1
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
2
|
Cancer therapy by antibody-targeted Cerenkov light and metabolism-selective photosensitization. J Control Release 2022; 352:25-34. [PMID: 36243234 DOI: 10.1016/j.jconrel.2022.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Photodynamic therapy (PDT) is an effective cancer treatment option, but it suffers from penetration limit of light, making it available only for superficial and endoscopically accessible cancers. Recently, there have been reports that Cerenkov luminescence originated from radioisotopes can be utilized as an excitation source for PDT without external light illumination. Here, cancer-selective agents, i.e., (1) clinically available 5-aminolevulinic acid (5-ALA), which promotes cancer metabolism-specific accumulation of protoporphyrin IX (PpIX), and (2) 64Cu-DOTA-trastuzumab, which has HER2-expressing cancer selective uptake, are separately applied as a photosensitizer and an in situ radiator, respectively, to potentiate tumor-specific Cerenkov luminescence energy transfer (CLET) from 64Cu to PpIX for high-precision PDT of cancer. It is shown that the combinational administration and tumor colocalization of 5-ALA and 64Cu-DOTA-trastuzumab exert significant in vitro cytotoxicity (cell viability <9%) as well as in vivo antitumor effects (tumor volume ratio of 0.50 on 14 days post-injection) on HER2-expressing breast and gastric cancer models. This study proves that high-precision treatment regimen using dual-targeted CLET-based PDT is feasible for HER2-expressing cancers. Furthermore, the results offer great potential for clinical translation to the dual-targeted CLET-based PDT because the treatment regimen uses components, 5-ALA and 64Cu-DOTA-trastuzumab, which are already in clinical uses.
Collapse
|
3
|
Dibona-Villanueva L, Fuentealba D. Protoporphyrin IX-Chitosan Oligosaccharide Conjugate with Potent Antifungal Photodynamic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9276-9282. [PMID: 35866700 DOI: 10.1021/acs.jafc.2c01644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new chemical conjugate between protoporphyrin IX (PPIX) and chitosan oligosaccharides (CH) was prepared and evaluated in vitro as an antifungal agent against Penicillium digitatum. Chemical characterization and photophysical/photochemical studies were conducted. The antifungal effect of the CH-PPIX conjugate was compared to its components (PPIX and CH) and a physical mixture of both, under dark and illuminated conditions. The CH-PPIX conjugate was photostable and inhibited fungal growth with 100% efficiency at a dose of 0.005% w/v under visible light irradiation, while no antifungal activity was observed in the dark. Under the same conditions, CH and PPIX did not display any fungicidal activity, demonstrating the improved properties of the conjugate. Insights into the mechanism of fungal inactivation revealed an efficient spore uptake and photoinduced membrane damage through singlet oxygen generation. This new bioconjugate, which is based on natural components, represents a promising agent for fungicidal formulations based on antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Luciano Dibona-Villanueva
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| |
Collapse
|
4
|
Daylight-PDT: everything under the sun. Biochem Soc Trans 2022; 50:975-985. [PMID: 35385082 PMCID: PMC9162453 DOI: 10.1042/bst20200822] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
5-Aminolevulinic acid-based photodynamic therapy (ALA-PDT) was first implemented over three decades ago and has since been mainly part of clinical practice for the management of pre-cancerous and cancerous skin lesions. Photodynamic therapy relies on the combination of a photosensitizer, light and oxygen to cause photo-oxidative damage of cellular components. 5-Aminolevulinic acid (ALA) is a natural precursor of the heme biosynthetic pathway, which when exogenously administered leads to the accumulation of the photoactivatable protoporphyrin IX. Although, effective and providing excellent cosmetic outcomes, its use has been restricted by the burning, stinging, and prickling sensation associated with treatment, as well as cutaneous adverse reactions that may be induced. Despite intense research in the realm of drug delivery, pain moderation, and light delivery, a novel protocol design using sunlight has led to some of the best results in terms of treatment response and patient satisfaction. Daylight PDT is the protocol of choice for the management of treatment of multiple or confluent actinic keratoses (AK) skin lesions. This review aims to revisit the photophysical, physicochemical and biological characteristics of ALA-PDT, and the underlying mechanisms resulting in daylight PDT efficiency and limitations.
