1
|
Synthesis, physicochemical studies, fluorescence behavior, and anticancer properties of transition metal complexes with the pyridyl ligand. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2022. [DOI: 10.2478/pjct-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A novel series of complexes with the formula [MLCl] [M = Co(II) (1), Ni(II) (2), Cu(II) (3), Zn(II) (4)] arising from Pyridyl ligand, N,N’-bis(1-(2-pyridyl)ethylidene)-2,2-dimethylpropane-1,3-diamine), ligand, L, was synthesized and investigated by elemental analyses, FT-IR, 1H and 13C NMR, Powder XRD, and thermal analyses. TGA analysis indicated that all complexes degraded in three different steps, while the PXRD examination showed well-defined sharp crystalline peaks for the complexes, indicating significant crystallinity. The antiproliferative activity of the ligand and its complexes were also evaluated in vitro against the HeLa (Human Cervical Cancer Cells) and HCT116 (Colon Cancer Cells) cell lines. The findings suggested complex 4 to be potential anticancer agent against these cell lines. In addition, ligand and its complexes also exhibited considerable emission properties.
Collapse
|
2
|
Mahamoud Aouled I, Uysal S. Investigation of [MSalen/salophen] (M = Cr3+, Fe3+ or Co3+) capped dinuclear complexes of two novel tetraoxocalix[2](m-hydroxymethyl)arene[2]triazine compounds. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1988107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Saban Uysal
- Chemistry Department, Science Faculty, Karabuk University, Karabuk, Turkey
| |
Collapse
|
3
|
The synthesis and characterization of [M(salen/salophen/saldeta)] [M=Cr(III), Mn(III) or Fe(III)] capped s-triazine cored tripodal trinuclear Schiff bases complexes. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0844-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Carreño A, Rodríguez L, Páez-Hernández D, Martin-Trasanco R, Zúñiga C, Oyarzún DP, Gacitúa M, Schott E, Arratia-Pérez R, Fuentes JA. Two New Fluorinated Phenol Derivatives Pyridine Schiff Bases: Synthesis, Spectral, Theoretical Characterization, Inclusion in Epichlorohydrin-β-Cyclodextrin Polymer, and Antifungal Effect. Front Chem 2018; 6:312. [PMID: 30109223 PMCID: PMC6080543 DOI: 10.3389/fchem.2018.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
It has been reported that the structure of the Schiff bases is fundamental for their function in biomedical applications. Pyridine Schiff bases are characterized by the presence of a pyridine and a phenolic ring, connected by an azomethine group. In this case, the nitrogen present in the pyridine is responsible for antifungal effects, where the phenolic ring may be also participating in this bioactivity. In this study, we synthesized two new pyridine Schiff Bases: (E)-2-[(3-Amino-pyridin-4-ylimino)-methyl]-4,6-difluoro-phenol (F1) and (E)- 2-[(3-Amino-pyridin-4-ylimino)-methyl]-6-fluoro-phenol (F2), which only differ in the fluorine substitutions in the phenolic ring. We fully characterized both F1 and F2 by FTIR, UV-vis, 1H; 13C; 19F-NMR, DEPT, HHCOSY, TOCSY, and cyclic voltammetry, as well as by computational studies (DFT), and NBO analysis. In addition, we assessed the antifungal activity of both F1 (two fluorine substitution at positions 4 and 6 in the phenolic ring) and F2 (one fluorine substitution at position 6 in the phenolic ring) against yeasts. We found that only F1 exerted a clear antifungal activity, showing that, for these kind of Schiff bases, the phenolic ring substitutions can modulate biological properties. In addition, we included F1 and F2 into in epichlorohydrin-β-cyclodextrin polymer (βCD), where the Schiff bases remained inside the βCD as determined by the ki, TGA, DSC, and SBET. We found that the inclusion in βCD improved the solubility in aqueous media and the antifungal activity of both F1 and F2, revealing antimicrobial effects normally hidden by the presence of common solvents (e.g., DMSO) with some cellular inhibitory activity. The study of structural prerequisites for antimicrobial activity, and the inclusion in polymers to improve solubility, is important for the design of new drugs.
Collapse
Affiliation(s)
- Alexander Carreño
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile.,Fondo Nacional de Desarrollo Científico y Tecnológico, Santiago, Chile
| | - Leonardo Rodríguez
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | | | - César Zúñiga
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile
| | - Diego P Oyarzún
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile
| | | | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
6
|
Akcan Kardaş T, Avcı Özbek H, Akgül Y, Demirhan F. Synthesis, structure, and electrochemical properties of N,Nʹ-bis(ferrocenylmethylene)ethylenediamine Schiff base and its metal complexes. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1357586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tuğba Akcan Kardaş
- Department of Chemistry, Faculty of Sciences and Liberal Arts, Celal Bayar University, Manisa, Turkey
| | - Hülya Avcı Özbek
- Department of Chemistry, Faculty of Sciences and Liberal Arts, Celal Bayar University, Manisa, Turkey
| | - Yurdanur Akgül
- Department of Chemistry, Faculty of Sciences, Ege University, Bornova-İzmir, Turkey
| | - Funda Demirhan
- Department of Chemistry, Faculty of Sciences and Liberal Arts, Celal Bayar University, Manisa, Turkey
| |
Collapse
|
7
|
Observation of π-hole interactions in the solid state structures of three new copper(II) complexes with a tetradentate N4 donor Schiff base: Exploration of their cytotoxicity against MDA-MB 468 cells. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|