1
|
Pintea M, Mason N, Peiró-Franch A, Clark E, Samanta K, Glessi C, Schmidtke IL, Luxford T. Dissociative electron attachment to gold(I)-based compounds: 4,5-dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I). Front Chem 2023; 11:1028008. [PMID: 37405247 PMCID: PMC10315492 DOI: 10.3389/fchem.2023.1028008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
With the use of proton-NMR and powder XRD (XRPD) studies, the suitability of specific Au-focused electron beam induced deposition (FEBID) precursors has been investigated with low electron energy, structure, excited states and resonances, structural crystal modifications, flexibility, and vaporization level. 4,5-Dichloro-1,3-diethyl-imidazolylidene trifluoromethyl gold(I) is a compound that is a uniquely designed precursor to meet the needs of focused electron beam-induced deposition at the nanostructure level, which proves its capability in creating high purity structures, and its growing importance in other AuImx and AuClnB (where x and n are the number of radicals, B = CH, CH3, or Br) compounds in the radiation cancer therapy increases the efforts to design more suitable bonds in processes of SEM (scanning electron microscopy) deposition and in gas-phase studies. The investigation performed of its powder shape using the XRPD XPERT3 panalytical diffractometer based on CoKα lines shows changes to its structure with change in temperature, level of vacuum, and light; the sensitivity of this compound makes it highly interesting in particular to the radiation research. Used in FEBID, though its smaller number of C, H, and O atoms has lower levels of C contamination in the structures and on the surface, it replaces these bonds with C-Cl and C-N bonds that have lower bond-breaking energy. However, it still needs an extra purification step in the deposition process, either H2O, O2, or H jets.
Collapse
Affiliation(s)
- Maria Pintea
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Nigel Mason
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Anna Peiró-Franch
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Ewan Clark
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | - Kushal Samanta
- School of Physical Sciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Thomas Luxford
- Department of Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Wang K, Yang S, Yu X, Bai M, Ye H, Xu Y, Zhao L, Wu D, Li X, Weng L, Li Y. Microplastics degradation stimulated by in-situ bioelectric field in agricultural soils. ENVIRONMENT INTERNATIONAL 2023; 177:108035. [PMID: 37329759 DOI: 10.1016/j.envint.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Bioelectric field is a stimulated force to degrade xenobiotic pollutants in soils. However, the effect of bioelectric field on microplastics (MPs) aging is unclear. The degradation behavior of polyvinyl chloride (PVC), polyethylene (PE) and polylactic acid (PLA) was investigated in an agricultural soil microbial electrochemical system in which bioelectric field was generated in-situ by native microbes. Based on the density function theory, the energy gaps between the highest and the lowest occupied molecular orbitals of the three polymers with periodic structure were 4.20, 7.24 and 10.09 eV respectively, and further decreased under the electric field, indicating the higher hydrolysis potential of PLA. Meanwhile, the mass loss of PLA in the closed-circuit group (CC) was the highest on day 120, reaching 8.94%, which was 3.01-3.54 times of that without bioelectric field stimulation. This was mainly due to the enrichment of plastic-degrading bacteria and a robust co-occurrence network as the deterministic assembly process, e.g., the abundance of potential plastic-degrading bacteria on the surface of PLA and PVC in the CC increased by 1.92 and 1.30 times, respectively, compared to the open-circuit group. In terms of functional genes, the xenobiotic biodegradation and metabolism capacity of plasticsphere in the CC were stronger than that in soil, and determined by the bioaccessibility of soil nitrogen and carbon. Overall, this study explored the promoting effect of bioelectric field on the degradation of MPs and reveled the mechanism from quantum chemical calculations and microbial community analysis, which provides a novel perception to the in-situ degradation of MPs.
Collapse
Affiliation(s)
- Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Dan Wu
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Sarkar S, Debnath T, Das AK. Designing metal-free organic superalkalis by modifying benzene: a theoretical perspective. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Turner AM, Luo Y, Marks JH, Sun R, Lechner JT, Klapötke TM, Kaiser RI. Exploring the Photochemistry of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7) Spanning Simple Bond Ruptures, Nitro-to-Nitrite Isomerization, and Nonadiabatic Dynamics. J Phys Chem A 2022; 126:4747-4761. [PMID: 35852300 DOI: 10.1021/acs.jpca.2c02696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The UV photolysis of solid FOX-7 at 5 K with 355 and 532 nm photons was investigated to unravel initial isomerization and decomposition pathways. Isomer-selective single photon ionization coupled with reflectron time-of-flight mass spectrometry (ReTOF-MS) documented the nitric oxide (NO) loss channel at 355 nm along with a nitro-to-nitrite isomerization, which was observed by using infrared spectroscopy, representing the initial reaction pathway followed by O─NO bond rupture of the nitrite moiety. A residual gas analyzer detected molecular oxygen for the 355 and 532 nm photolysis at a ratio of 4.3 ± 0.3:1, which signifies FOX-7 as an energetic material that provides its own oxidant once the decomposition starts. Overall branching ratios for molecular oxygen versus nitric oxide were derived to be 700 ± 100:1 at 355 nm. It is notable that this is the first time that molecular oxygen was detected as a decomposition product of FOX-7. Computations show that atomic oxygen, which later combines to form molecular oxygen, is likely released from a nitro group involving conical intersections. The condensed phase potential energy profile computed at the CCSD(T) and CASPT2 level correlates well with the experiments and highlights the critical roles of conical intersections, nonadiabatic dynamics, and the encapsulated environment that dictate the mechanism of the reaction through intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, 81377 München, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, 81377 München, Germany
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
5
|
Liu J, Zhang C, Zhao S, Zhu K, Liu J, Wang Z, Dai Y, Jia H. Deciphering the transformation mechanism of substituted polycyclic aromatic hydrocarbons on Al(III)-montmorillonite: An experimental and density functional theory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147493. [PMID: 33984697 DOI: 10.1016/j.scitotenv.2021.147493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The researches on transformation of polycyclic aromatic hydrocarbons (PAHs) on clay minerals modified by metal ions have received increasing attention. However, the transformation of PAHs with electron-withdrawing or electron-donating substitutional groups on clay minerals is not well understood currently. In this study, the degradation of anthracene (ANT) with different substituents (including -CH3, -CHO, -Br, -OMe, and -NO2) on Al(III)-montmorillonite (MMT) was investigated in the dark. The results showed that aromatic compounds were degraded with the rate constants (kobs) of 0.004-0.141 d-1. Moreover, ANT with electron-donating substituents (e.g., -CH3, -OMe) had a higher transformation rate than that with electron-withdrawing substituents (e.g., -Br, -NO2). The reactive oxygen species (ROS) quenching experiments indicated that ROS played a significant role in the transformation of ANT and ANT derivatives. Density functional theory (DFT) calculations revealed that the reactivity of single substituted PAHs was highly correlated with their ionization potential (IP), the energy of highest occupied molecular orbital (EHOMO), the energy of lowest unoccupied molecular orbital (ELUMO), and electronegativity (ζ), while independent of hardness (η). This study provides novel insights into predicting the reactivity of PAHs derivatives, and lays a fundamental basis for better understanding the fate of substituted PAHs in soils.
Collapse
Affiliation(s)
- Jinsong Liu
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chi Zhang
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Song Zhao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinbo Liu
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqiang Wang
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yunchao Dai
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|