Collapse
|
5
|
Croizat G, Gregor A, Joniova J, Gerelli E, Wagnières G. Identification of excimer delayed fluorescence by Protoporphyrin IX: A novel access to local chromophore concentration? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112408. [PMID: 35294918 DOI: 10.1016/j.jphotobiol.2022.112408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Protoporphyrin IX (PpIX) is a molecule produced in the mitochondria following the administration of its approved precursor, aminolevulinic acid (ALA). Strong light absorber at different wavelengths in the visible range, PpIX is extensively used as a photosensitizer (PS) for Photodynamic Therapy (PDT). PpIX is also an ideal molecular probe for the quantification of the tissue oxygen partial pressure (pO2), as its delayed fluorescence (DF) is quenched by oxygen, creating a direct relationship between the DF lifetime and the pO2. A limitation of both techniques is the ignorance of the PpIX concentration in tissues when the pO2 is measured or during PDT. In this study, the prompt (PF) and delayed fluorescence of PpIX dissolved in DiMethylFormamide (DMF) were acquired, in absence of oxygen, at different PpIX concentrations. Measurements of the PpIX emission for different excitation energies and temperatures, as well as spectral considerations led to the conclusion that E-type (thermal) DF was the dominant DF mechanism at low PpIX excited states concentrations (density of absorbed energy Hε[PpIX] < 1 μJ. cm-3, H:excitation radiant exposure per pulse, ε: molar extinction coefficient at excitation wavelength) while P-type (Triplet Triplet Annihilation) DF took place at higher excited states concentrations (Hε[PpIX] > 10 μJ. cm-3). The gradual development of a strong, red-shifted structureless DF peak at 670 nm, invisible in the PF and absorption spectra, strongly points towards the first observation of PpIX excimer DF (EDF). It appears that, similarly to other aromatic molecules, PpIX excimers can be formed either by the encounter of two molecules in the first excited triplet state T1, or by the reaction of an excited singlet S1 with a triplet T1. Excimer DF could be beneficially used to determine the local concentration of PpIX, as the initial DF intensity ratio I0670/I0630 is linearly correlated with the local PpIX concentration, and thus rises up to the challenge of PpIX based pO2 measurement and PDT. This work could also pave the way for a fine comprehension of the production, diffusion and catabolization of PpIX in biological tissues.
Collapse
Affiliation(s)
- Gauthier Croizat
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Aurélien Gregor
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jaroslava Joniova
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Emmanuel Gerelli
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Choi S, Lee J, Lee K, Yoon SM, Yoon M. Porphyrin-decorated ZnO nanowires as nanoscopic injectors for phototheragnosis of cancer cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj02084j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly synthesized protoporphyrin-decorated ZnO-nanowires exhibited optical waveguided and photodynamic properties to be useful nanoscopic injectors for photo-theragnosis of cancer cells.
