- 1050 Brussels
- Belgium
| | - Fabian Brau
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- 1050 Brussels
- Belgium
| | - A. De Wit
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- 1050 Brussels
- Belgium
| |
Collapse
|
21
|
Tóth–Szeles E, Schuszter G, Tóth Á, Kónya Z, Horváth D. Flow-driven morphology control in the cobalt–oxalate system. CrystEngComm 2016. [DOI: 10.1039/c5ce02459e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of fluid flow by maintaining the density gradient and controlling the flow rate provides a simple method to modify the microstructure of cobalt oxalate.
Collapse
Affiliation(s)
- Eszter Tóth–Szeles
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| | - Gábor Schuszter
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry
- University of Szeged
- Szeged, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry
- University of Szeged
- Szeged, Hungary
| |
Collapse
|