Collapse
Affiliation(s)
- Sunyoung Choi
- Molecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jooran Lee
- Molecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- TheraNovis Inc. 32 Seongnae-ro 6-gil, Gangdong-gu, Seoul, Republic of Korea
| | - Kangmin Lee
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
| | - Seok Min Yoon
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
| | - Minjoong Yoon
- Molecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
7
|
Oliveira H, Araújo P, Pereira AR, Mateus N, de Freitas V, Oliveira J, Fernandes I. Photoactivated cell-killing amino-based flavylium compounds. Sci Rep 2021; 11:22005. [PMID: 34754029 PMCID: PMC8578629 DOI: 10.1038/s41598-021-01485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Photodynamic therapy (PDT) is a well-established therapeutic for the treatment of different diseases. The growing interest of this technique required the development of new photosensitizers with better photo-features. This work reports the study of the potential of five nature-inspired amino-based flavylium compounds with different structural features as photosensitizers towards topical PDT. In terms of dark cytotoxicity the five pigments were tested towards confluent skin cells in both fibroblasts and keratinocytes. In the range of concentrations tested (6.3–100 μM), keratinocytes were more prone to growth inhibition and the IC50 values for 5OH4′NMe2, 7NEt2st4′NMe2 and 7NEt24′NH2 were determined to be 47.3 ± 0.3 μM; 91.0 ± 0.8 μM and 29.8 ± 0.8 μM, respectively. 7NEt24′NMe2, 7NEt2st4′NMe2 and 7NEt24′NH2 showed significant fluorescence quantum yields (from 3.40 to 20.20%) and production of singlet oxygen (1O2). These latter chromophores presented IC50 values of growth inhibition of keratinocytes between 0.9 and 1.5 µM, after 10 min of photoactivation with white light. This cellular damage in keratinocyte cells upon white light activation was accompanied with the production of reactive oxygen species (ROS). It was also found that the compounds can induce damage by either type I (ROS production) or type II (singlet oxygen) PDT mechanism, although a higher cell survival was observed in the presence of 1O2 quenchers. Overall, a structure–activity relationship could be established, ranking the most important functional groups for the photoactivation efficiency as follows: C7-diethylamino > C4′-dimethylamino > C2-styryl.
Collapse
Affiliation(s)
- Hélder Oliveira
- REQUIMTE-Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Paula Araújo
- REQUIMTE-Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Ana Rita Pereira
- REQUIMTE-Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE-Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Victor de Freitas
- REQUIMTE-Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Joana Oliveira
- REQUIMTE-Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal.
| | - Iva Fernandes
- REQUIMTE-Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal.
| |
Collapse
|
8
|
Sciuti LF, Costa LD, Guieu S, Cocca LHZ, Iglesias BA, Mendonça CR, Tomé AC, Faustino MAF, De Boni L. Dependent excited state absorption and dynamic of β-BF 2 substituted metalloporphyrins: The metal ion effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119911. [PMID: 33993027 DOI: 10.1016/j.saa.2021.119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/11/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Absorption and relaxation dynamics of electronic states of free-base, Co(II), Cu(II) and Zn(II) porphyrins bearing a β-(2,2-difluoro-1,3,2-dioxaborinin-5-yl) group were investigated in dimethyl sulfoxide by using distinct time-resolved spectroscopic techniques. Furthermore, excited state absorption cross-section spectra were determined by combining white light continuum Z-Scan and transient absorption techniques. In the case of the free-base (2H) and Zn(II) porphyrins, we were able to quantify singlet-triplet conversion by analyzing the evolution of time-resolved fluorescence. Relaxation lifetimes from the excited to the ground state were observed in both porphyrins at nanosecond time scale. However, for Co(II) and Cu(II) metalloporphyrins it was observed in the picosecond time scale through femtosecond transient absorption, indicating that both compounds relax back to the ground state only by internal conversion processes. Co(II) and Cu(II) heavy atoms seem to prohibit the radiative and intersystem crossing processes.
Collapse
Affiliation(s)
- Lucas F Sciuti
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, SP, Brazil
| | - Letícia D Costa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro H Z Cocca
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, SP, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Cleber R Mendonça
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, SP, Brazil
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leonardo De Boni
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Pétusseau AF, Bruza P, Pogue BW. Survey of X-ray induced Cherenkov excited fluorophores with potential for human use. JOURNAL OF RADIATION RESEARCH 2021; 62:833-840. [PMID: 34247250 PMCID: PMC8438248 DOI: 10.1093/jrr/rrab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Indexed: 06/13/2023]
Abstract
X-ray induced molecular luminescence (XML) is a phenomenon that can be utilized for clinical, deep-tissue functional imaging of tailored molecular probes. In this study, a survey of common or clinically approved fluorophores was carried out for their megavoltage X-ray induced excitation and emission characteristics. We find that direct scintillation effects and Cherenkov generation are two possible ways to cause these molecules' excitation. To distinguish the contributions of each excitation mechanism, we exploited the dependency of Cherenkov radiation yield on X-ray energy. The probes were irradiated by constant dose of 6 MV and 18 MV X-ray radiation, and their relative emission intensities and spectra were quantified for each X-ray energy pair. From the ratios of XML, yield for 6 MV and 18 MV irradiation we found that the Cherenkov radiation dominated as an excitation mechanism, except for aluminum phthalocyanine, which exhibited substantial scintillation. The highest emission yields were detected from fluorescein, proflavin and aluminum phthalocyanine, in that order. XML yield was found to be affected by the emission quantum yield, overlap of the fluorescence excitation and Cherenkov emission spectra, scintillation yield. Considering all these factors and XML emission spectrum respective to tissue optical window, aluminum phthalocyanine offers the best XML yield for deep tissue use, while fluorescein and proflavine are most useful for subcutaneous or superficial use.
Collapse
Affiliation(s)
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
10
|
Photophysical properties and therapeutic use of natural photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
11
|
Investigation of the triplet excited state and application of cationic meso-tetra(cisplatin)porphyrins in antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 35:102459. [PMID: 34320427 DOI: 10.1016/j.pdpdt.2021.102459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
In this manuscript, we report, the photophysical study of triplet excited states and antimicrobial photoinactivation of positively charged tetra-cisplatin porphyrin derivatives against Gram + and Gram ‒ bacterial strains. Isomeric cisplatin-porphyrins were used and applied in aPDT assays in the bacilli Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa (Gram negative) and a cocci Staphylococcus aureus (Gram positive) strains. The results show that compound substituted at meta position (3-cis-PtTPyP) is the more efficient photosensitizer against bacteria culture. In this way, tetra-cationic porphyrins containing cisplatin derivatives might be promising aPDT agents with potential applications in clinical infections.
Collapse
|
12
|
Scholz M, Croizat G, Pšenčík J, Dědic R, Nonell S, Wagnieres G. Understanding delayed fluorescence and triplet decays of Protoporphyrin IX under hypoxic conditions. Photochem Photobiol Sci 2021; 20:843-857. [PMID: 34216374 DOI: 10.1007/s43630-021-00044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023]
Abstract
Photosensitizers of singlet oxygen exhibit three main types of reverse intersystem-crossing (RISC): thermally activated, triplet-triplet annihilation, and singlet oxygen feedback. RISC can be followed by delayed fluorescence (DF) emission, which can provide important information about the excited state dynamics in the studied system. An excellent model example is a widely used clinical photosensitizer Protoporphyrin IX, which manifests all three mentioned types of RISC and DF. Here, we estimated rate constants of individual RISC and DF processes in Protoporphyrin IX in dimethylformamide, and we showed how these affect triplet decays and DF signals under diverse experimental conditions, such as a varying oxygen concentration or excitation intensity. This provided a basis for a general discussion on guidelines for a more precise analysis of long-lived signals. Furthermore, it has been found that PpIX photoproducts and potential transient excited complexes introduce a new overlapping delayed luminescence spectral band with a distinct lifetime. These findings are important for design of more accurate biological oxygen sensors and assays based on DF and triplet lifetime.
Collapse
Affiliation(s)
- Marek Scholz
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. .,Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover, USA. .,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Gauthier Croizat
- Laboratory for functional and metabolic imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Roman Dědic
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Catalunya, Spain
| | - Georges Wagnieres
- Laboratory for functional and metabolic imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Maitra D, Pinsky BM, Soherawardy A, Zheng H, Banerjee R, Omary MB. Protein-aggregating ability of different protoporphyrin-IX nanostructures is dependent on their oxidation and protein-binding capacity. J Biol Chem 2021; 297:100778. [PMID: 34023387 PMCID: PMC8253973 DOI: 10.1016/j.jbc.2021.100778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
Porphyrias are rare blood disorders caused by genetic defects in the heme biosynthetic pathway and are associated with the accumulation of high levels of porphyrins that become cytotoxic. Porphyrins, due to their amphipathic nature, spontaneously associate into different nanostructures, but very little is known about the cytotoxic effects of these porphyrin nanostructures. Previously, we demonstrated the unique ability of fluorescent biological porphyrins, including protoporphyrin-IX (PP-IX), to cause organelle-selective protein aggregation, which we posited to be a major mechanism by which fluorescent porphyrins exerts their cytotoxic effect. Herein, we tested the hypothesis that PP-IX-mediated protein aggregation is modulated by different PP-IX nanostructures via a mechanism that depends on their oxidizing potential and protein-binding ability. UV–visible spectrophotometry showed pH-mediated reversible transformations of PP-IX nanostructures. Biochemical analysis showed that PP-IX nanostructure size modulated PP-IX-induced protein oxidation and protein aggregation. Furthermore, albumin, the most abundant serum protein, preferentially binds PP-IX dimers and enhances their oxidizing ability. PP-IX binding quenched albumin intrinsic fluorescence and oxidized His-91 residue to Asn/Asp, likely via a previously described photo-oxidation mechanism for other proteins. Extracellular albumin protected from intracellular porphyrinogenic stress and protein aggregation by acting as a PP-IX sponge. This work highlights the importance of PP-IX nanostructures in the context of porphyrias and offers insights into potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Dhiman Maitra
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.
| | | | - Amenah Soherawardy
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Ruma Banerjee
- University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, Ann Arbor, Michigan, USA
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA; University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Ogbonna SJ, Hazama H, Awazu K. Mass Spectrometric Analysis of the Photobleaching of Protoporphyrin IX Used in Photodynamic Diagnosis and Therapy of Cancer. Photochem Photobiol 2021; 97:1089-1096. [PMID: 33687739 DOI: 10.1111/php.13411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
Photobleaching and photoproduct formations are considered essential phenomena in improving the efficacy of photodynamic diagnosis and therapy (PDD and PDT). We investigated the photobleaching of protoporphyrin IX (PpIX) by measuring its concentration with mass spectrometry (MS). The reduction in the concentration of PpIX dissolved in dimethyl sulfoxide was measured during PDD and PDT conditions using lasers with wavelengths of 405 and 635 nm, respectively, at a power density of 10, 50 or 100 mW/cm2 . The obtained results were compared with the results of conventional fluorescence spectroscopy and previously reported results. Our results demonstrate the variation in the MS-based photobleaching coefficient of PpIX with the power density, while the fluorescence-based photobleaching coefficient was independent of the power density. The results of MS also show faster photobleaching of PpIX in comparison with that obtained from fluorescence. The difference may be attributed to the change in the fluorescence quantum yield of PpIX with its concentration and the effect of fluorescence emission from the PpIX photoproducts. Thus, an MS-based investigation of the photobleaching poses to be a more stable investigation form. Our finding highlights the importance of recognizing the potential significance of these discoveries in the PDD and PDT dosimetry and efficacy.
Collapse
Affiliation(s)
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Horiuchi H, Tajima K, Okutsu T. Triply pH-activatable porphyrin as a candidate photosensitizer for near-infrared photodynamic therapy and diagnosis. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Sagoo K, Cumberbatch N, Holland A, Hungerford G. Rapid (FLASH-FLIM) imaging of protoporphyrin IX in a lipid mixture using a CMOS based widefield fluorescence lifetime imaging camera in real time for margin demarcation applications. Methods Appl Fluoresc 2020; 9. [PMID: 32992309 DOI: 10.1088/2050-6120/abbcc6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 01/23/2023]
Abstract
The fluorescence from protoporphyrin IX (PpIX) has been employed to characterise cellular activity and assist in the visualisation of tumour cells. Its formation can be induced by 5-aminolevulonic acid (5-ALA) which is metabolised by tumour cells to form PpIX. The PpIX is localised within the cells, rather than spreading into the vascular system. This, plus its photophysics, exhibits potential in photodynamic therapy. Hence its study and the ability to rapidly image its localisation is of importance, especially in the field of fluorescence guided surgery. This has led to investigations using tissue phantoms and widefield intensity imaging. Aggregation or the presence of photoproducts can alter PpIX emission, which has implications using widefield imaging and a broad wavelength range detection. The use of the fluorescence lifetime imaging (FLIM) is therefore advantageous as it can distinguish between the emissive species as they exhibit different fluorescence lifetimes. Here we use PpIX in a construct consisting of lipid mixture (Intralipid), employed to simulate fat content and optical scattering, in a gellan gum matrix. PpIX in intralipid in aqueous solution was injected into the gellan host to form inclusions. The samples are imaged using commercial widefield TCSPC camera based on a sensor chip with 192 x 128 pixels. Each pixel contains both detection and photon timing enabling the Fluorescence Lifetime Acquisition by Simultaneous Histogramming (FLASH). This "FLASH-FLIM" approach enables widefield fluorescence lifetime images, displayed in real time to be acquired, which has potential for use in visualising tumour boundaries.
Collapse
Affiliation(s)
- Kulwinder Sagoo
- Horiba Jobin Yvon, Glasgow, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nathan Cumberbatch
- HORIBA UK Ltd, Northampton, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Adam Holland
- HORIBA UK Ltd, Northampton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Graham Hungerford
- Horiba Jobin Yvon, 133 Finnieston Street, Glasgow, G3 8HB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
17
|
Scholz M, Petusseau AF, Gunn JR, Shane Chapman M, Pogue BW. Imaging of hypoxia, oxygen consumption and recovery in vivo during ALA-photodynamic therapy using delayed fluorescence of Protoporphyrin IX. Photodiagnosis Photodyn Ther 2020; 30:101790. [PMID: 32344195 DOI: 10.1016/j.pdpdt.2020.101790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypoxic lesions often respond poorly to cancer therapies. Particularly, photodynamic therapy (PDT) consumes oxygen in treated tissues, which in turn lowers its efficacy. Tools for online monitoring of intracellular pO2 are desirable. METHODS The pO2 changes were tracked during photodynamic therapy (PDT) with δ-aminolevulinic acid (ALA) in mouse skin, xenograft tumors, and human skin. ALA was applied either topically as Ameluz cream or systemically by injection. Mitochondrial pO2 was quantified by time-gated lifetime-based imaging of delayed fluorescence (DF) of protoporphyrin IX (PpIX). RESULTS pO2-weighted images were obtained with capture-times of several seconds, radiant exposures near 10 mJ/cm2, spatial resolution of 0.3 mm, and a broad dynamic range 1-50 mmHg, corresponding to DF lifetimes ≈20-2000 μs. The dose-rate effect on oxygen consumption was investigated in mouse skin. A fluence rate of 1.2 mW/cm2 did not cause any appreciable oxygen depletion, whereas 6 mW/cm2 and 12 mW/cm2 caused severe oxygen depletion after radiant exposures of only 0.4-0.8 J/cm2 and <0.2 J/cm2, respectively. Reoxygenation after PDT was studied too. With a 5 J/cm2 radiant exposure, the recovery times were 10-60 min, whereas with 2 J/cm2 they were only 1-6 min. pO2 distribution was spatially non-uniform at (sub)-millimeter scale, which underlines the necessity of tracking pO2 changes by imaging rather than point-detection. CONCLUSIONS Time-gated imaging of PpIX DF seems to be a unique tool for direct online monitoring of pO2 changes during PDT with a promising potential for research purposes as well as for comparatively easy clinical translation to improve efficacy in PDT treatment.
Collapse
Affiliation(s)
- Marek Scholz
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA.
| | - Arthur F Petusseau
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Jason R Gunn
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - M Shane Chapman
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Brian W Pogue
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA.
| |
Collapse
|
18
|
Benzimidazole-isoquinolinone functioned thiourea for selective and reversible recognition of fluoride ion. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Excited-state investigations of meso-mono-substituted-(amino-ferrocenyl)porphyrins: Experimental and theoretical approaches. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zhang DY, Singhal S, Lee JYK. Optical Principles of Fluorescence-Guided Brain Tumor Surgery: A Practical Primer for the Neurosurgeon. Neurosurgery 2019; 85:312-324. [PMID: 30085129 DOI: 10.1093/neuros/nyy315] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/18/2018] [Indexed: 01/21/2023] Open
Abstract
Fluorescence-guided surgery is a rapidly growing field that has produced some of the most important innovations in surgical oncology in the past decade. These intraoperative imaging technologies provide information distinguishing tumor tissue from normal tissue in real time as the surgery proceeds and without disruption of the workflow. Many of these fluorescent tracers target unique molecular or cellular features of tumors, which offers the opportunity for identifying pathology with high precision to help surgeons achieve their primary objective of a maximal safe resection. As novel fluorophores and fluorescent probes emerge from preclinical development, a practical understanding of the principles of fluorescence remains critical for evaluating the clinical utility of these agents and identifying opportunities for further innovation. In this review, we provide an "in-text glossary" of the fundamental principles of fluorescence with examples of direct applications to fluorescence-guided brain surgery. We offer a detailed discussion of the various advantages and limitations of the most commonly used intraoperative imaging agents, including 5-aminolevulinic acid, indocyanine green, and fluorescein, with a particular focus on the photophysical properties of these specific agents as they provide a framework through which to understand the new agents that are entering clinical trials. To this end, we conclude with a survey of the fluorescent properties of novel agents that are currently undergoing or will soon enter clinical trials for the intraoperative imaging of brain tumors.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Naphthyl quinoxaline thymidine conjugate is a potent anticancer agent post UVA activation and elicits marked inhibition of tumor growth through vaccination. Eur J Med Chem 2019; 171:255-264. [PMID: 30925340 DOI: 10.1016/j.ejmech.2019.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
Anticancer anthracyclines are cytotoxic drugs that can induce antitumor immune response as a secondary effect through immunogenic cell death (ICD) mechanism. However, the immunogenic potency is quite limited, possibly due to that these chemotherapeutic agents are not specifically developed as ICD inducers. Thus, new drug entities through studies focusing on enhanced ICD induction would significantly promote antitumor immune response in the vaccination application. We report here a naphthyl quinoxaline thymidine conjugate as a new class of cytotoxic compounds that effectively induced in vivo antitumor activity through the vaccination application. Synthesized naphthyl quinoxaline conjugates were weak fluorescent thymidine analog yet exhibited a pronounced anticancer activity in the low nanomolar range post UVA activation. The potent activity of naphthyl conjugate was able to induce the marked detection of ICD markers including ATP and HMGB1 extracellular and calreticulin intracellularly at 2 h post UVA activation. Most importantly, mice vaccinated with cells treated with naphthyl conjugate plus UVA exhibited complete tumor growth inhibition in the tumor challenge study, and the induced immunogenic inhibition was much more effective than that of mitoxantrone anthracycline drug. All these results demonstrate the high potential of naphthyl quinoxaline conjugate for the cancer cell vaccine against tumor.
Collapse
|
22
|
Hahn da Silveira C, Garoforo EN, Chaves OA, Gonçalves PF, Streit L, Iglesias BA. Synthesis, spectroscopy, electrochemistry and DNA interactive studies of meso-tetra(1-naphthyl)porphyrin and its metal complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Cocca LH, Gotardo F, Sciuti LF, Acunha TV, Iglesias BA, de Boni L. Investigation of excited singlet state absorption and intersystem crossing mechanism of isomeric meso-tetra(pyridyl)porphyrins containing peripheral polypyridyl platinum(II) complexes. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|